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PREFACE 
 
Dear Conference Participants, 
 
Welcome to the Ninth International Conference on IFS and Contemporary Mathematics and 
Engineering (IFSCOM-E 2023). The aim of our conference is to bring together important 
engineers and mathematician researchers from all over the world with different engineering and 
mathematical interests. This conference is one of the leading international conferences to present 
new and fundamental advances in different fields of Engineering and Mathematics and to highlight 
interdisciplinary studies. We want to provide a suitable environment where researchers can 
exchange ideas, discuss the latest research findings and collaborate to generate new different ideas. 
We are happy to have outstanding researchers in different fields such as Mathematics and other 
fields related to Engineering sciences. 
 
It is also the aim of the conference that young researchers and graduate students engage in such 
exceptional event. Their inputs and participation in such event should encourage them to do more 
research activities in the future. 
 
We would like to thank all participating scientists who made the most important contribution to this 
conference. Their contributions are the key ingredient to the success of the conference.  
We are sincerely grateful to all participants who really value our work and efforts that we develop 
every year to improve this conference. We are so proud to reach this respected level of success. 
Indeed, this was not possible without the outstanding work, efforts and supports from the members 
of the conference team: Scientific Committee Members, Referee Committee Members and Local 
Organizing Committee Members. 
 
We are very pleased to present the abstracts of the Ninth International Conference on IFS and 
Contemporary Mathematics and Engineering (IFSCOM-E 2023). The conference was completed 
with 167 participants and 174 papers. The distribution of research papers delivered by the 
participants are classified by the following fields: Applied Mathematics, Algebra, Geometry, 
Topology, Analysis, Statistics and other fields such as Financial Mathematics, Fuzzy Sets, Game 
Theory, Geometric Computer Aided Design, Graph Theory, Intuitionistic Fuzzy, Machine Learning 
and Mathematical Modeling, Mechanical Engineering, Food Engineering, Information 
Visualization, Visualization Literacy, Environmental Engineering, Measurement of Fluid 
Properties, Civil Engineering, Natural Disaster, Industrial Engineering. 
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Two keynote speakers and four invited speakers attended the conference to share information about 
current studies in different fields with our participants.  We have 167 participants participated from 
21 countries: Canada, Mexico, India, Morocco, Poland, Russia, Turkey, etc.. 
This abstract booklet contains the titles and abstracts of all presented talks during the conference. 
Many submitted articles to this conference are considered in the following listed journals and books: 
 
Journals: 
• Journal of Universal Mathematics (JUM) 
• Kahramanmaras Sutcu Imam University Journal of Engineering Sciences 
• Karamanoğlu Mehmetbey University Journal of Engineering and Natural Sciences 
• Notes on Intuitionistic Fuzzy Sets (Notes on IFS) 
 
Books: 
•IFSCOM-E 2023 Abstract Book with an ISBN number 
•IFSCOM-E 2023 Proceeding Book with an ISBN number  
•SPRINGER Book 
 
We wish that all participants participate in all sessions, ask questions and be active in the 
conference. We also wish that this conference is a great place where you meet new friends, gain 
some knowledge, and get yourself involved in some research collaborations. 
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APPROXIMATE SOLUTIONS OF THE MODIFIED KRATZER

POTENTIAL PLUS SCREENED COULOMB POTENTIAL IN

N-DIMENSIONS

A. ÖZFİDAN

Abstract. We investigate the bound state solutions of the N-dimensional

Klein-Gordon equation with the modified Kratzer potential plus screened Coulomb
potential via the asymptotic iteration approach. By the use of Greene-Aldrich

approximation, we construct the N-dimensional energy spectrum and the N-

dimensional radial wavefunction in relativistic theory. To test the accuracy of
our analytical approach, we compare the present results with other reported

works.

1. Introduction

Recently, many researchers have focused on solving the relativistic and non-
relativistic wave equations with the linear combination of two or more potentials.
In this regard, a vast number of works have been carried out to investigate the
Klein-Gordon equation with these potentials in both three dimensions and N-spatial
dimensions[1-3]. One such potential is the modified Kratzer potential plus screened
Coulomb potential[4].

In hyperspherical coordinates, the modified Kratzer potential plus screened Coulomb
potential is given by

(1.1) V (r) = De

(
r − re
r

)2

− V0
r
e−αr

where re and De are the equilibrium intermolecular separation, the dissociation
energy, V0 is the potential strength parameter, α is the screening parameter, re-
spectively. Kratzer potential[5] appears in various fields of physics and chemistry,
especially atomic and nuclear physics. Besides, the modified Kratzer potential has
also been worked out by many authors [6-7]. The screened Coulomb potential[8]
has played a key role in some physical systems such as dense plasmas, solid-state
matter. For this reason, we consider the extensive theoretical modeling which is a

Date: July, 8, 2023.
2000 Mathematics Subject Classification. 81Q05; 33C05.
Key words and phrases. Asymptotic iteration method, Hyperspherical coordinates.
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2 A. ÖZFİDAN

superposition of the modified Kratzer and the screened Coulomb potentials in the
present work.

Hyperspherical coordinates are of great importance in quantum mechanical prob-
lems and their applications. N-dimensional space plays a foundational role through-
out our calculations in this work. It should be mentioned that mathematical tools
have been investigated by Louck and Shaffer [9], Louck [10-11], and Chatterjee [12]
to generalize orbital angular momentum.

We need to use an approximation scheme in quest for l-state solutions of the
exponential-type potential models. In this context, to overcome the centrifugal
term, we apply the Greene-Aldrich approximation[13]. According to the best of
our knowledge, no the lN−1-state solutions of the Klein-Gordon equation with the
modified Kratzer potential plus the screened Coulomb potential have been estab-
lished within the framework of asymptotic iteration method(AIM) which has been
proposed by Ciftci et al. [14-16]. The present letter aims to apply the AIM to
probe the relativistic treatment of a spinless particle interacting with the relevant
potential in hyperspherical coordinates.

The rest of this work is arranged as follows: In Sec. 2, the asymptotic iteration
approach is briefly discussed. In Sec. 3, the Klein-Gordon equation in hyperspher-
ical coordinates is examined and the relativistic wave equation in the presence of
central potential is separated into radial and angular parts. We present also the ap-
proximate solutions of the N-dimensional Klein-Gordon equation for the modified
Kratzer potential plus the screened Coulomb potential. Finally, some conclusions
are given in Sec. 4.

2. Basic Concepts Of Asymptotic Iteration Method

In this section, we present briefly the asymptotic iteration method which is the
procedure for solving the Klein-Gordon equation in hyperspherical coordinates. The
related theoretical details of this method can be found in Refs. [14-16]. AIM can
be used to solve the second-order differential equation of the form

(2.1) y′′(r) = λ0(r)y′(r) + s0(r)y(r)

in which λ0 (r) and s0 (r) functions in C∞(a,b) are sufficiently differentiable.
The general solution of Eq.(2.1) can be obtained in the following form

(2.2) y(r) = exp

(
−
∫ r

αdr′
)[

C2 + C1

∫ r

exp

(∫ r′

[λ0(τ) + 2α(τ)] dτ

)
dr′

]
For adequately large k,

(2.3)
sk(r)

λk(r)
=
sk−1(r)

λk−1(r)
≡ α(r)

in which

(2.4) λk = λ
′

k−1 + sk−1 + λ0λk−1 sk = s
′

k−1 + s0λk−1

If the eigenvalue problem has exact analytic solutions, the termination condition
Eq.(2.3), or equivalently,

(2.5) δk(r) = λk(r)sk−1(r)− λk−1(r)sk(r) = 0
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produces, at each iteration, an expression that is independent of r. It is noted
that k displays the iteration number. Physically meaningful solution of Eq.(2.1) is
provided by the first term of Eq.(2.2) not the second term, so we can use the first
term as the wavefunction generator

(2.6) y(r) = C2exp

(
−
∫ r sk(r′)

λk(r′)
dr′
)

where C2 is an integration constant that can be determined by normalization.

3. N-dimensional solutions of the modified Kratzer potential plus
the screened Coulomb Potential in approximate analytic form

We briefly carry out the separation of variables for the N-dimensional Klein-
Gordon equation. In hyperspherical coordinates, the Klein-Gordon equation with
a non-central potential can be written as

(3.1)

−~2c2∇2
NΨ(r, θN−1) +

[(
µc2 + S(r, θN−1)

)2 − (E − V (r, θN−1))
2
]

Ψ(r, θN−1) = 0

where E and µ are relativistic energy and reduced mass of a spin-zero particle, c is
the velocity of light and ~ is Planck constant. Eq.(3.1) for S(r, θN−1) = V (r, θN−1)
reduces to Klein-Gordon equation in hyperspherical coordinates for the potential
2V in the non-relativistic limit. Following the works of Alhaidari et al.[17] , we
draw conclusion that only the choice S = +V produces a nontrivial non-relativistic
limit with a potential function 2V and not V . A choice of S = −V also reveals free
fields in the non-relativistic limit. For this reason, if the potential terms in Eq.(3.1)
are scaled, in case of the non-relativistic limit the interaction potential becomes
V , not 2V . Therefore, for the case of the equal scalar and vector potentials, the
N-dimensional Klein-Gordon equation is obtained in the following form
(3.2)
−~2c2∇2

NΨ(r, θN−1) +
[(
E + µc2

)
V (r, θN−1)−

(
E2 − µ2c4

)]
Ψ(r, θN−1) = 0

The N-dimensional Laplacian is defined with respect to Cartesian coordinates x1, x2, x3, ....xN
as

(3.3) ∇2
N =

N∑
j=1

∂2

∂x2j

In accordance with the works of Louck [10,11] and Chatterjee [12], we introduce
the hyperspherical coordinates in N-dimensional space as follows

x1 = rcosθ1sinθ2sinθ3......sinθN−1

x2 = rsinθ1sinθ2sinθ3......sinθN−1

x3 = rcosθ2sinθ3sinθ4......sinθN−1

x4 = rcosθ3sinθ4sinθ5......sinθN−1
...

xj = rcosθj−1sinθjsinθj+1......sinθN−1 3 ≤ j ≤ N − 1(3.4)

xN = rcosθN−1
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for N = 3, 4, 5..., where the range of the variables is 0 ≤ r ≤ ∞, 0 ≤ θ1 ≤ 2π,
0 ≤ θj ≤ π, for j = 2, 3, ...., N − 1 and r is the radius of an N-dimensional sphere.
The Laplacian is given in terms of hyperspherical coordinates by

(3.5)

∇2
N = 1

rN−1
∂
∂r r

N−1 ∂
∂r + 1

r2

N−2∑
k=1

1
sin2 θk+1 sin2 θk+2...... sin2 θN−1

(
1

sink−1 θk

∂
∂k

sink−1 θk
∂
∂θk

)
+

1
r2

(
1

sinN−2 θN−1

∂
∂θN−1

sinN−2 θN−1
∂

∂θN−1

)
We take the total wave function in hyperspherical coordinates as

(3.6) Ψ(r, θ1, θ2, ...., θN−1) = r−
N−1

2 R(r)YlN−1,lN−2....,l2,l1(θ1, θ2, ...., θN−1)

where R(r) is radial wave function and YlN−1,lN−2....,l2,l1(θ1, θ2, ...., θN−1) is gener-
alized spherical harmonics. In this context, the radial part of the N-dimensional
relativistic wave equation is obtained as

(3.7)
d2R(r)

dr2
+

[
E2 − µ2c4

~2c2
−
(
E + µc2

~2c2

)
V (r)− (N − 1)(N − 3)

4r2
− lN−1 (lN−1 +N − 2)

r2

]
R(r) = 0

and the angular parts of the N-dimensional relativistic wave equation are given
in the following forms

d2H (θN−1)

dθ2N−1

+ (N − 2)
cos θN−1

sin θN−1

dH (θN−1)

dθN−1
−
[(

E + µc2

~2c2

)
r2V (θN−1)

+
lN−2 (lN−2 +N − 3)

sin2 θN−1
− lN−1 (lN−1 +N − 2)

]
H (θN−1) = 0(3.8)

(3.9)
d2H(θ1)

dθ21
+ l21H(θ1) = 0

It should be noted that the Klein-Gordon equation for the potential involved is
separable into (N - 1) angular equations for the angular parameters (θ1, θ2, ..., θN−1)
and to one radial equation for the radial parameter r. More details can be found
in Refs.[10-12].

3.1. Radial Energy Eigenvalues and Eigenfunctions in Hyperspherical
Coordinates. When we plug Eq.(1.1) into Eq.(3.7), we get the radial Klein-
Gordon equation for the modified Kratzer potential plus the screened Coulomb
potential in N-dimensions as

d2R(r)

dr2
+

[(
E2 − µ2c4

)
~2c2

−
(
E + µc2

)
~2c2

(
De
(r − re

r

)2
− V0

r
e−αr

)
− (N − 1) (N − 3)

4r2

− lN−1 (lN−1 +N − 2)

r2

]
R (r) = 0(3.10)

Due to the centrifugal term, Eq.(3.10) cannot be solved analytically for any lN−1-
state. As a result, in order to solve this equation, we must utilize an approximation
scheme proposed by Greene-Aldrich as
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(3.11)
1

r2
≈ α2

(1− e−αr)2

By applying this approximation to Eq.(3.10) and making a change of variable
y = e−αr, we can reconstruct the hyper-radial relativistic wave equation

(3.12)

d2R(y)

dy2
+

1

y

dR(y)

dy
+

[
− ε

2

y2
+

Λ0

y2 (1− y)
+

Λ1

y (1− y)
− Λ2

y2 (1− y)
2

]
R (y) = 0

with

(3.13)

&− ε2 =

(
E2 − µ2c4

)
−De

(
E + µc2

)
α2~2c2

, κ = lN−1 +
N − 3

2
, Λ0 =

(
E + µc2

)
α~2c2

2Dere

&Λ1 =

(
E + µc2

)
α~2c2

V0 , Λ2 =

(
E + µc2

)
~2c2

Der
2
e + κ(κ+ 1)

In order to solve Eq.(3.12) through asymptotic iteration method, the wave func-
tion that ensures the boundary conditions is proposed in the following form

(3.14) R (y) = (1− y)
γ+1

yνf(y)

where f(y) is a function to be determined and γ and ν are defined as

(3.15) γ = −1

2
+

√
(1 + 4Λ2)

2
, ν =

√
ε2 − Λ0 + Λ2

When we substitute Eq.(3.14) into Eq.(3.12), the second-order homogeneous
linear differential equation is obtained as follows

(3.16)
d2f(y)

dy2
=

[
(2γ + 2ν + 3) y − (2ν + 1)

y(1− y)

]
df(y)

dy
+

[
(1 + γ) (2ν + 1) + 2Λ2 − Λ0 − Λ1

y (1− y)

]
f(y)

which is convenient to apply the asymptotic iteration method. We can find the
values of λ0 and s0 with the comparison of Eq.(3.16) to Eq.(2.1). By using Eq.(2.4),
we can derive λn and sn as follows
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λ0 =
(2γ + 2ν + 3) y − (2ν + 1)

y(1− y)

s0 =
(1 + γ) (2ν + 1) + 2Λ2 − Λ0 − Λ1

y (1− y)

λ1 =
2γ + 2ν + 3

y(1− y)
− (2γ + 2ν + 3) y − (2ν + 1)

y2 (1− y)
+

(2γ + 2ν + 3) y − (2ν + 1)

y (1− y)
2

+
(1 + γ) (2ν + 1) + 2Λ2 − Λ0 − Λ1

y (1− y)
+

((2γ + 2ν + 3) y − (2ν + 1))
2

y2 (1− y)
2

s1 = − (1 + γ) (2ν + 1) + 2Λ2 − Λ0 − Λ1

y2 (1− y)
+

(1 + γ) (2ν + 1) + 2Λ2 − Λ0 − Λ1

y (1− y)
2

+
((1 + γ) (2ν + 1) + 2Λ2 − Λ0 − Λ1) ((2γ + 2ν + 3) y − (2ν + 1))

y2 (1− y)
2

(3.17)

After building the energy eigenvalues via Eq.(2.3) and taking into consideration
the used abbreviations, we obtain the N-dimensional relativistic energy spectrum
for the modified Kratzer potential plus the screened Coulomb potential

(3.18)
(E2−µ2c4)

~2c2α2 =
(E+µc2)
α2~2c2 De −

(E+µc2)
α~2c2 2Dere +

(E+µc2)
~2c2 Der

2
e + κ(κ+ 1)

−

 (E+µc2)
α~2c2

V0+
(E+µc2)
α~2c2

2Dere−
(E+µc2)

~2c2
2Der

2
e−
(
n2+n+ 1

2+(n+ 1
2 )
√

1+4κ(κ+1)+
4Der2e(E+µc2)

~2c2
+2κ(κ+1)

)
(
2n+1+

√
1+4κ(κ+1)+

4Der2e(E+µc2)
~2c2

)


2

In the non-relativistic limit, for N = 3, Eq.(3.18) is in agreement with the one
obtained previously in Refs.[4].

We can also construct the corresponding wavefunctions of the radial part of the
Klein-Gordon equation with Eq.(1.1) by using the wavefunction generator given by
Eq.(2.6).

f0(y) = C2 = C2 2F1 (0, 2γ + 2ν + 2, 2ν + 1; y)

f1(y) = −C2[(2ν + 1)− (2γ + 2ν + 3) y]

= −C2 (2ν + 1) 2F1 (−1, 2γ + 2ν + 3, 2ν + 1; y)

f2(y) = C2

[
(2γ + 2ν + 4) (2γ + 2ν + 5) y2 − 2 (2γ + 2ν + 4) (2ν + 2) y + (2ν + 1) (2ν + 2)

]
= C2 (2ν + 1) (2ν + 2) 2F1 (−2, 2γ + 2ν + 4, 2ν + 1; y)

f3(x) = −C2

[
− (2γ + 2ν + 7) (2γ + 2ν + 6) (2γ + 2ν + 5) y3 + 3 (2γ + 2ν + 6) (2γ + 2ν + 5) (2ν + 3) y2

−3 (2γ + 2ν + 5) (2ν + 3) (2ν + 2) y + (2ν + 3) (2ν + 2) (2ν + 1)]

= C2 (2ν + 1) (2ν + 2) (2ν + 3) 2F1 (−3, 2γ + 2ν + 5, 2ν + 1; y)

...

We can see that f(y)in the general form can be written as follows

(3.19) fn (y) = C2 (2ν + 1)n (−1)
n
2F1 (−n, 2γ + 2ν + 2 + n, 2ν + 1, y )
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As a result, we express the hyper-radial wave function as follows
(3.20)

R (y) = C2 (1− y)
γ+1

yν (2ν + 1)n (−1)
n
2F1 (−n, 2γ + 2ν + 2 + n, 2ν + 1, y )

in which C2 denotes the normalization factor.

4. Conclusion

On constructing the lN−1-state solutions of the Klein-Gordon equation with the
modified Kratzer potential plus the screened Coulomb potential under the con-
dition of equal vector and scalar potentials, we employ the asymptotic iteration
approach. It is important to note that quantum systems with such potentials can
be investigated with proper approximations. In this context, Greene-Aldrich ap-
proximation is applied to the centrifugal term in this work. Hence, for bound states,
we derive the N-dimensional energy eigenvalues and obtain the N-dimensional ra-
dial wavefunction in the presence of the relevant potential in approximate analytic
form.

The asymptotic iteration formalism is a reliable computing approach for obtain-
ing analytical solutions of the N-dimensional relativistic wave equation in central
potential field. The energy spectrum obtained within the asymptotic iteration ap-
proach is consistent with the other method in the available literature.
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Abstract. In the present study, a theorem which gives necessary and suffi-
cient conditions for the inclusion relation between | A, pn, β; δ |k and | B, pn, β; δ |k
summability methods is introduced.

1. Introduction

Let
∑
an be an infinite series with its partial sums (sn). Let A = (anv) be a

normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A
defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
As = (An(s)), where An(s) =

∑n
v=0 anvsv, n = 0, 1, ... Let (ϕn) be any sequence

of positive real numbers. The series
∑
an is said to be summable ϕ− |A|k, k ≥ 1,

if (see [1])

∞∑
n=1

ϕk−1
n | An(s)−An−1(s) |k<∞.

The series
∑
an is said to be summable | A, pn, β; δ |k, k ≥ 1, δ ≥ 0 and β is a real

number, if (see [2])

∞∑
n=1

(
Pn
pn

)β(δk+k−1)

| An(s)−An−1(s) |k<∞,

where (pn) is a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−k = p−k = 0, k ≥ 1).

Let lk denotes the set of sequence such that lk :=
{
x = (xj) :

∑
|xj |k <∞

}
.

Date: July, 8, 2023.
2020 Mathematics Subject Classification. 40D25, 40F05; 40G99.
Key words and phrases. Relative strength, Absolute matrix summability, Infinite series.
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2. Known Results

Let A = (anv) be a normal matrix, then two lower semimatrices Ā = (ānv) and

Â = (ânv) are defined as:

ānv =

n∑
i=v

ani, n, v = 0, 1, ...

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ...

and

∆̄An(s) = An(s)−An−1(s) =

n∑
v=0

ânvav.(1)

If A is a normal matrix, then A′ = (a′nv) denotes the inverse of A, and Â = (ânv)

is a normal matrix and it has two-sided inverse Â′ = (â′nv) which is also normal
(see [3]). There are some studies about sufficient or necessary conditions for ab-
solute summability and absolute matrix summability of infinite series, equivalence
theorems for summability, the relative strength of absolute summability methods,
see [4–24]. Also, the following theorem on the relative strength of ϕ − |A|k and
ϕ− |B|k methods is known [1].

Theorem 1. Let k > 1. Let A = (anv) and B = (bnv) be two positive normal
matrices. In order that

ϕ− |A|k ⇒ ϕ− |B|k
it is necessary that

bnn = O (ann) .(2)

If we suppose that

bn−1,v ≥ bnv for n ≥ v + 1,(3)

an0 = 1, bn0 = 1, n = 0, 1, ...,(4)

avv − av+1,v = O(avvav+1,v+1),(5)

n−1∑
v=1

(
bvv b̂n,v+1

)
= O (bnn) ,(6)

m+1∑
n=v+1

(ϕnbnn)
k−1

b̂n,v+1 = O
(
ϕk−1
v bk−1

vv

)
,

m+1∑
n=v+1

(ϕnbnn)
k−1

∣∣∣∆v

(
b̂nv

)∣∣∣ = O
(
ϕk−1
v bkvv

)
,

n∑
v=r+2

b̂nv|â′vr| = O
(
b̂n,r+1

)
,(7)

then (2) is also sufficient.
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Lemma 1. [4] Let k ≥ 1 and A = (anv) be an infinite matrix. In order that
A ∈

(
lk; lk

)
it is necessary that

anv = O(1) (all n, v)(8)

3. Main Result

The object of the present study is to generalize Theorem 1.

Theorem 2. Let k > 1. Let A = (anv) and B = (bnv) be two positive normal
matrices. In order that

| A, pn, β; δ |k ⇒ | B, pn, β; δ |k(9)

the condition (2) is necessary. If we suppose that (3)-(7) and

m+1∑
n=v+1

(
Pn
pn

)β(δk+k−1)

bk−1
nn b̂n,v+1 = O

((
Pv
pv

)β(δk+k−1)

bk−1
vv

)
,(10)

m+1∑
n=v+1

(
Pn
pn

)β(δk+k−1)

bk−1
nn

∣∣∣∆v

(
b̂nv

)∣∣∣ = O

((
Pv
pv

)β(δk+k−1)

bkvv

)
,(11)

then (2) is also sufficient, where δ ≥ 0 and −β(δk + k − 1) + k > 0.

Proof of Theorem 2

Necessity. Let (In) and (Un) denote A-transform and B-transform of the series∑
an, respectively. By (1), we have ∆̄In =

∑n
v=0 ânvav and ∆̄Un =

∑n
v=0 b̂nvav.

Then, we write av =
∑v
r=0 â

′
vr∆̄Ir and ∆̄Un =

∑n
v=0 b̂nv

∑v
r=0 â

′
vr∆̄Ir. Also, using

the fact that b̂n0 = b̄n0 − b̄n−1,0 = 0, we have

∆̄Un =

n∑
v=1

b̂nv

v∑
r=0

â′vr∆̄Ir

=
n∑
v=1

b̂nvâ
′
vv∆̄Iv +

n∑
v=1

b̂nvâ
′
v,v−1∆̄Iv−1 +

n∑
v=1

b̂nv

v−2∑
r=0

â′vr∆̄Ir

= b̂nnâ
′
nn∆̄In +

n−1∑
v=1

(
b̂nvâ

′
vv + b̂n,v+1â

′
v+1,v

)
∆̄Iv +

n−2∑
r=0

∆̄Ir

n∑
v=r+2

b̂nvâ
′
vr

By using the equality
∑n
k=v â

′
nkâkv = δnv (Kronecker delta), we obtain

b̂nvâ
′
vv + b̂n,v+1â

′
v+1,v =

b̂nv
âvv

+ b̂n,v+1

(
− âv+1,v

âvvâv+1,v+1

)
=

b̂nv
avv
− b̂n,v+1

(āv+1,v − āvv)
avvav+1,v+1

=
b̂nv
avv
− b̂n,v+1

(av+1,v+1 + av+1,v − avv)
avvav+1,v+1

=
∆v(b̂nv)

avv
+ b̂n,v+1

(avv − av+1,v)

avvav+1,v+1
.
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Thus

∆̄Un =
bnn
ann

∆̄In +

n−1∑
v=1

∆v(b̂nv)

avv
∆̄Iv +

n−1∑
v=1

b̂n,v+1
(avv − av+1,v)

avvav+1,v+1
∆̄Iv

+

n−2∑
r=0

∆̄Ir

n∑
v=r+2

b̂nvâ
′
vr

= Un,1 + Un,2 + Un,3 + Un,4.

Let’s write the matrix transforming

((
Pn
pn

) β(δk+k−1)
k

∆̄In

)
into

((
Pn
pn

) β(δk+k−1)
k

∆̄Un

)
by (8). The argument (9) is equivalent to the argument that this matrix ∈

(
lk; lk

)
.

So, by Lemma 1, in order that | A, pn, β; δ |k ⇒ | B, pn, β; δ |k, the condition (2) is
necessary.

Sufficiency. Let the conditions be satisfied. We will prove that | A, pn, β; δ |k ⇒
| B, pn, β; δ |k. For the proof, let’s show that

∞∑
n=1

(
Pn
pn

)β(δk+k−1)

| Un,r |k<∞ for r = 1, 2, 3, 4.

First
m∑
n=1

(
Pn
pn

)β(δk+k−1)

| Un,1 |k =

m∑
n=1

(
Pn
pn

)β(δk+k−1)
bknn
aknn
|∆̄In|k.

By (2) and using the fact that
∑
an is summable | A, pn, β; δ |k, it follows that

m∑
n=1

(
Pn
pn

)β(δk+k−1)

| Un,1 |k = O(1)

m∑
n=1

(
Pn
pn

)β(δk+k−1)

|∆̄In|k = O(1) as m→∞.

Now, we get

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)

| Un,2 |k ≤
m+1∑
n=2

(
Pn
pn

)β(δk+k−1) n−1∑
v=1

|∆v(b̂nv)|
akvv

∣∣∆̄Iv∣∣k
×

(
n−1∑
v=1

|∆v(b̂nv)|

)k−1

by Hölder’s inequality. Then, we obtain

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)

| Un,2 |k ≤
m+1∑
n=2

(
Pn
pn

)β(δk+k−1)

bk−1
nn

n−1∑
v=1

|∆v(b̂nv)|
akvv

∣∣∆̄Iv∣∣k
≤

m∑
v=1

∣∣∆̄Iv∣∣k
akvv

m+1∑
n=v+1

(
Pn
pn

)β(δk+k−1)

bk−1
nn |∆v(b̂nv)|

= O(1)

m∑
v=1

(
Pv
pv

)β(δk+k−1)

|∆̄Iv|k = O(1) as m→∞

by (11) and (2).
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By using (5), the Hölder’s inequality, and the conditions (6), (10), we obtain

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)

| Un,3 |k =

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
∣∣∣∣∣
n−1∑
v=1

b̂n,v+1
(avv − av+1,v)

avvav+1,v+1
∆̄Iv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
(
n−1∑
v=1

b̂n,v+1

∣∣∆̄Iv∣∣)k

= O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1) n−1∑
v=1

b̂n,v+1
bvv
bkvv

∣∣∆̄Iv∣∣k
×

(
n−1∑
v=1

b̂n,v+1bvv

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)

bk−1
nn

n−1∑
v=1

b̂n,v+1

∣∣∆̄Iv∣∣k 1

bk−1
vv

= O(1)

m∑
v=1

1

bk−1
vv

∣∣∆̄Iv∣∣k m+1∑
n=v+1

(
Pn
pn

)β(δk+k−1)

bk−1
nn b̂n,v+1

= O(1)

m∑
v=1

(
Pv
pv

)β(δk+k−1)

|∆̄Iv|k = O(1) as m→∞.

Lastly, the condition (7) follows that

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)

| Un,4 |k = O(1)

m+1∑
n=2

(
Pn
pn

)β(δk+k−1)
(
n−2∑
r=0

∣∣∆̄Ir∣∣ b̂n,r+1

)k
= O(1) as m→∞,

as in Un,3. This completes the proof of Theorem 2.

References
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Abstract. It is always interesting to obtain structures that retain some topo-

logical properties but have a weaker condition. In this study, we will introduce
a topological structure that is not closed under arbitrary combination and is a

subfamily of the family of fuzzy soft sets. Firstly we will give definitions of this

subfamily. The basic properties of this space, which we will call infra-fuzzy soft
topological spaces, will be investigated. We will show that the union of infra

fuzzy-soft topological spaces is not a infra fuzzy-soft topological space. In the

upcoming work we will examine the equivalents of some topological concepts
in infra-fuzzy-soft topological spaces.

1. Introduction

In 1999, Molodtsov [1] introduced a new mathematical tool for handling vague-
ness, known as soft sets. He explored its connection with fuzzy sets and demon-
strated its applications in various domains. Since then, numerous scholars and
researchers have investigated the utility of soft sets in different areas, including
decision-making problems [2], computer science [3], and medical science [4]. In
2003, Maji et al. [5] initiated a study on the fundamental concepts and principles
of soft set theory. They delved into various operations such as intersection and
union operators, the difference between two soft sets, and the complement of a soft
set.
The necessity to address problems that cannot be adequately expressed using clas-
sical logic, coupled with advancements in scientific knowledge, has prompted math-
ematicians to develop new mathematical models and tools. In response to this
demand, various theories have been introduced in the field of mathematics. One
such theory is fuzzy set theory, proposed by Zadeh in 1965 [6]. Both fuzzy set and
soft set theories have found widespread applications in expert systems, decision-
making, modeling, social sciences, medical diagnostics, and other domains. These
theories have also been utilized in the identification and analysis of COVID-19 pa-
tients, which has been a topic of great global interest. The field of mathematics
has seen numerous studies focusing on soft set and fuzzy set theories, attracting
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16 A. ATAY

the attention of researchers. Building upon fuzzy set theory, Chang provided a
definition of fuzzy topology in 1968 [7]. Subsequently, Lowen introduced a more
natural definition of fuzzy topology in 1976, distinct from Chang’s definition [8].
Since Chang’s pioneering work, several topological concepts have been adapted to
a fuzzy setting.
In 2001, Maji et al. [9] merged fuzzy set and soft set theories and proposed the
concept of a fuzzy soft set. Recent research has shown that a significant portion
of studies in this field focuses on fuzzy soft topological spaces. To further explore
fuzzy soft sets, Ahmad and Kharal [10] presented additional properties of fuzzy soft
sets and introduced the notion of mappings on fuzzy soft sets. In 2011, Tanay et al.
[11] established the topological structure of fuzzy soft sets. Subsequently, in 2012,
Varol and Aygün [12] introduced fuzzy soft topology, while Şimşekler and Yüksel
[13] introduced fuzzy soft topological spaces in 2013.
Soft topology has been extended to various structures, and one notable extension
is infra soft topology [14]. The continuous investigation of infra soft topological
structures is motivated by the fact that many topological properties are preserved
within the framework of infra soft topologies. Furthermore, infra soft topologies
allow for easy construction of examples that demonstrate the relationships among
different topological concepts. This investigation has been carried out for concepts
such as infra soft compactness and infra soft connectedness [15, 16]. In [17], they
introduce the concept of infra soft topological spaces. Also the concept of a infra
fuzzy topological spaces has been studied by Zanyar A. Ameen et al [18].
In this paper, we introduce the concept of infra fuzzy-soft topological spaces and
delve into the main properties of infra fuzzy-soft topology. We will also show with
an example that the union of infra-fuzzy-soft topological spaces may not be an
infra-fuzzy-soft topology.

2. Preliminaries

In this section, we will review the necessary technical concepts used in this paper.
Firstly, During this work, Y 6= ∅ will be an initial universal set, J = [0, 1] ⊂ R and
P 6= ∅ is the set of all possible parameters of Y . we use the notation 2Y to represent
the power set of Y , which denotes the set of all subsets of Y .

Definition 2.1. For ∅ 6= K ⊆ P and the mapping β : K −→ 2Y , a pair (β,K) ={
β (p) : p ∈ K ⊆ P, β : K −→ 2Y

}
is named a soft set on Y . SS (Y )K is a family

of all these soft sets [1].

Definition 2.2. Let B ⊆ Y and GB(y) : Y → J be a mapping. Then

B̃ = {(y,GB(y)) : y ∈ Y }

defined as a fuzzy set in Y and GB(y) defined as a degree of membership of y ∈ B.
A fuzzy set defined as

C̃ = {(y,GC(y)) : GC(y) = α, α ∈ [0, 1], y ∈ C ⊆ Y }

is called a fixed fuzzy set. Also for ∀y ∈ Y fuzzy empty set and fuzzy universal set
are defined as respectively,

0Y : Y → J, y → 0y(y) = 0, 1Y : Y → J, y → 1y(y) = 1
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. For B ⊆ Y the fuzzy sets, with membership function GB , will be briefly denoted
by GB .The family of all fuzzy sets in Y is indicated by JY [6].

Definition 2.3. Let K ⊂ P . fK is defined to be a fuzzy soft set on (Y, P ) if
f : K → JY is a mapping defined by f(p) = µpf such that

f(p) =

{
µpf = 0, p ∈ P −K
µpf 6= 0, p ∈ K

where 0(y) = 0 for each y ∈ Y [9].

Definition 2.4. The complement of a fuzzy soft set fK is a fuzzy soft set on (Y, P ),
which is denoted by f cK , and f c : K → JY is defined as follows:

f c =

{
µkfc = 1− µkf , k ∈ K
µkfc = 1, k ∈ P −K

where 1(y) = 1 for each y ∈ Y [9].

Definition 2.5. The fuzzy soft set fK is called the null fuzzy soft set if fK(p) = 0
for each p ∈ P and denoted by 0̃P . The fuzzy soft set fK is called the universal
fuzzy soft set if fK(p) = 1 for each p ∈ P and denoted by 1̃P [9].

Clearly, (1̃P )c = 0̃P , and (0̃P )c = 1̃P .

From now on, we will use F(Y, P ) instead of the family of all fuzzy soft sets over
Y .

Definition 2.6. Let fK1
, gK2

be two fuzzy soft sets on F(Y, P ) and K1 ⊆ K2 ⊂ Y .
Then, fK1

is called a fuzzy soft subset of gK2
, denoted by fK1

v gK2
, if fK1

(p) ≤
gK2(p) for every p ∈ P . If gK2 is a fuzzy soft subset of fK2 , then fK1 is called a
fuzzy soft superset of gK2 and denoted by fK1 w gK2 [9].

Definition 2.7. Let fK1
, gK2

∈ F(Y, P ). If fK1
v gK2

and gK2
v fK1

, then fK1

and gK2
are said to be equal and denoted by fK1

= gK2
[9].

Definition 2.8. Let fK1
, gK2

and hK3
be fuzzy soft sets. For fK1

t gK2
=

hK3 , we say that hK3 is the union of fK1 and gK2 , whose membership function

µphK3
(y) =max

{
µpfK1

(y), µpgK2
(y)
}

for every y ∈ Y [9].

Definition 2.9. Let fK1
, gK2

and hK3
be fuzzy soft sets. For fK1

u gK2
= hK3

,
we say that hK3

is the intersection of fK1
and gK2

, whose membership function

µphK3
(y) =min

{
µpfK1

(y), µpgK2
(y)
}

for every y ∈ Y [9].

Theorem 2.10. Let fK1
, gK2

be two fuzzy soft sets on (Y, P ). Then, the following
holds [10]:

(1) f cK1
u gcK2

= (fK1 t gK2)c;
(2) f cK1

t gcK2
= (fK1

u gK2
)c.

Theorem 2.11. Let I be an index set, j ∈ I and (fK1)j be a family of fuzzy soft
sets on (Y, P ). Then, the following holds [10]:

(1) uj((fK1
)cj) = (tj((fK1

)j))
c;

(2) tj((fK1)cj) = (uj((fK1)j))
c.
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Theorem 2.12. Let I be an index set, j ∈ I and fK1
, gK2

, hK3
, (gL)j ∈ F(Y, P ),∀j ∈

J ; then, the following holds [11]:

(1) fK1
u fK1

= fK1
, fK1

t fK1
= fK1

.
(2) fK1 u gK2 = gK2 u fK1 , fK1 t gK2 = gK2 t fK1 .
(3) fK1u(gK2uhK3) = (fK1ugK2)uhK3 , fK1t(gK2thK3) = (fK1tgK2)thK3 .
(4) fK1

u (
⊔
j∈I(gL)j) =

⊔
j∈I(fK1

u (gL)j), fK1
t (uj∈I(gL)j) = uj∈I(fK1

t
(gL)j).

(5) If fK1
v gK2

, then (gK2
)c v (fK1

)c.
(6) fK1

u gK2
v fK1

, gK2
and fK1

, gK2
v fK1

t gK2
.

Definition 2.13. A fuzzy soft topological space is a pair (Y, T ) where Y is a
nonempty set and T a family of fuzzy soft sets over Y satisfying the following
properties:

(1) 0̃P , 1̃P ∈ T ,
(2) If fK1 , gK2 ∈ T , then fK1 u gK2 ∈ T ,
(3) If (fL)j ∈ T ,∀j ∈ I, then

⊔
j∈I(fL)j ∈ T .

T is called a topology of fuzzy soft sets on Y . Every member of T is called fuzzy
soft open. If (gK)c ∈ T , then gK is called fuzzy soft closed in (Y, T ) [11].

Example

Let P = {p1, p2, p3}, Y = {a, b, c}. Then T = {0̃P , 1̃P } is a s a fuzzy soft
indiscrete topology and (Y,F(Y, P ) is a fuzzy soft discrete topological space. Also
for the fuzzy soft sets fK1

= {(p1, {0.9/a, 0.5/b}), (p2, {0.2/a, 0.7/c}), (p3, Y )} and
gK2

= {(p1, {0.3/a, 0.1/b}), (p3, {0.5/a, 0.9/b, 0.7/c})} the family {0̃P , 1̃P , fK1
, gK2

}
is a fuzzy soft topology on Y .

3. Infra Fuzzy-Soft Topological Spaces

In this section, we introduce the concept of infra fuzzy-soft topology and discuss
various methods for constructing this concept. We explore the basis of infra fuzzy-
soft topology, infra fuzzy-soft neighborhood systems, and infra fuzzy-soft interior.
We present these concepts and techniques to provide a comprehensive understand-
ing of infra fuzzy-soft topology.

To illustrate the obtained results and the relationships between different con-
cepts, we provide several examples. These examples serve to clarify the application
and significance of infra fuzzy-soft topology in practical scenarios.

Definition 3.1. A subcollection T of F(Y, P ) is said to be an infra fuzzy-soft
topology on Y if

(1) 0̃P , 1̃P ∈ T ,
(2) fK1

u gK2
∈ T whenever fK1

, gK2
∈ T .

The pair (Y, T ) is called an infra fuzzy-soft topological space, and the set of all
infra fuzzy-soft topologies on Y is denoted by IFST(Y ). The members of T are
called infra fuzzy-soft open (or IFS-open) subsets of Y , and their complements are
called infra fuzzy-soft closed (or IFS-closed) sets. The members of T c are also called
IFS-closed sets.

Remark 3.2. Evidently, each fuzzy-soft topology is an infra fuzzy-soft topology, but
not conversely.
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Lemma 3.3. Let {Tλ : λ ∈ Λ} be a subclass of IFST(Y ), where Λ is any index set.
Then, {T = uλ∈ΛTλ ∈ IFST(Y ).

Proof. Straightforward. �

Lemma 3.4. Let U be a subclass of F(Y, P ). There exists a unique T ∈ IFST(Y )
containing U , and if T ′ ∈ IFST(Y ) that includes U , then T v T ′.

Proof. Note that such an infra fuzzy-soft topology always exists because F(Y, P ) is
the infra fuzzy-soft topology on Y which includes U . Consider T , the intersection
of all those infra fuzzy-soft topologies on Y which include T . Then, it follows from
Lemma 3.3 that T is the required infra fuzzy-soft topology. �

Definition 3.5. Let U be a subclass of F(Y, P ). The unique T ∈ IFST(Y ) obtained
in the above lemma is called the infra fuzzy-soft topology on Y generated by the
collection U and is denoted by T (U), which is the smallest infra fuzzy-soft topology
on Y containing U .

If T1, T2 ∈ IFST(Y ), then T1 t T2 ∈ IFST(Y ) is false in general.
Example
Let P = {p1, p2, p3}, Y = {a, b, c}. F or the fuzzy soft sets
fK1

= {(p1, {0.8/a, 0.5/b}), (p2, {0.1/a, 0.5/c}), (p3, {0.4/a, 0.2/c})},
gK2 = {(p1, {0.2/a, 0.7/b}), (p3, {0.9/b, 0.6/c})} and
hK3 = {(p1, {0.2/a, 0.5/b}), (p3, {0.2/c})}
the families T1 = {0̃P , 1̃P , fK1

} and T2 = {0̃P , 1̃P , gK2
} are fuzzy soft topology on Y .

But T1tT2 is not. Becasuse fK1ugK2 = hK3 and hK3 /∈ T1tT2 = {0̃P , 1̃P , fK1 , gK2}.

4. CONCLUSION

In this study, we introduced and exemplified a new structure, infra-fuzzy-soft
topological space, and talked about some results. In our future studies, as a contin-
uation of this study, the results to be obtained by introducing the base, neighbor-
hood, interior, exterior, boundary and similar topological concepts on infra-fuzzy-
soft topological space will be included.
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Abstract. In this paper we introduced an almost unbiased beta ridge estima-

tor to overcome the problem of multicollinearity in the beta regression model.
The proposed estimator is based on the well-known ridge estimator and its

extension to the beta regression model. Although, the beta ridge estimator is
useful in the presence of ill–conditioned data matrices, it has large bias. Thus,

it is reasonable to propose an almost unbiased ridge type estimator in beta

regression. An extensive Monte Carlo simulation study is performed to com-
pare the performance of the proposed almost unbiased beta ridge estimator

to beta ridge estimator and the maximum likelihood estimator. According to

the results of the simulation study, almost unbiased beta ridge estimator has
lower mean squared error and squared bias values for certain scenarios.

1. Introduction

The dependent variable may be restricted to the interval of (0, 1) in many empir-
ical contexts, such as rates and proportions. For these situations, a beta regression
model was proposed based on the assumption that the dependent variable is dis-
tributed as beta distribution in [1].

The parameters of beta regression model are generally estimated by the maxi-
mum likelihood method. However, the maximum likelihood estimator (MLE) may
perform poorly in the presence of ill-conditioned data matrices, as it is the situation
in generalized linear models. This problem is called multicollinearity.

A number of methods are introduced to overcome this problem in the beta
regression models. For example, the well-known ridge estimator [2] is extended to
beta regression model in [3] and [4]. Ogundimu and Collins [3] used the penalized
maximum likelihood approach while Qasim et al. [4] used a Lagrange multiplier
method to define the beta ridge estimator (RE) in beta regression model.

It has been shown that ridge estimator has large bias when the biasing parameter
is chosen as a large real value. Therefore, a bias adjusted version of beta ridge
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estimator is proposed to reduce the bias and overcome the multicollinearity at the
same time. Thus, the purpose of this study is to introduce a bias adjusted beta
ridge estimator which can also be named as almost unbiased beta ridge estimator
in the beta regression model.

The plan of the paper is as follows: In Section 2, a brief introduction of beta
regression is given. In Section 3, an almost unbiased beta ridge estimator (AURE)
is proposed, and its theoretical properties are studied. In Section 4, an extensive
Monte Carlo simulation experiment is designed to compare the performances of
MLE, RE and AURE for different scenarios. Finally, a conclusion is provided in
Section 5.

2. Beta Regression Model

Assume that y = [y1, y2, . . . , yn]
′

be the vector of observations of the response
variable following independent beta distribution with the following probability dis-
tribution function

(2.1) f(yi;µ, φ) =
Γ(φ)

Γ(µφ)Γ(φ(1− µ))
yµφ−1(1− y)(1−µ)φ−1, y ∈ (0, 1),

where 0 < µ < 1 and φ > 0 such that yi ∼ Beta (µφ, (1− µ)φ). Therefore,
the mean and variance of each observation becomes, respectively, E(yi) = µ and
V ar(yi) = V (µ)/(1 + φ) where V (µ) = µ(1− µ).

The beta regression model is expressed by assuming that the mean of yi can be
written as

(2.2) g(µi) =

p∑
j=1

xijβj = x>i β = ηi

where x>i is the ith observation vector such that X =
[
x>1 ,x

>
2 , . . . ,x

>
n

]
which is

the data matrix of explanatory variables of order n × p, β = [β1, β2, . . . , βp]
>

is a
p × 1 vector of regression parameters. In Equation (2.2), the link function g(.) is
assumed to be strictly monotone and twice differentiable function from the interval
(0, 1) to Rp.

The logit link function is defined as g(µ) = log(µ/(1− µ) such that

(2.3) µi =
exp(x>i β)

1 + exp(x′iβ)

for i = 1, 2, . . . , n. Therefore, the corresponding log-likelihood function of the beta
regression model given in (2.2) can be written as

l(β) =

n∑
i=1

log(Γ(φ))− log(Γ(µiφ))− log(Γ((1− µi)φ)) + (φµi − 1) log(yi)(2.4)

+ ((1− µi)φ− 1) log(1− yi).

In order to estimate the regression parameters, an iterative algorithm must be
utilized due to the nonlinearity of the log-likelihood function. Therefore, following
[5], Fisher’s scoring algorithm is considered for estimation of β, assuming that φ
is fixed. The score function can be found by taking the partial derivative of the
log-likelihood function with respect to β as follows:

Uβ(β) = φX>T(y∗ − µ∗)(2.5)
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where T = diag{1/g′(µ1), . . . , 1/g′(µn)}, y∗ = (y∗1 , . . . , y
∗
n)′, µ∗ = (µ∗1, . . . , µ

∗
n)′

such that y∗i = log(yi/(1 − yi) and µ∗i = ψ(µiφ) − ψ((1 − µi)φ), here ψ(.) denotes
the digamma function.

The Fisher’s information matrix for β is

Kββ = φX>WX(2.6)

where W is a diagonal matrix whose diagonal elements are

wi = φ (ψ′(µiφ) + ψ′((1− µi)φ))
1

[g′(µi)]2

where ψ′(.) denotes the trigamma function. A detailed discussion of the derivations
of the score functions and Fisher’s information matrix is given in the appendix of
[1]. Under the assumption that φ is known, the Fisher’s scoring procedure can be
expressed as

β(m+1) = β(m) +
(
K

(m)
ββ

)−1
Uβ(β)(m)(2.7)

where m shows the iterations which continues until some convergence criterion is
reached. By inserting the score function and Fisher’s information for β as specified
in (2.5) and (2.6) into the iterative procedure in (2.7), we obtain mth step of the
scoring algorithm as

β(m+1) =
(
X>W(m)X

)−1
X>W(m)z(m)(2.8)

where z(m) = η(m) + (W(m))−1T(m)
(
y∗ − µ∗(m)

)
. After some convergence is

reached, the maximum likelihood estimator of β can be written as follows:

β̂MLE =
(
X>ŴX

)−1
X>Ŵẑ(2.9)

where ẑ = η̂ + (Ŵ)−1T̂ (y∗ − µ̂) which is called the working response in the sence
that the iterations given in (2.8) describes an iteratively re-weighted least squares

estimations and here ẑ, Ŵ and T̂ are computed at the final iteration of the algo-
rithm.

The asymptotic covariance matrix of β̂MLE is

(2.10) Cov
(
β̂MLE

)
= ψ

(
X>ŴX

)−1
and hence the scalar mean squared error (MSE) of β̂MLE can be given as

MSE
(
β̂MLE

)
= ψ

p∑
j=1

1

λj
(2.11)

where tr(.) is trace operator and λj is the jth eigenvalue of the matrix X>ŴX
and ψ = 1

φ . It is obvious from Equation (2.11) that the variance of MLE may be

affected negatively due to ill-conditioning of the data matrix X which is known as
the multicollinearity problem.

Let Q>X>ŴXQ = Λ = diag (λ1, λ2, . . . , λp), where λ1 ≥ λ2 ≥ . . . ≥ λp > 0

are the ordered eigenvalues of X>ŴX and the p× p matrix Q whose columns are

the normalized eigenvectors of X>ŴX. Therefore, we have α = Q>β and the

canonical form of MLE can be written by α̂MLE = Q>β̂MLE.
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3. Almost Unbiased Beta Ridge Estimator

3.1. Definition of Almost Unbiased Beta Ridge Estimator. The ridge esti-
mator is extended to the beta regression model by Ogundimu and Collins [3] and
Qasim et al. [4] and it is called the beta ridge estimator (RE) in this study. RE is
defined as follows

(3.1) β̂RE = (X>ŴX + kI)−1X>Ŵẑ, k > 0.

It is easy to obtain the bias vector b(β̂RE) and covariance matrix Cov(β̂RE) as
follows:

b(β̂RE) = −k(X>ŴX + kI)−1β(3.2)

Cov(β̂RE) = (X>ŴX + kI)−1X>ŴX(X>ŴX + kI)−1.(3.3)

The MSE of RE is obtained as [4]

MSE(β̂RE) = ψ

p∑
j=1

λj
(λj + k)2

+

p∑
j=1

k2α2
j

(λj + k)2
(3.4)

where the first term is the total variance and the second term is the square bias of
the beta ridge estimator. Thus, the square bias of RE is given as

SB(β̂RE) =

p∑
j=1

k2α2
j

(λj + k)2
.(3.5)

Definition 3.1. [6] Suppose β̂ is a biased estimator of parameter vector β, and

if the bias vector of β̂ is given by b(β̂) = E(β̂) − β = Rβ, which shows that

E(β̂ −Rβ) = β, then we call the estimator β̃ = β̂ −Rβ̂ = (I−R)β̂ is the almost

unbiased estimator based on the biased estimator β̂.

Based on the Definition 3.1, the almost unbiased beta ridge estimator (AURE)
can be defined by

β̂AURE = [I− ((X>ŴX + kI)−1X>ŴX− I)]β̂RE

= [2I− (X>ŴX + kI)−1X>ŴX]β̂RE

= [2I− (X>ŴX + kI)−1X>ŴX](X>ŴX + kI)−1X>Ŵẑ

= [I + (X>ŴX + kI)−1X>ŴX](X>ŴX + kI)−1X>ŴXβ̂MLE

= [I + k(X>ŴX + kI)−1][I− k(X>ŴX + kI)−1]β̂MLE

= [I− k2(X>ŴX + kI)−2]β̂MLE(3.6)

where k > 0 is a biasing parameter [7]. To the best of our literature review, this
estimator has not been proposed or studied in the beta regression model. The bias

vector b(β̂AURE) and covariance matrix Cov(β̂AURE) are obtained respectively as
follows:

b(β̂AURE) = −k2(X>ŴX + kI)−2β

(3.7)

Cov(β̂AURE) = ψ[I− k2(X>ŴX + kI)−2](X>ŴX)−1[I− k2(X>ŴX + kI)−2].

(3.8)
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Therefore, the MSE function of AURE can be written as,

MSE(β̂AURE) = ψ

p∑
j=1

(
1− k2

(λj + k)2

)2
1

λj
+

p∑
j=1

k4α2
j

(λj + k)4

=

p∑
j=1

ψλj(λj + 2k)2 + k4α2
j

(λj + k)4
(3.9)

where the first term is the total variance and the second term is the squared bias
of AURE. Thus, the squared bias of AURE is given as

SB(β̂AURE) =

p∑
j=1

k4α2
j

(λj + k)4
.(3.10)

In the next subsection, some theoretical comparisons between MLE, RE and AURE
are derived.

3.2. Theoretical Comparisons. Firstly, we provide a comparison of the squared
biases of RE and AURE in Theorem 3.2.

Theorem 3.2. The squared bias of RE is greater than the squared bias of AURE

∀k > 0, i.e. SB(β̂RE)− SB(β̂AURE) > 0.

Proof. The difference of the squared biases of RE and AURE is given as

SB(β̂RE)− SB(β̂AURE) =

p∑
j=1

(
k2α2

j

(λj + k)2
−

k4α2
j

(λj + k)4

)

=

p∑
j=1

(
k2α2

j

(λj + k)4
λj (λj + 2k)

)
(3.11)

which is always greater zero since λj > 0, j = 1, . . . , p. �

Theorem 3.3. The MSE of AURE is less than the MSE of MLE i.e. ∆1 =

MSE(β̂MLE)−MSE(β̂AURE) > 0 if one of the following conditions holds:

• if ψ − λjα2
j > 0 then ∆1 > 0 if and only if k > k2j > 0

• if ψ − λjα2
j < 0 then ∆1 > 0 if and only if 0 < k < k2j

where

k2j =
−2ψλj + λj

√
2ψ2 + 2ψλjα2

j

ψ − λjα2
j

for j = 1, . . . , p.

Proof. Using Equations (2.11) and (3.9), the difference between the MSE functions
of MLE and AURE is obtained as

∆1 = MSE(β̂MLE)−MSE(β̂AURE)

= ψ

p∑
j=1

1

λj
−

p∑
j=1

ψλj(λj + 2k)2 + k4α2
j

(λj + k)4

=

p∑
j=1

k2

λj(λj + 2k)2
(
(ψ − λjα2

j )k
2 + 4ψλjk + 2ψλ2j

)
.(3.12)
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Investigating Equation (3.12), it is enough to obtain under which condition the
quadratic functions ψ−(λjα

2
j )k

2+4ψλjk+2ψλ2j are positive. Using the discriminant
method, the following roots are obtained

k1j =
−2ψλj − λj

√
2ψ2 + 2ψλjα2

j

ψ − λjα2
j

and

k2j =
−2ψλj + λj

√
2ψ2 + 2ψλjα2

j

ψ − λjα2
j

for j = 1, . . . , p. It is clear that the numerators of k1j ’s are negative and the
numerators of k2j ’s are positive. Thus, one can conclude the followings:

• if ψ − λjα2
j > 0 then ∆1 > 0 if and only if k > k2j > 0

• if ψ − λjα2
j < 0 then ∆1 > 0 if and only if 0 < k < k2j .

This finishes the proof. �

Finally, a comparison of MSE functions of RE and AURE is given in Theorem
3.4.

Theorem 3.4. The MSE of AURE is less than the MSE of RE i.e., ∆2 = MSE(β̂RE)−
MSE(β̂AURE) > 0 if k > k4j > 0 where

k4j =
3ψ − λjα2

j +
√
λ2jα

4
j + 2ψλjα2

j + 9ψ3

4α2
j

for j = 1, . . . , p.

Proof. Using Equations (3.4) and (3.9), the difference between the MSE functions
of RE and AURE is obtained as

∆2 = MSE(β̂RE)−MSE(β̂AURE)

=

p∑
j=1

ψλj + k2α2
j

(λj + k)2
−

p∑
j=1

ψλj(λj + 2k)2 + k4α2
j

(λj + k)4

=

p∑
j=1

kλj
(λj + k)4

(
2k2α2

j + (λjα
2
j − 3ψ)k + 2ψλj

)
.(3.13)

Investigating Equation (3.13) and using the same procedure as in the proof of
Theorem 3.3, it is enough to obtain under which condition the quadratic functions
2k2α2

j + (λjα
2
j − 3ψ)k + 2ψλj are positive. Using the discriminant method, the

following roots are obtained

k3j =
3ψ − λjα2

j −
√
λ2jα

4
j + 2ψλjα2

j + 9ψ3

4α2
j

and

k4j =
3ψ − λjα2

j +
√
λ2jα

4
j + 2ψλjα2

j + 9ψ3

4α2
j

for j = 1, . . . , p. It is clear that k3j ’s are negative, whereas k4j ’s are positive. Thus,
∆2 > 0 if k > k4j > 0. This finishes the proof. �
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Figure 1. MSE(β) values of the estimators when ρ = 0.90

3.3. Selection of the parameter k. The MSE function of AURE is given in
Equation 3.9. It is a function of the parameter k. In order to obtain smaller MSE
values than that of MLE and RE, one needs to choose the biasing parameter k

carefully. Thus, to attain the minimum MSE value of MSE(β̂AURE), we try to
minimize this function by taking the derivate of this function with respect to k and
equating the derivative to zero. The following is obtained

∂(MSE(β̂AURE))

∂k
=

p∑
j=1

−4ψkλ2j − 8ψk2λj + 4k3λjα
2
j

(λj + k)5
= 0.(3.14)

Now, using the same strategy as in the proof of theorems, we find the roots of the
function −4ψkλ2j − 8ψk2λj + 4k3λjα

2
j which is equivalent to solving

k2α2
j − 2ψk − ψλj = 0.
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Figure 2. MSE(β) values of the estimators when ρ = 0.95

Upon using the discriminant method, we find the following roots:

k5j =
ψ −

√
ψ(ψ + λjα2

j )

α2
j

< 0

and

k6j =
ψ +

√
ψ(ψ + λjα2

j )

α2
j

> 0.

Since k5j ’s are negative and k6j ’s are positive, and we only need to estimate the
parameter k, we propose to use the following estimators of k:

• k1 = min(k6j)
• k2 = median(k6j)

• k3 =
∏p
j=1(k6j)

1/p which is the geometric mean of k6j ’s.

• k4 = p∑p
j=1

1
k6j

which is the harmonic mean of k6j ’s.
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Figure 3. MSE(β) values of the estimators when ρ = 0.99

Since the true values of ψ and α are unknown, we replace them by the respective

estimators as ψ̂ and α̂MLE in k1, . . . , k4. In the next section, we show that the
performance of AURE becomes better than RE and MLE using the estimators
k1, . . . , k4 in most of the situations considered.

4. A Monte Carlo Simulation

In this section, a Monte Carlo simulation experiment is designed to compare the
performances of the estimators. The explanatory variables are generated by

xij = (1− ρ2)1l2wij + ρwip+1, i = 1, 2, ..., n, j = 1, 2, ..., p,

where wij are independent standard normal pseudo-random numbers, and ρ de-
termines the degree of correlation between any two explanatory variables which
is given by ρ2 [8, 9]. Thus, we can examine the performance of the methods un-
der different degrees of the strength of the correlation in the data. Therefore, the
following different values are considered: ρ = 0.9, 0.95 and 0.99.
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The slope parameters are decided such that
p∑
j=1

β2
j = 1, which is a commonly

used restriction in the field [9, 10]. The response variable is generated using the
beta distribution such that yi ∼ Beta (µiφ, (1− µi)φ) where

µi =
exp(x′iβ)

1 + exp(x′iβ)
.

which is known as the logit link function and the dispersion parameter is fixed to
be 5 for this study.

Moreover, the sample size is taken to be as 50, 100, and 200 in the simulation.
The number of explanatory variables is taken to be 4, 8 and 12 to be able to un-
derstand the effect of the number of covariates on the performances of estimators.

The simulation is repeated 1000 times for each value of the parameters mentioned

above. The simulated MSE and the squared bias (SB) of an estimator β̂∗ are
computed to evaluate the performances of the estimators. They are respectively
given by

MSE
(
β̂∗
)

=
1

1000

1000∑
r=1

(
β̂∗ − b

)>
r

(
β̂∗ − b

)
SB
(
β̂∗
)

=
(
β̂∗ − b

)> (
β̂∗ − b

)
, β̂∗ =

1

1000

1000∑
r=1

rβ̂
∗

where
(
β̂∗ − b

)
r

shows the difference between the estimated and true parameter

vectors and rβ̂
∗ shows the estimate of β̂∗ at the rth iteration of the simulation. All

the computations are performed using the R Programming Language [11].
The results of the simulation study are summarized in Figures 1-3 and Table

1. The boxplots of the simulated MSE values are provided in Figures 1-3 and the
simulated squared bias values are given in Table 1.

Table 1. Simulated squared bias values

ρ = 0.90 ρ = 0.95 ρ = 0.99

n 50 100 200 50 100 200 50 100 200
p = 4

RE 0.3556 0.3340 0.3220 0.3564 0.3333 0.3241 0.3546 0.3325 0.3240
k1 0.0031 0.0063 0.0133 0.0032 0.0088 0.0177 0.0082 0.0227 0.0324
k2 0.0216 0.0292 0.0348 0.0112 0.0229 0.0256 0.0063 0.0154 0.0198
k3 0.0217 0.0275 0.0304 0.0117 0.0218 0.0231 0.0063 0.0153 0.0194
k4 0.0048 0.0078 0.0135 0.0040 0.0096 0.0162 0.0060 0.0164 0.0227

p = 8
RE 0.2317 0.2032 0.1941 0.2351 0.2048 0.1971 0.2357 0.2088 0.1990
k1 0.0377 0.0530 0.0433 0.0624 0.0767 0.0568 0.2235 0.3015 0.1263
k2 0.0397 0.0473 0.0492 0.0426 0.0499 0.0504 0.0672 0.0761 0.0603
k3 0.0450 0.0504 0.0546 0.0437 0.0501 0.0511 0.0607 0.0684 0.0573
k4 0.0342 0.0422 0.0413 0.0452 0.0537 0.0494 0.1078 0.1313 0.0763

p = 12
RE 0.2047 0.1644 0.1575 0.2067 0.1686 0.1638 0.2084 0.1702 0.1690
k1 0.1329 0.0651 0.0706 0.2748 0.0963 0.1047 1.3957 0.2910 0.2925
k2 0.0534 0.0563 0.0651 0.0819 0.0613 0.0776 0.2766 0.0816 0.1068
k3 0.0455 0.0608 0.0697 0.0668 0.0607 0.0767 0.1823 0.0717 0.0963
k4 0.0715 0.0540 0.0631 0.1335 0.0668 0.0814 0.5681 0.1235 0.1449

According to the figures and table, the following results are obtained:
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• Based on the simulated MSE values, AURE outperforms the other estima-
tors in most of the cases considered in the simulation.
• It is observed from Figure 1 that AURE with k3 has the best performance

than the others, when ρ = 0.90. In this case, as the number of explanatory
variables is increased, RE has better performance however AURE with k3
is superior to RE.
• The MLE becomes the worst estimator, in other words, it produces the

highest MSE values in almost all of the cases, except for some situations
when p = 4. Moreover, the MSE of MLE increases drastically when the
degree of correlation ρ is increased.
• Generally, increasing the sample size has a positive effect on the estimators

meaning that the MSEs decrease.
• Although, there is degeneracy of the monotonicity of the MSE values, the

MSE values increase if the number of explanatory variables increase. This
result can be seen especially when the degree of correlation is high, namely,
ρ = 0.99.
• In general, increasing the degree of correlation has a negative effect on the

estimators.
• On the other hand, considering the SB performances of the estimators, it

is observed from Table 1 that AURE has the lowest SB values in all the
cases.
• If the sample size increases, the SB values increase in general. But, there

is no clear pattern for the SB values if there is a change in the number of
variables or the degree of correlation.

5. Conclusion

In this study, an almost unbiased beta ridge estimator is introduced in order
to overcome the effects of the problem of ill–conditioning in the beta regression
models. The theoretical comparisons are provided in detail using the squared biases
and mean squared errors of the considered estimators in this paper. Based on
the results of the Monte Carlo simulation, it is concluded that AURE has better
performance than the estimators MLE and RE in terms of both the simulated MSE
and SB values. Thus, AURE can be useful for the researchers in the field.
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Abstract. Matrix computations are fundamental operations in numerous sci-

entific and engineering fields, such as machine learning, quantum mechanics,

and numerical analysis. Calculating the matrix sign function, which deter-
mines the sign of each entry in a matrix, is of great significance in these

applications. However, efficiently computing the matrix sign function remains

challenging, especially for large matrices. This study introduces a way to
approximate the matrix sign function using the Taylor expansion and Gener-

alized Minimal Residual (GMRES) algorithm. The proposed approach reduces

the computational complexity and enhances the numerical stability, making it
highly practical for a wide range of applications.

1. Introduction

Matrix computations are at the core of many scientific and engineering problems.
The matrix sign function, represented as sign (A), assigns the sign of each element
in matrix A. Despite its seemingly simple definition, accurately and efficiently com-
puting the matrix sign function for large matrices remains complex. The matrix
sign function is defined as,

(1.1) sign (A) = U × diag(sign(λ1), sign(λ2), . . . , sign(λn)× V H ,

where A = U × Σ × V H is the singular value decomposition (SVD) of A. λi
represents the i− th singular value of A, sig(λi) is the sign of λi, and

(1.2) diag(sign(λ1), sign(λ2), . . . , sign(λn),

is a diagonal matrix with the signs of the singular values [4].
Existing methods for calculating the matrix sign function have been developed

over the years, each with advantages and limitations. These methods often suffer
from high computational costs and numerical instability. The most straightforward
approach is to directly compute the sign of each element in the matrix [3]. This

Date: July, 8, 2023.
Key words and phrases. Matrix functions, Matrix sign function, Iterative methods, Taylor expan-
sion, GMRES.
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method involves iterating over each entry and determining its sign using standard
arithmetic operations. While straightforward, this approach can be computation-
ally expensive, especially for large matrices, due to its O

(
n2
)
time complexity.

Another approach is Singular Value Decomposition (SVD). The matrix sign func-
tion can be calculated using the SVD of the matrix. The SVD decomposes the
matrix into three components,

(1.3) A = U × Σ× V H ,

where U and V are unitary matrices, and Σ is a diagonal matrix containing the
singular values of A [2]. The matrix sign function can be obtained by computing
the sign of each singular value and reconstructing the sign matrix. However, the
SVD approach can be computationally expensive, particularly for large matrices,
as it involves decomposing the matrix and manipulating the singular values.

Similar to the SVD approach, the matrix sign function can be calculated using
the eigenvalue decomposition of the matrix. The SVD decomposes the matrix into
eigenvectors and eigenvalues. By computing the sign of each eigenvalue and recon-
structing the sign matrix, the matrix sign function can be obtained [6]. However,
the SVD approach must also improve its computational complexity, especially for
non-symmetric matrices.

Iterative approximation methods, such as Newton-Raphson or fixed-point itera-
tions, can also compute the matrix sign function [1], [5]. These methods iteratively
update an initial estimate of the sign function until convergence is achieved. While
iterative methods can be computationally efficient, they may suffer from numerical
instability or convergence issues, especially for ill-conditioned matrices.

This study presents a way to approximate the matrix sign function using Taylor
expansion and Generalized Minimal Residual (GMRES) [7] as a component in a
larger iterative scheme. The approach uses the Taylor expansion method, where
GMRES is employed to solve linear systems of equations that arise during the
computation of the rational approximation.

2. Approximation method

This study approximates the matrix sign function using GMRES as a component
in a larger iterative scheme. To achieve this, the Taylor approximation method
is utilized, employing GMRES to solve the linear systems of equations that arise
during the computation of the rational approximation. A localized approximation is
obtained around a selected expansion point by utilizing a Taylor expansion, enabling
an accurate representation of the sign function’s behavior in the immediate vicinity
of that point. Throughout each iteration of the Taylor expansion, the GMRES
algorithm is a reliable solver for emerging linear systems.

The Taylor series expansion is a powerful mathematical tool enabling a function
to be expressed as an infinite sum of terms. These terms are determined by evalu-
ating the function’s derivatives at a specific point. The Taylor series expansion of
a function f(x) around a point a can be expressed as follows.

(2.1) f(x) = f(a) + f ′(a)(x − a) + f ′′(a)(x − a)2/2! + f ′′′(a)(x − a)3/3! + . . . .

We can approximate the matrix sign function by substituting the matrix A into
the Taylor series expansion and truncating the series after a certain number of
terms.
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Restarted GMRES (Generalized Minimal Residual) is an iterative method to
solve large sparse linear systems of equations [7]. It is particularly effective for
solving non-symmetric systems. The technique combines the advantages of the
GMRES algorithm with a restart strategy to improve efficiency and reduce memory
requirements. The GMRES algorithm aims to find an approximate solution to the
linear system Ax = b by constructing an orthogonal basis for the Krylov subspace
generated by the matrix A and the residual vector r = b − Ax. This basis is
then used to minimize the residual over the subspace, resulting in an approximate
solution.

The following steps outline how the Taylor series coefficients are computed and
how the GMRES algorithm is employed to solve the linear systems involved in
each iteration. Denoting the matrix sign function as sign(A), we can explain the
combined GMRES and Taylor series expansion method as follows.

Suppose the sign function of the matrix A ∈ Rn×n is to be computed. We choose
a suitable expansion point, denoted as a, around which the Taylor series expansion
will be performed. We compute the Taylor series expansion of the matrix sign
function centered at the chosen point as,

(2.2) sign(A) = c0I + c1(A − aI) + c2(A − aI)2 + c3(A − aI)3 + . . . .

Now, we truncate the series after a certain number of terms, denoted as k, to
obtain the approximation of the matrix sign function as

(2.3) sign(A) ≈ c0I + c1(A − aI) + c2(A − aI)2 + ... + ck(A − aI)k.

Next, we initialize an initial approximation matrix X(0) ∈ Rn×n. Here, we set
X(0) equal to the matrix A. Residual matrix R(i) is set to be,

(2.4) R(i) = appfunc(X(i− 1)) − A

where i is a number from 1 to n, and appfunc represents the Taylor series expansion
of the matrix sign function evaluated at X(i−1). Next, we use the GMRES method
to solve the linear system of equations,

(2.5) GMRES(A, R(i), x)

where A is the matrix, R(i) is the right-hand side vector representing the residual,
and x is the solution vector. Updating the approximation matrix by adding the
solution vector x obtained from the GMRES solver to the previous approximation
matrix X(i− 1), we get,

(2.6) X(i) = X(i− 1) + x

Finally, after n iterations, the matrix X(n) will approximate the matrix sign func-
tion of A.

By combining the Taylor series expansion and GMRES method, this approach
allows for iterative refinement of the approximation. The approximation function
is evaluated using the current approximation matrix X(i − 1), and the resulting
residual is used as the right-hand side for the linear system. The combined method
leverages the benefits of both the Taylor series expansion and the efficient con-
vergence of GMRES to improve the accuracy of the approximation. The level of
accuracy depends on factors such as the choice of the expansion point, the number
of terms in the Taylor series expansion, the number of iterations, and the properties
of the matrix A.
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Algorithm 1 Approximating the Matrix Sign Function sign (A)

Require: Matrix A ∈ R(n×n), expansion point a, number of terms in Taylor
series k, initial approximation matrix X0 ∈ R(n×n), number of iterations n.

Ensure: Approximation matrix X after n iterations.
1: Initialize X = X0
2: Compute the Taylor series coefficients I = eye(size(A))
3: for j = 0 : k do
4: if j = 0 then
5: coefficient(j) = 1
6: else[coefficient(j) = 1/factorial(j)]
7: end if
8: end for
9: for i = 0 : n do

10: R = ApproximationFunction(X)−A
11: x = GMRES(A,R)
12: X = X + x
13: end for

Note: We employed an approximation function and the GMRES method as
separate built-in functions.

3. Results

We conducted a thorough performance evaluation to assess the proposed ap-
proach’s efficacy. Specifically, we computed the matrix sign function for two ran-
domly generated real matrices. In this calculation, we utilized MATLAB’s random
matrix generator. The algorithm continued until the residual reached a 10−8, at
which point it terminated.

Experiment 1: Let A = rand(20, 20) be 20 × 20 real matrix. We computed the
matrix sign function.
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Figure 1. Relative residual vs. iteration number
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During the computational analysis of the problem, we utilized a highly regarded
numerical technique known for its efficiency and reliability. This method demon-
strated significant convergence, successfully reaching the desired solution after 13
iterations of an iterative process. The method’s exceptional computational prowess
enabled it to complete its calculations within a mere 0.102 seconds swiftly. This
impressive performance emphasizes both the computational efficiency and effective-
ness of the method.

Experiment 2: Let A = rand(50, 50) be 50 × 50 real matrix. We computed the
matrix sign function.
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Figure 2. Relative residual vs. iteration number

This method shows a remarkable convergence, achieving the desired solution
through 41 iterations of an iterative process. With its exceptional computational
prowess, the methodology executed its calculations swiftly, wrapping up within an
impressive time of just 0.216 seconds.

The evaluation shows the revolutionary approach’s computational efficiency and
numerical accuracy for calculating the matrix sign function. Experimental results
demonstrate the superiority of the proposed method, showing significant results in
terms of computational time, memory utilization, and numerical stability.

4. Conclusion

This article presents a novel approach that revolutionizes the computation of
the matrix sign function, offering a practical and efficient solution. Combining
the Taylor series expansion and the GMRES method provides a powerful tool for
matrix computations, enhancing efficiency and accuracy. The approach presented
in this article opens up new possibilities for solving complex problems that involve
the matrix sign function and paves the way for future advancements in matrix
computations.
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Abstract. In this paper we consider the impulsive fractional delayed differ-
ential system with the Caputo derivative with respect to another function.

We determine an explicit solution in the light of the available studies in this

subject and discuss its existence and uniqueness. we investigate stability and
controllability of the given system.

1. Introduction

Fractional calculus is regarded as a generalization of integer calculus. Of course,
this generalization contributes different positive capabilities which integer calculus
does not have to fractional calculus. For example, according to researchers in this
field, this enables fractional calculus to model almost all of scientific problem more
suitable than integer order, numerical approaches to fractional calculus give better
results compared to integer calculus, etc. Fractional calculus begin to be used in
many areas such as mathematical physics, biophysics, engineering, signal process-
ing, etc. For more details, all of reference section can be scanned. An differential
equation which consists of the present state and its rate of changes is said to be a
delayed differential equation[4]-[6] if it also includes the past state. It is difficult to
work on such a equation according to equivalent studies. When we have look at the
literature, these kinds of systems have been investigated in terms of existence and
uniqueness of solutions, stability and controllability[12]-[15] of the systems. Gen-
erally, a differential equation has been used to formulate the dynamics of changing
processes. The dynamics of several changing processes count on sudden changes
such as natural disasters, shocks. These sorts of phenomena have short-term per-
turbations(deviations) from continuous dynamics. When the duration of the whole
development is considered, its duration is negligible. While such deviations are
modelled, these deviations treat in the form of ‘’impulses”or instantaneously. As
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Hyers stability, Relative controllability.
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a consequence, modelling impulsive problems produce impulsive differential equa-
tions in industrial robotics, population dynamics, physics, ecology, optimal control
and so on [16, 17, 18, 19].

Inspired by the above-cited studies, we consider the following nonhomogeneous
linear Ψ-Caputo fractional delayed differential system with impulses

(1.1)


C
−r+D

β
µw(t) = Mw(t) +Aw(t− r) + g(t, w(t)), 0 < t ≤ T, r > 0,

w(t) = ψ(t), −r ≤ t ≤ 0,
w
(
t+i
)

= w
(
t−i
)

+ f (w (ti)) , ti ∈ J,

where C
−r+D

β
µ is µ-Caputo derivative of order β, µ(t) : R → R is increasing and

µ′(t) 6= 0 for every t ∈ [−r, T ], M,A ∈ Rn which do not have to be commutative, g ∈
C ([0, T ]× Rn,Rn), f ∈ C (Rn,Rn), and ψ(x) ∈ C1 ([−h, 0],Rn), J = {t1, t2, ..., tm}
is the impulsive times with 0 < t1 < ... < tm < T , T = lr for a fixed l ∈ N. The
jumps

w
(
t+i
)

= lim
ε→0+

w (ti + ε) , w
(
t−i
)

= lim
ε→0−

w (ti + ε)

stand for the right and left limits of w (t) at t = ti, respectively
.

2. Preliminaries

In this section we will present most essential tools to be used in the following
sections.

Rn is the famous Euclidean space with dimension n ∈ {1, 2, 3, ...}. For a, b ∈ R
with a < b, let

C ([a, b] ,Rn) = {f : [a, b]→ Rn : f is continuous}

with the maximum norm ‖.‖C , which is

‖f‖C = max{‖f (t)‖ , t ∈ [a, b]}

where ‖.‖ is an arbitrary norm on Rn. Let AC[a, b] be the absolutely continuous
functions’ space. For n ∈ {1, 2, 3, ...}, ACn[a, b] the space of all complex-valued
functions f(t) such that f (n−1)(t) ∈ AC[a, b].

Lemma 2.1. [2] XM,A,µ
β,1,r (t, s) is a solution of

C
−r+D

β
µX

M,A,µ
β,1,r (t, s) = MXM,A,µ

β,1,r (t, s) +AXM,A,µ
β,1,r (t, s+ h).

Lemma 2.2. [2] A continuous solution w of the equation (1.1) without the impul-
sive initial condition is

w(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)f(s, w(s))dµ(s)
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here, µ-delay perturbation of two-parameter Mittag-Leffler function XM,A,µ
β,α,r is de-

fined by
(2.1)

XM,A,µ
β,α,r (t, s) =


Θ, t− s ∈ [−r, 0)
I, t = s

∞∑
i=0

l−1∑
j=0

Qi+1(jr) [µ(t)−µ(s+jr)]iβ+α−1

Γ(iβ+α) , t− s ∈ ((l − 1)r, lr]

where µ(t) : R → R is an increasing function such that µ(0) = 0 and µ′(t) 6=
0 for every t ∈ [−r, T ], I and Θ stand for the identity matrix and zero matrix,
respectively. From [1], the recurresive matrices Qi(s) are defined for s = ir with
i = 0, 1, 2, ... as

Q0(s) = Θ, Q1(0) = I, Qi(−r) = Θ, Qi+1(s) = MQi(s) +AQi(s− r).
Lemma 2.3. [2] If t ∈ [0, T ], T = lr where l ∈ N and r ∈ R+, then the following
inequality holds true

(2.2)

∫ t

0

∥∥∥XM,A,µ
β,α,r (t, s)

∥∥∥ dµ(s) ≤ [µ(T )− µ(0)]X ||M ||,||A||,µβ,α,r (T, 0).

Lemma 2.4. [2] XM,A,µ
β,α,r (t, s) is jointly continuous in 0 < s < t <∞.

From here on, we will offer our fundamental contributions.

3. The representation of a solution

Theorem 3.1. A continuous solution w of the equation (1.1) is

w(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) +

∑
0<ti<t

XM,A,µ
β,1,r (t, ti) f (w (ti))

where XM,A,µ
β,α,r is µ-delay perturbation of two-parameter Mittag-Leffler function given

above.

Proof. If one combines Lemma 2.1 with Lemma 2.2, the proof is completed out
of the satisfaction of the impulsive initial condition. Now, we will show that the
solution satisfies the impulsive initial condition. For each t ∈ (tk−1, tk], the solution
w(t) is given by

w(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) +

k−1∑
i=1

XM,A,µ
β,1,r (t, ti) f (w (ti)) ,

and for each t ∈ (tk, tk+1], we have

w(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) +

k∑
i=1

XM,A,µ
β,1,r (t, ti) f (w (ti)) ,
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Since it is known that XM,A,µ
β,1,r (tk, tk) = I, we acquire

w(t+k ) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) +

k∑
i=1

XM,A,µ
β,1,r (t, ti) f (w (ti))

= w(t−k ) + XM,A,µ
β,1,r (tk, tk) f (w (tk)) = w(t−k ) + f (w (tk))

which completes the proof. �

4. Existence uniqueness results

Unfortunately, the conditions given in the statements of the problem root is not
enough to assure that the solution given in Theorem 3.1 is unique. So we need to
make a couple of extra assumptions as follows:

A1 :: The function g satisfies the Lipschitz condition with Lg > 0

||g(t, w)− g(t, v)|| ≤ Lg||w − v||, t ∈ [0, T ], w, v ∈ Rn,
A2 :: The function f satisfies the Lipschitz condition with Lf > 0

A3 :: ([µ(T )− µ(0)]Lg +mLf ) max
{
XM,A,µ
β,1,r (T, 0) ,XM,A,µ

β,β,r (T, 0)
}
< 1.

Theorem 4.1. Under all assumptions A1,A2, A3, the integral equation given in
Theorem 3.1 has a unique solution on [−r, T ].

Proof. Define G : C ([−r, T ] ,Rn)→ C ([−r, T ] ,Rn) by

Gw(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) +

∑
0<ti<t

XM,A,µ
β,1,r (t, ti) f (w (ti)) .

By taking arbitrary w, v ∈ C ([−r, T ] ,Rn), one can obtain for ‖Gw(t)−Gv(t)‖:

≤ Lg
∫ t

0

∥∥∥XM,A,µ
β,α,r (t, s)

∥∥∥ dµ(s) ‖w − v‖C + Lf
∑

0<ti<t

∥∥∥XM,A,µ
β,1,r (t, ti)

∥∥∥ ‖w − v‖C
≤ ([µ(T )− µ(0)]Lg +mLf ) max

{
XM,A,µ
β,1,r (T, 0) ,XM,A,µ

β,β,r (T, 0)
}
‖w − v‖C .

In the light of A3, G is a contraction. By Banach fixed point theorem, G has a
unique fixed point. �

5. Stability results

In this section, we firstly share fundamental definition and remark to prove that
the system (1.1) is Ulam-Hyers stable.

Definition 5.1. If ∀ε > 0 and for any solution w ∈ C ([0, T ],Rn) of inequality

(5.1)
∥∥ C
−r+D

β
µw(t)−Mw(t)−Aw(t− r)− g(t, w(t))

∥∥ ≤ ε
then there is a solution w ∈ C ([0, T ],Rn) of (1.1), and a η > 0 such that

(5.2) ‖w(t)− v(t)‖ ≤ η.ε t ∈ [0, T ]

then (1.1) is stable in the sense of Ulam-Hyers.
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Remark 5.2. A function w ∈ C1 ([0, T ],Rn) is a solution of the inequality (5.1) iff
there is at least h ∈ C ([0, T ],Rn) filfulling

• ‖h(t)‖ ≤ ε (ε > 0),
• C
−r+D

β
µw(t) = Mw(t) +Aw(t− r) + g(t, w(t)) + h(t).

Theorem 5.3. Under all of circumstances in Theorem 4.1, the system (1.1) is
stable in the sense of Ulam-Hyers.

Proof. Suppose w ∈ C ([0, T ] ,Rn) which satisfies the inequality (5.1), and let v ∈
C ([0, T ] ,Rn) which is the unique solution of system (1.1) with the initial condition
v (t) = w (t) for all t ∈ [−r, 0], w

(
t+i
)
− w

(
t−i
)

= v
(
t+i
)
− v

(
t−i
)

= f (w (ti)). By
keepimg the definition of G and Remark 5.2 in mind, one acquires

‖h (t)‖ < ε, w (t) = Gw (t) +

∫ t

0

XM,A,µ
β,β,r (t, s)h (s) ds,

and also v (t) = (Gv) (t) for each t ∈ [0, T ]. One gets

‖Gw (t)− w (t)‖ ≤
∫ t

0

∥∥∥XM,A,µ
β,β,r (t, s)

∥∥∥ ‖h (s)‖ ds ≤ [µ(T )− µ(0)]X ||M ||,||A||,µβ,β,r (T, 0)ε.

We are set to make an estimation ‖v (t)− w (t)‖:

‖v (t)− w (t)‖ ≤ ‖v (t)−Gw (t)‖+ ‖Gw (t)− w (t)‖

≤ ([µ(T )− µ(0)]Lg +mLf ) max
{
XM,A,µ
β,1,r (T, 0) ,XM,A,µ

β,β,r (T, 0)
}
‖v − w‖C

+ [µ(T )− µ(0)]X ||M ||,||A||,µβ,β,r (T, 0)ε,

which provides

‖v − w‖C ≤ ηε,

where

η =
[µ(T )− µ(0)]X ||M ||,||A||,µβ,β,r (T, 0)

1− ([µ(T )− µ(0)]Lg +mLf ) max
{
XM,A,µ
β,1,r (T, 0) ,XM,A,µ

β,β,r (T, 0)
} > 0.

The proof is completed. �

6. Relative Controllability Results

In this section we investigate the relative controllability of the impulsive frac-
tional delayed differential systems having Caputo fractional derivatives with respect
to another function while it is not only linear but also semilinear.

Definition 6.1. System (1.1) is called relatively controllable, if for the final state
wτ ∈ Rn with time τ , any initial function φ ∈ C1 ([−r, 0] ,Rn), and initial func-
tion f ∈ C (Rn,Rn), there is a control u ∈ L2(J = [0, T ],Rn)(the Hilbert space
of all square integrable functions) such that system (1.1) has a solution w ∈
C1 ([−r, τ ] ,Rn) that holds the initial delayed condition, the initial impulsive con-
dition, and w(τ) = wτ .
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6.1. The relative controllability of linear case. We will consider the following
control system

(6.1)


C
−r+D

β
µw(t) = Mw(t) +Aw(t− r) + Su(t), 0 < t ≤ T, r > 0,

w(t) = ψ(t), −r ≤ t ≤ 0,
w
(
t+i
)

= w
(
t−i
)

+ f (w (ti)) , ti ∈ J,

whose solution is given by

w(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)Su(s)dµ(s) +

∑
0<ti<t

XM,A,µ
β,1,r (t, ti) f (w (ti)) .

Theorem 6.2. The system (6.1) is relatively controllable if and only if the following
Gramian matrix

W [0, τ ] =

∫ τ

0

XM,A,µ
β,β,r (τ, s)SS∗XM

∗,A∗,µ
β,β,r (τ, s)dµ(s)

is nonsingular, where .∗ stands for the transpose of a matrix.

Proof. ⇒: Let W [0, τ ] be singular while the system (6.1) is relatively controllable.
There is nonzero π ∈ Rn

W [0, τ ]π = 0.

One gets ∫ τ

0

π∗XM,A,µ
β,β,r (τ, s)SS∗XM

∗,A∗,µ
β,β,r (τ, s)πdµ(s) = 0

which provides

π∗XM,A,µ
β,β,r (τ, s)S, 0 ≤ s ≤ τ.

Based on the relative controllability of the system, we can find u1 and u2 for the
different final 0, π ∈ Rn,respectively so that

π∗π =

∫ τ

0

π∗XM,A,µ
β,β,r (τ, s)S(u2(s)− u1(s))dµ(s) = 0

from which π = 0 is obtained. This is a contradiction.
⇐: By means of the invertibility of the Gramian matrix, it is known that its inverse
is well-defined. If one regards the following continuous function

u(t) = S∗XM
∗,A∗,µ

β,β,r (τ, t)W−1[0, τ ]ϑ

where

ϑ =wτ −XM,A,µ
β,1,r (τ,−r)ψ(−r)−

∫ 0

−r
XM,A,µ
β,β,r (τ, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

−
∑

0<ti<t

XM,A,µ
β,1,r (τ, ti) f (w (ti)) ,

as a control, one can easily observe w(τ) = wτ , and w fulfills all of the initial
conditions. �
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6.2. The relative controllability of semilinear case. We will consider the fol-
lowing control system

(6.2)


C
−r+D

β
µw(t) = Mw(t) +Aw(t− r) + g(t, w(t)) + Su(t), 0 < t ≤ T,
w(t) = ψ(t), −r ≤ t ≤ 0, r > 0,

w
(
t+i
)

= w
(
t−i
)

+ f (w (ti)) , ti ∈ J,

whose solution is given by

w(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) +

∑
0<ti<t

XM,A,µ
β,1,r (t, ti) f (w (ti))

+

∫ t

0

XM,A,µ
β,β,r (t, s)Su(s)dµ(s)

Unfortunately, we can not control this system without putting extra conditions
on the nonlinear function and impulsive function, an extra operator. Now, let us
make some assumptions as follows:

A4 :: The operator M : L2 (J,Rn)→ Rn

Mu =

∫ τ

0

XM,A,µ
β,β,r (τ, s)Su(s)dµ(s),

has an inverse operator M−1 which take values in L2 (J,Rn) /kerM .

Let X1 and X2 be Banach spaces. B(X1, X2) is the Banach space consisting of
all linear bounded operators endowed with the norm ‖.‖B

For simplicity, we will set the following notations:

R :=
∥∥M−1

∥∥
B(Rn,L2(J,Rn)/kerM,)

,

R1 :=
∥∥∥XM,A,µ

β,1,r (t,−r)ψ(−r)
∥∥∥+

∥∥∥∥∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

∥∥∥∥ ,
R2 :=

∑
0<ti<t

∥∥∥XM,A,µ
β,1,r (t, ti)

∥∥∥ |f (0)|+ [µ(T )− µ(0)]X ||M ||,||A||,µβ,α,r (T, 0) max
[0,T ]
|g(t, 0)| ,

R3 :=

(
Lf

∑
0<ti<t

∥∥∥XM,A,µ
β,1,r (t, ti)

∥∥∥+ Lg[µ(T )− µ(0)]X ||M ||,||A||,µβ,α,r (T, 0)

)
‖w‖C .

From Remark 3.3[13], it is known that

R =
√
‖W−1[0, τ ]‖.

Theorem 6.3. Suppose that 1 ≥ β > 0.5. Under the assumptions A1 :,A2 :, and
A4 : are fulfilled. Then the system (6.2) is relatively controllable if

(1 +R ‖S‖max {1, R3})R3 < 1.
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Proof. Based on the assumption A4 :, one can define the following control function

uw =M−1

[
wτ −XM,A,µ

β,1,r (τ,−r)ψ(−r)

−
∫ 0

−r
XM,A,µ
β,β,r (τ, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

−
∑

0<ti<t

XM,A,µ
β,1,r (τ, ti) f (w (ti))−

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s)

]
.

By executing this control function, one can also define K : C(J,Rn)→ C(J,Rn) by

Kw(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) +

∑
0<ti<t

XM,A,µ
β,1,r (t, ti) f (w (ti))

+

∫ t

0

XM,A,µ
β,β,r (t, s)Suw(s)dµ(s).

Now, we need to determine such a radius r for Dr := {w ∈ C(J,Rn) : ‖w‖C ≤ r}
which is a convex, closed and bounded subset that K (Dr) ⊆ Dr. To do this, start
with the norm of the control function:

‖uw‖ ≤ R (R1 +R2 +R3 ‖w‖C) .

The norm of the operator Kw(t) for w ∈ Dr is

‖Kw(t)‖ ≤ R1 +R2 +R3 ‖w‖C +R ‖S‖ (R1 +R2 +R3 ‖w‖C) .

If we take

r =
(1 +R ‖S‖) (R1 +R2) +R ‖S‖ ‖wτ‖

1− (1 +R ‖S‖max {1, R3})R3
> 0,

the desired thing is demonstrated. Now we will separate K in two different operators
as follows:

K1w(t) =XM,A,µ
β,1,r (t,−r)ψ(−r) +

∫ 0

−r
XM,A,µ
β,β,r (t, s)

[(
C
−r+D

β
µψ
)

(s)−Aψ(s)
]
dµ(s)

+
∑

0<ti<t

XM,A,µ
β,1,r (t, ti) f (w (ti)) +

∫ t

0

XM,A,µ
β,β,r (t, s)Suw(s)dµ(s), t ∈ J,

and

K2w(t) =

∫ t

0

XM,A,µ
β,β,r (t, s)g(s, w(s))dµ(s) t ∈ J.

For w, v ∈ Dr, one gets

‖uw(t)− uv(t)‖ ≤ RR3 ‖w − v‖C
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and

‖K1w(t)−K1v(t)‖ ≤ [µ(T )− µ(0)]X ||M ||,||A||,µβ,β,r (T, 0) ‖S‖ ‖uw(t)− uv(t)‖

+ Lf
∑

0<ti<t

∥∥∥XM,A,µ
β,1,r (t, ti)

∥∥∥ ‖w − v‖C
≤ [µ(T )− µ(0)]X ||M ||,||A||,µβ,β,r (T, 0) ‖S‖RR3 ‖w − v‖C
+ Lf

∑
0<ti<t

∥∥∥XM,A,µ
β,1,r (t, ti)

∥∥∥ ‖w − v‖C
≤ (1 +R ‖S‖max {1, R3})R3 ‖w − v‖C

which gives that K1 is a contraction.
Assume that wn ∈ Dr with wn → w in Dr. Since g is continuous, g(t, wn(t))→

g(t, w(t)). By using dominated convergence theorem

‖K2wn(t)−K2w(t)‖ ≤
∫ t

0

∥∥∥XM,A,µ
β,β,r (t, s)

∥∥∥ ‖g(s, wn(s))− g(s, w(s))‖ dµ(s)

goes to zero as n tends to ∞. Thus, K2 is continuous on Dr. The last task is to
show that K2 is compact. For w ∈ Dr, 0 < t < t+ h < τ

K2w(t+ h)−K2w(t) =

∫ t+h

t

XM,A,µ
β,β,r (t+ h, s)g(s, w(s))dµ(s)

+

∫ t

0

(
XM,A,µ
β,β,r (t+ h, s)−XM,A,µ

β,β,r (t, s)
)
g(s, w(s))dµ(s).

Introduce the below notations:

λ1 :=

∫ t+h

t

XM,A,µ
β,β,r (t+ h, s)g(s, w(s))dµ(s),

λ2 :=

∫ t

0

(
XM,A,µ
β,β,r (t+ h, s)−XM,A,µ

β,β,r (t, s)
)
g(s, w(s))dµ(s).

With an easy calculation, one can acquire

‖λ1‖ =

(
Lg ‖w‖C + max

t∈[0,T ]
|g(t, 0)|

)∫ t+h

t

∥∥∥XM,A,µ
β,β,r (t+ h, s)

∥∥∥ ds→ 0

‖λ2‖ =

(
Lg ‖w‖C + max

t∈[0,T ]
|g(t, 0)|

)∫ t

0

∥∥∥XM,A,µ
β,β,r (t+ h, s)−XM,A,µ

β,β,r (t, s)
∥∥∥ ds→ 0

as h→ 0. As a result, one acquires

‖K2w(t+ h)−K2w(t)‖ ≤ ‖λ1‖+ ‖λ2‖ → 0 as h→ 0.

K2 (Dr) is uniformly bounded because one easily reach to the following upper bound
for all members of K2 (Dr) with the familiar computations,

‖K2‖ ≤
(
Lgρ+ + max

t∈[0,T ]
|g(t, 0)|

)
τXM,A,µ

β,β,r (τ, 0).

Because of the equicontinuity and uniform boundedness of K2, Arzela-Ascoli the-
orem provides K2 is compact. Krasnoselskii’s fixed point theorem guarantees that
K has a fixed point w ∈ Dr. �
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7. Conclusion

The current paper is in brief devoted to investigating the existence and unique-
ness of the solution and examining stability and controllability of the system.

For a next problem, neutral version can be taken into consideration and investi-
gated in terms of all aspects considered in the present paper.
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SECOND ORDER MODEL REDUCTION OF HIGHER ORDER

SYSTEMS AND PID CONTROLLER DESIGN

A.YÜCE

Abstract. Reduced order systems are used to avoid computational complex-
ity in higher order plant models. Low-order or standardized transfer func-

tions are more suitable for controller design. In addition, Salem presented

a non-overshoot and analytical PID controller design technique for standard
quadratic systems. In this study, efficient PID controller design for high-order

systems is carried out with the help of a second-order reduced model. The

curve fitting technique is used to reduce the model to the second-order struc-
ture. The open loop unit step response of the higher order system is fitted with

the parametric unit step response of the standard quadratic system. Particle

Swarm Optimization (PSO) algorithm is used to detect unknown ζ and ωn

parameters. The analytical method proposed by Salem has been applied for

the PID controller design of second-order model. Thus, PID controller design

for any higher order system is performed in two stages using model reduction
and model based PID controller design techniques. It has been seen that the

efficient PID controller designed for the second order equivalent models is a
suitable design for the higher order system.

1. Introduction

Closed-loop PID control systems have attracted the attention of academic cir-
cles and gained an important place in industrial applications due to their ease of
implementation and effective control capabilities [1, 2]. It has found widespread
use in process control. Due to this intense interest, many studies have been carried
out especially for the optimal control problem of the classical PID control struc-
ture [2, 3, 4, 5]. Many artificial intelligence techniques and optimization algorithms
have been mobilized for self-tuning of the PID controller in order to provide robust
control performance in real systems that may contain noise, parameter and model
uncertainties [6, 7].
In the literature, the PID controller design problem has been studied in three parts
[8]: (i) analytical methods [2, 9], (ii) graphical methods [10, 11] and (iii) empirical
and intelligent methods [4, 7]. Analytical methods have generally produced ana-
lytical formulas for the determination of PID gains that can provide the targeted

Date: July, 8, 2023.
Key words and phrases. Higher order system, Second order system, Model reduction, Particle

Swarm Optimization, PID controller design.
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control response for system models of low order generalized structure. If the system
to be controlled has a low order generalized system model, the gains that provide
the targeted control system performance can be easily calculated with the help of
simple analytical formulas. However, practical control systems often have time-
delay and high-order system models. Time-delayed or large-scale complex systems
can be represented by higher order models. For example, time-delayed systems can
be converted to high-order approximate system models with the Pade approach. In
this context, the conversion of these models to low-order generalized system mod-
els provides important conveniences for the application of analytical methods in
high-order systems. Otherwise, the design of the analytical controller turns into
a problem whose solution complexity increases exponentially as the system scale
increases. At this point, model order reduction techniques have gained importance.
Model order reduction methods are expected to produce low-order standard models
that provide responses as close as possible to higher-order systems, especially in the
low-frequency region where control systems operate effectively.
Some of the main model reduction methods in the literature are as follows: SBL
based model reduction method [12] Model reduction with Pade convergence method
[13], Routh convergence techniques [14] and continuous fraction method [15]. In
this study, we propose a model reduction method based on the standard quadratic
system for model reduction. In the proposed method, first, it is aimed to plot
unit step response of a high-order system. Second, the error between the unit
step response of the higher order system and the parametric unit step response of
the second order standard system is calculated. Finally, according to the integral
performance criteria, the standard quadratic system parameters ζ and ωn, which
minimize the error, are determined with the PSO algorithm. The appropriate PID
controller design for the second-order approximate model obtained by the PSO al-
gorithm was carried out with the model-based PID design formulation proposed
by Salem [9]. These formulations have been proposed for the quadratic system to
provide non-overshoot and fast enough PID responses. As a sample application,
the design of PID controller gains for an eighth-order system has been carried out
and the efficiency of the method has been evaluated.
The remainder of this work is organized as follows: Section 2 describes the PSO
algorithm and computation method of the approximate quadratic model. Two nu-
merical examples are given in Section 3. In these examples, the proposed method
on higher order system models is examined. The results are presented in Section 4.

2. Methodology

2.1. Particle Swarm Optimization (PSO).
Particle swarm optimization is a nature-inspired technique developed by Kennedy-
Eberhart [16, 17, 18, 19]. PSO is a simple and powerful optimization algorithm.
This algorithm has been successfully applied in various fields of science and engi-
neering. Initially, the PSO system randomly chose solution values called popula-
tions. Each solution is called a particle. Also, there is a randomly chosen velocity
for each particular particle. It is called the best position (Pbest) for each particle
in the algorithm. Particles move and follow Pbest and there is a fitness value for
each Pbest. The largest fitness value is called the global best (Gbest). There are
two main equations in the PSO algorithm, velocity and position vectors, and these



52 A.YÜCE

are shown in (1) and (2), respectively [20].

(2.1) vij(t+ 1) = wvij(t) + r1c1(pij(t)− xij(t)) + r2c2(gij(t)− xij(t))

(2.2) xij(t+ 1) = xij(t) + vij(t+ 1)

Where, r1 and r2 are two random vectors and their values are between 0 and 1.
The c1 and c2 parameters represent acceleration constants or learning parameters
[20]. The v parameter represents the speed, and the x parameter represents the
position. The parameters g and p are Gbest and Pbest, respectively.

2.2. Calculation of the approximate standard quadratic system.
The schematic representation of the proposed procedure to determine the approx-
imate standard quadratic transfer function using the integral performance index
and the error minimizing PSO algorithm is given in Figure 1.

Figure 1. The model of the proposed procedure

In Figure 1, Ghos(s) and yhos(t) denote the transfer function of the higher-order
system and the open-loop unit step response, respectively. Ghos(s) is given in (2.3)
(3) and it is possible to obtain its open loop unit step response easily.
(2.3)

Ghos =
ams

m + am−1s
m−1 + ...+ a1s+ a0

bnsn + bn−1sn−1 + ...+ b1s+ b0
{am, bn} ∈ R, {m,n} ∈ Z, n > m

The standard quadratic system model is given in (2.4).

(2.4) Ghos =
Y (s)

U(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

In (2.4), u denotes the input, y denotes the output, ζ is the damping ratio,
and ωn is the natural frequency. The open loop unit step response of a standard
quadratic transfer function is written in time domain as in (2.5).

(2.5) y(t) = 1− e(−ζωnt)(cos(ωn
√

(1− ζ2)t) + (ζ/
√

(1− ζ2)) sin(ωn
√

(1− ζ2)t))
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It is defined as ζ = x(1) and ωn = x(2) in (2.5). Thus, the quadratic model is
reconstructed in the form of (2.6). Where, the ym(t) is the parametric form of the
open-loop unit step response of (2.4).

(2.6)

ym(t) = 1−e(−x(1)x(2)t)(cos(x(2)
√

(1− x(1)2)t)+(x(1)/
√

(1− x(1)2)) sin(x(2)
√

(1− x(1)2)t))

For the curve fitting in the time domain, we can write the error as (2.7).

(2.7) e(t) = [ym(t)− ynorm(t)]

Where, ynorm(t) specifies the function in which the steady state value of yhos(t) is
normalized to 1. Normalization is achieved with a gain multiplier K. Normalization
coefficient K and ynorm(t) are calculated as in (2.8)-(2.9) respectively.

(2.8) K =
b0
a0

(2.9) Kyhos(t)

The optimum parameters ζ and ωn can be obtained by minimizing the error sig-
nal using integral performance criteria and PSO algorithm. Integral performance
criteria are defined as cost functions in optimization algorithms and provide mini-
mization. Firstly, the integral of the square of error (ISE) and the integral of the
absolute value of the error (IAE) performance criteria were used by Graham and
Lathrop [21] in 1953. Then, the absolute value of the time-weighted error (ITAE)
and the integral of the square of the time-weighted error (ITSE) were developed by
[22]. These performance criteria and its mathematical expressions in the literature
are given in (2.10) [23].

(2.10) JISE =

∫ t

0

e2(t)dt

The integral performance criteria presented in (2.10) work as a cost function in
the PSO algorithm. The proposed process determines the ζ and ωn parameters that
minimize the cost function. In the program, the number of variables is 2, the lower
limit is 0.001, the upper limit is 10, the number of particles is 20, the maximum
number of iterations is 40, acceleration constants c1 = c2 = 2, wmax = 0.9 and
wmin = 0.4 are selected to calculate the inertia weight value.

Equations (2.11) and (2.12)are used to arrive at the quadratic model transfer
function as a result of the ζ and ωn parameters determined by the PSO algorithm.

(2.11) Gnorm(s) ≈ KGhos(s)

(2.12) Gm(s) =
1

K
Gnorm(s) ≈ Ghos(s)
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2.3. PID controller design for the standard second order system. PID
controller structure in its general form is written in (2.13).

(2.13) C(s) = kp +
ki
s

+ kds

Salem proposed the design formulas given in (2.14) for efficient PID design that
provides non-overshoot and fast control response for second order systems in stan-
dard form [9].

(2.14) kp = 1; ki =
ωn
2ζ

; kd =
1

2ζωn

3. Examples

Let’s consider the higher order transfer function given in (3.1).

(3.1)

Ghos =
8.51s6 + 169s5 + 1279s4 + 4702s3 + 8834s2 + 7990s+ 2675

s8 + 22.52s7 + 191.1s6 + 782.9s5 + 1684s4 + 2031s3 + 1475s2 + 632.1s+ 117.6

In this example, an eighth order transfer function is chosen [24]. The open loop
unit step response of the higher order system is fitted with the parametric unit
step response of the standard quadratic system. Curve fitting was done using ISE
criterion and PSO algorithm. As a result of the PSO algorithm, ζ = x(1) = 0.6876
and ωn = x(2) = 0.5908 .

The normalization gain is calculated as K = 0.0494. Thus, Gnorm(s) and Gm(s)
are obtained as (3.2)-(3.3), respectively.

(3.2) Gnorm(s) =
0.3491

s2 + 0.8125s+ 0.3491

(3.3) Gm(s) =
7.94

s2 + 0.8125s+ 0.3491

In the literature, the second-order approximate model using the SBL method is
given in (3.4) [12].

(3.4) GSBL(s) =
10.17

s2 + 1.067s+ 0.4420

In Figure 2, the Bode diagrams of the higher order transfer function, the reduced
second order approximation model Gm(s) and model reduction method using SBL
are compared. It was observed that the amplitude and phase responses were quite
close to each other in the low frequency region. The proposed method gives better
frequency response than the SBL method. The mean square error in the Bode
diagram is 0.5168 for the proposed method and 0.5925 for the SBL method. This
indicates that a good reduced approximate model can be obtained for proposed
prosedure.

In Figure 3, the open loop unit step responses of Ghos(s), Gm(s) and GSBL are
compared. It was observed that the rise and settling times in the open loop unit
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Figure 2. Comparison of Bode diagrams of higher order system,
Gm(s) and GSBL.

step responses were quite close, and there was a slight difference in the maximum
overshoot. The mean square errors of Gm(s) and GSBL are 0.2625 and 0.2878,
respectively.
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Figure 3. Comparison of open loop unit step responses of higher
order system, Gm(s) and GSBL.
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For the second-order reduced system model, the Salem PID design that provides
a non-overshoot control response is arranged according to (2.14). Thus, the PID
parameters for normalized transfer function are computed as (3.5).

(3.5) kp norm = 1; ki norm = 0.4297; kd norm = 1.2308

The PID parameters for the model transfer function Gm(s) are calculated as
(3.6) depending on the normalization gain.

(3.6) kp m = 1.
1

K
= 22.7466; ki m = 0.4297.

1

K
= 9.774; kd m = 1.2308.

1

K
= 28

In addition, the PID parameters calculated according to the second-order trans-
fer function determined using the SBL method are given in (3.7).

(3.7)

kp SBL = 1.
1

K
= 22.7466; ki SBL = 0.4142.

1

K
= 9.422; kd SBL = 0.9372.

1

K
= 21.32

In Figure 4, the unit step response of closed loop control system with designed
PID controller for both proposed method and SBL method are shown.
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Figure 4. Closed-loop unit step response of PID controllers de-
signed by model order reduction method for higher order system

The control performances of the PID controllers determined by the proposed
method and the SBL method for the high-order system are given in Table 1. From
the performance data in Table 1, it is seen that the proposed method makes more
successful model reduction and PID controller design.
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Table 1: Performance characteristics of closed loop control system
for different methods.

Methods Rise Time (s) Settling Time (s) Peak Time (s) Overshoot (%)
Proposed Model Reduction 0.0089 0.0194 0.5800 0.1374

SBL Model Reduction 0.0138 0.0261 0.5300 0.2836

4. Conclusion

In this study, second-order approximate equivalent models of a higher-order
transfer function were obtained by the PSO algorithm and integral performance
criteria. In the sample application, it has been seen that the amplitude, phase,
and unit step responses of the second-order reduced model can get quite close to
the responses of the higher-order system. It has been seen that the PID controller,
which is analytically designed for the second-order reduced model, can respond
appropriately within the higher-order model. Thus, analytical controller design
within higher order systems has been simplified and optimal PID design formula-
tions proposed for second order systems have been made available for higher order
systems. Future work can be done on obtaining approximate equivalent models for
time-delayed systems.
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Abstract. Data volume and complexity continue to increase, and the ability

to comprehend and interpret visual representations becomes crucial for mak-
ing informed decisions and identifying meaningful insights. Understanding the

ability of users to analyze and extract relevant insights from visuals requires

evaluating their visualization literacy skills. However, creating an efficient
visualization literacy assessment test is a non-trivial task. This paper recom-

mends key practices for creating assessment tests to gauge users’ visualization

literacy skills. These practices are presented based on designing an effective
visualization literacy assessment and the structure of the literacy test.

1. Introduction

Visualizations are graphical representations of data that can be used to make
complex information more understandable. The significance of understanding and
comprehending data visualizations is growing as data expands rapidly. As the
exploration and analysis of vast and complex datasets increasingly rely on visual
representations, the need for individuals without expertise in the field to possess
visualization literacy skills becomes crucial. Visualization literacy is defined as
”the ability to make meaning from and interpret patterns, trends, and correlations
in visual representations of data” [1] and ”a concept generally understood as the
ability to create and interpret visual representations of data confidently” [2]. Vi-
sualization literacy can help people make informed decisions and identify insights
within the data. Evaluating users’ visualization literacy abilities is essential for po-
tential improvements. However, there is currently a lack of efficient, practical, and
time-saving tools to assess individuals’ comprehension and interpretation of visual
designs [3].

In recent years, several tests and assessments have been introduced to measure
visualization literacy skills [2, 3, 4, 5, 6]. These tests typically assess people’s
ability to understand the different elements of visualizations, such as the type of
data being represented, the visual encodings used, and the underlying statistical
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relationships. They also gauge people’s ability to interpret visual representations,
identify patterns, and evaluate their visualization literacy abilities.

This paper provides a guideline and recommends that researchers and practi-
tioners focus on key criteria and test elements when developing assessments of
visualization literacy to ensure their reliability and effectiveness. The paper starts
with motivation. This is followed by rules for creating test questions, structuring
an assessment test, and then a conclusion.

2. Motivation and Previous Work

Visualization literacy is becoming increasingly important in today’s data-rich
world. Developing comprehensive and reliable tests of visualization literacy is chal-
lenging because visualization literacy encompasses a range of cognitive, percep-
tual, and analytical skills. However, testing visualization literacy skills can help
researchers and practitioners to gain insights into users’ proficiency and identify
areas for improvement.

Boy et al. [2] introduce an assessment test that includes tasks that require only
basic intelligence, such as identifying minimum, maximum, variation, intersection,
average, and comparison. They test the user’s ability to find these characteristics
on line charts, bar charts and scatterplots. Delmas et al. [7]present an assessment
test consisting of multiple-choice items designed to evaluate students’ understand-
ing and reasoning abilities in the area of variability. It specifically focuses on their
skills in interpreting distributions and making comparisons. Similarly, Lee et al.
[4] develop the Visualization Literacy Assessment Test (VLAT) to gauge novice
users’ visualization literacy skills with the most common visualization techniques
from different sources: K-12 curriculum, data visualization authoring tools, and
news articles to determine the content of the test. Firat et al. [5, 6] focused on
an individual visual design to create two assessment tests for treemap and paral-
lel coordinates plots, respectively. Designing comprehensive and reliable tests for
visualization literacy involves considering a range of factors. Lastly, Pandey and
Ottley [3] use a 12-item short form of the 53-item VLAT in their study.

By understanding and addressing the challenges of developing comprehensive and
reliable tests of visualization literacy, researchers and practitioners can advance the
field of visualization literacy and contribute to the effective use of visualizations
in various domains. Several practices must be considered when designing a visu-
alization literacy test to assess users’ skills. These practices can help ensure the
assessment’s reliability, validity, and fairness. Here are some key practices to create
assessment tests to gauge users’ visualization literacy skills. These practices are
presented based on designing effective visualization literacy assessment questions
and the formatting of the assessment test.

3. Designing an Effective Visualization Literacy Test

This section explores key considerations for creating effective visualization liter-
acy tests. We begin by emphasizing the importance of defining clear test objectives,
which provide a clear direction and purpose for evaluating participants’ visualiza-
tion literacy skills. Next, we discuss the significance of selecting appropriate tasks
and stimuli, including various visualizations and complexity levels. We also high-
light the importance of incorporating diverse datasets and contexts and ensuring
high-quality and clear images. Lastly, we address the need for considering diverse
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user backgrounds to create inclusive assessments that promote equal opportunities
for participants. By attending to these considerations, researchers and practition-
ers can design assessment tools that accurately measure and advance individuals’
visualization literacy skills.

3.1. Defining Clear Test Objectives: To ensure clarity and focus in the design
of a visualization literacy test, it is essential to clearly articulate the objectives of
the assessment. This involves explicitly stating the intended goals and outcomes of
the test. The goals can be to determine if the test assesses literacy skills for a single
or multiple visual designs or testing specific target users such as young children etc.
By doing so, researchers can provide a clear direction and purpose for evaluating
participants’ visualization literacy skills.

In addition to defining test objectives, it is important to determine the specific
aspects of visualization literacy that will be measured. Visualization literacy en-
compasses various dimensions, including understanding the key features of visual
designs to understand visual encodings and the ability to recognize patterns and
interpret the meaning of the information. By identifying and prioritizing these as-
pects, researchers can align the test with the desired outcomes and ensure that the
assessment comprehensively captures the core components of visualization literacy.

3.2. Selecting Appropriate Tasks: When designing a visualization literacy test,
including a diverse range of tasks and visualizations is crucial. By doing so, the
assessment can effectively gauge participants’ ability to apply their visualization
literacy skills in practical contexts. It is important to include various visualizations
in the test to capture the breadth of visualization literacy. Unless the focus is
a single visual technique, the test can include bar charts, scatter plots, network
diagrams, treemaps, parallel coordinates and other commonly used visualization
forms. The diversity in visualizations allows for a comprehensive assessment of
participants’ visualization literacy skills across different visualization forms and
contexts.

Furthermore, it is important to consider the complexity levels of the tasks and
stimuli. Include simple and complex visualizations to assess participants’ abilities
to interpret and analyze visual representations of varying intricacy. This range of
complexity ensures that the test can effectively measure users’ skills across different
levels of visual complexity encountered in real-world data analysis and decision-
making scenarios.

3.3. Diverse Data and Contexts: In addition to diverse visualizations, incorpo-
rating diverse datasets and contexts in the test is crucial. Real-world datasets from
different domains can expose participants to various data characteristics, including
varying scales, distributions, and relationships. This helps assess their ability to
interpret visualizations in different contexts and apply their visualization literacy
skills to various scenarios.

3.4. Image Quality: Ensure that the visualizations presented in the test are of
high quality and clarity. Poor image quality can introduce unnecessary ambiguity
and hinder participants’ ability to accurately interpret and analyze the visualiza-
tions. Use appropriate resolution, colors, and labels to enhance readability and
avoid visual distortions. It is necessary to consider optimizing the visualizations for
different display sizes and devices to accommodate a diverse range of participants.
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3.5. Considering Diverse User Backgrounds: To create an inclusive visualiza-
tion literacy test, it is vital to consider the target audience’s diverse backgrounds,
experiences, and expertise levels. By doing so, the assessment can accommodate
a wide range of participants and provide a fair and unbiased evaluation of their
visualization literacy skills.

One key aspect of inclusivity is avoiding bias and stereotypical assumptions that
could disadvantage certain participants. Ensure that the test content, language,
and examples used are free from cultural or gender biases. By promoting a neutral
and inclusive environment, the assessment can provide an equal opportunity for all
participants to demonstrate their visualization literacy skills.

4. Formatting an Effective Assessment Test

Creating visualization literacy assessment requires careful consideration of var-
ious factors to collect and analyze results effectively. This section explores key
aspects of forming a visualization literacy assessment test.

4.1. Using a Variety of Response Formats: To comprehensively assess differ-
ent aspects of visualization literacy, it is important to incorporate a mix of response
formats in the test. One effective response format to include is multiple-choice ques-
tions. These questions can evaluate participants’ knowledge of visualization con-
cepts, such as understanding different visual encodings or identifying appropriate
visualization types for specific data scenarios.

To capture the diverse aspects of visualization literacy, it is crucial to incorpo-
rate a mix of response formats in the test. This includes open-ended responses and
ranking or sorting tasks. These are valuable for assessing participants’ ability to
articulate interpretations and insights from visualizations, compare and prioritize
visual elements, and identify patterns within visual representations. Open-ended re-
sponses allow participants to demonstrate their critical thinking skills by explaining
the rationale behind their visual analysis. Participants can effectively communicate
their understanding of the visual representations by expressing their interpretations
and insights. Integrating ranking or sorting tasks allows for assessing participants’
skills in comparing and prioritizing visual elements. These tasks require partici-
pants to make informed judgments about the relative importance or relationships
between different components within a visualization. By discerning patterns and hi-
erarchies, participants demonstrate their ability to extract meaningful information
and identify key insights from the visual representations.

Furthermore, interactive tasks that involve filtering, zooming, or interacting with
linked views provide participants with opportunities to demonstrate their profi-
ciency in using interaction techniques to gain deeper insights from visual represen-
tations. These tasks assess participants’ ability to dynamically manipulate visual-
izations to explore specific aspects or uncover hidden patterns and relationships.

4.2. Establishing Scoring Criteria: To ensure consistency in scoring and en-
hance the reliability of the visualization literacy assessment, it is crucial to develop
clear and objective scoring criteria for each test item. These criteria should align
with the specific skills and knowledge being assessed and ideally include multiple
performance levels. To develop effective scoring criteria, align them with the specific
skills and knowledge the assessment targets. For example, if the test item assesses
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the ability to interpret visual encoding, the scoring criteria should outline the ex-
pected understanding of different visual properties, such as color, size, or position,
and how they relate to the data representation. Moreover, the number of cor-
rect answers in each task (for example, comparing and prioritising visual elements
and identifying patterns) enables a more comprehensive assessment of participants’
abilities, highlighting strengths and improvement areas. The scoring criteria are a
robust framework for evaluating participants’ performance and enabling meaningful
individual comparisons.

4.3. Considering Time Constraints: Determining appropriate time limits for
completing the visualization literacy test is crucial to ensure a balanced assessment
experience. When setting the time constraints, the tasks’ complexity and the target
audience’s skill level should be considered. Tasks with higher complexity or requir-
ing more in-depth analysis may require longer time limits to allow participants to
engage thoroughly with the visualizations and provide thoughtful responses. On the
other hand, tasks with lower complexity or shorter response formats may require
shorter time limits to maintain an efficient testing process.

4.4. Pilot study and Validating the Test: Conducting a pilot study is essen-
tial to ensure the quality and effectiveness of the visualization literacy test. This
pilot study evaluates the clarity of the test items, assesses the validity and relia-
bility of the assessment, refines the scoring criteria, and validates the test through
comparison with established measures or expert judgments. The pilot study in-
volves recruiting a small group of participants who represent the target audience of
the test. These participants should possess various visualization literacy skills and
backgrounds relevant to the assessment. Additionally, involving experts in visual-
ization literacy can provide valuable insights and expertise during the pilot study.
During the pilot study, participants are asked to complete the test while providing
feedback on the clarity of the test items. This feedback helps identify any potential
issues or ambiguities in the wording, instructions, or visual representations used
in the test. Participants’ input is invaluable for refining and improving the overall
design and clarity of the assessment.

4.5. Maintaining Ethical Considerations: To ensure ethical conduct during
the visualization literacy test, it is imperative to follow ethical guidelines priori-
tising participants’ rights and well-being. Obtaining informed consent is a funda-
mental requirement, wherein participants must be fully informed about the test’s
purpose, procedures, and any potential risks or benefits involved. It is essential
to provide participants with a clear understanding of their participation and the
right to withdraw from the study at any time. Ensuring the confidentiality and
anonymity of participants’ responses and personal information is crucial. More-
over, taking measures to minimize potential harm or stress and providing clear and
easily comprehensible instructions to reduce confusion or anxiety are vital aspects
of the study. Safeguarding collected data through secure storage and limited access
only to authorized individuals and seeking ethical approval from appropriate ethics
committees before conducting the test is necessary to uphold the research study’s
integrity and ethicality.

4.6. Improving the Test: Maintaining a continuous improvement process for the
test is essential by actively incorporating participant feedback and conducting pilot
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studies. This iterative approach identifies areas that require enhancement, whether
in terms of test content, methodology, or usability. By actively checking partici-
pants’ feedback and observing their experiences, the test can be refined to assess
visualization literacy better and address potential shortcomings.

Additionally, it is necessary to address any limitations or gaps identified in previ-
ous test versions, ensuring that it aligns with the evolving understanding of visual-
ization literacy and incorporates best practices in the field. This ongoing refinement
and alignment with current knowledge contribute to the test’s validity, reliability,
and relevance in assessing visualization literacy effectively.

5. Conclusion

The power of visualizations for data analysis and decision-making requires users
to have visualization literacy abilities. Developing comprehensive and reliable as-
sessment tests to evaluate users’ visualization literacy skills is crucial in light of
visualizations’ increasing importance and utilization. This paper provides recom-
mendations and emphasizes the importance of incorporating practices for creating
an assessment test. By following these recommendations, researchers and practi-
tioners can actively contribute to evaluating and improving individuals’ visualiza-
tion literacy skills.
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Abstract. As data becomes increasingly complex, comprehending and inter-

preting visual representations becomes essential for informed decision-making

and valuable insights. With visualizations gaining significance across various
domains, it is vital to effectively assess users’ visualization literacy skills and

provide opportunities to enhance them. This paper offers a comprehensive

guide on organizing online experiments for evaluating visualization literacy,
leveraging advantages such as scalability and accessibility, and reaching a di-

verse participant pool. However, successfully organising these experiments re-

quires planning and considering various factors. The paper outlines practices
and considerations for online experiments to evaluate visualization literacy.

1. introduction

In the data-driven world, the volume and complexity of data are continuously
increasing. The ability to comprehend and make sense of visual representations has
become increasingly important. Visualizations are powerful tools for understanding
complex information, enabling us to make informed decisions and uncover valuable
insights. To determine users’ ability to understand and comprehend the data to
suggest improvements, assessing users’ visualization literacy skills has gained sig-
nificant importance across various domains [1, 2].

This paper aims to provide a comprehensive guide on organizing crowdsourced
online experiments specifically designed to evaluate visualization literacy. Online
experiments offer numerous advantages over traditional methods, e.g. classroom-
based, such as scalability, accessibility, and the ability to reach diverse participants.
Leveraging the benefits of online platforms, researchers and practitioners can con-
duct experiments that effectively assess users’ skills in understanding and interpret-
ing visual representations. However, organizing online experiments for evaluating
visualization literacy requires thoughtful planning and consideration of several fac-
tors [3]. This paper will discuss the best practices and considerations for organizing
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crowdsourced experiments to evaluate visualization literacy. By providing practical
guidance, we aim to assist researchers and practitioners in conducting successful
crowdsourced experiments that advance our knowledge of visualization literacy and
its assessment. The paper starts with motivation. This is followed by recommen-
dations for creating a crowdsourced online experiment and a conclusion.

2. Motivation

Online experiments enable researchers to access a larger and more diverse par-
ticipant pool [3, 4]. Online experiments offer increased sample size, enhance the
generalizability of findings and provide a better understanding of visualization liter-
acy than traditional classroom experiments. When designing an online experiment,
there are several key factors to consider. These practices are shaped based on
the experimental settings from previous studies on visualization literacy. Boy et
al. [5] designed online experiments using Amazon Mechanical Turk (MTurk) [6]
with an average of 36 participants for each stage. They test the user’s ability to
find these characteristics on line graphs, bar charts and scatterplots. Ruchikachorn
and Mueller [7] present a learning-by-analogy technique that explains an unfamil-
iar visualization method by showing a step-by-step conversion between two visual
designs. A total of 44 participants were recruited via MTurk and were asked to
understand the uncommon visual designs more quickly after interacting with the
transitions. Kwon and Lee [8] focus on Parallel Coordinates, an efficient method to
display multidimensional data, to study the impacts of multimedia learning envi-
ronments for teaching data visualization to non-expert users. An experiment was
conducted using MTurk with 120 participants. Firat et al. [9] presents the process
of conducting a crowdsourcing experiment to gauge users’ parallel coordinates plot
literacy skills with 60 participants recruited via MTurk. We recommend steps for
designing a crowdsourcing online experiment based on related literature. By giving
attention to the design of an online experiment and conducting thorough checks,
researchers can ensure the study’s reliability, validity, and overall success, leading
to meaningful insights into visualization literacy.

3. Recommendations to Design a Crowdsourced Online Experiment

Here are the steps for designing a crowdsourcing online experiment.

3.1. Experimental Design: Designing an online experiment for visualization lit-
eracy evaluation requires careful consideration of various factors to ensure reliable
and valid results. When selecting tasks and stimuli for the online experiment,
choosing those that effectively assess participants’ visualization literacy skills is
essential. Tasks should align with the aspects of visualization literacy being evalu-
ated, such as interpreting visual encodings, identifying patterns, or deriving insights
from complex visualizations. The tasks should represent real-world scenarios and
challenges, encompassing a range of data and visualization types and complexity
levels to capture users’ abilities across different visual representations.

Determining the appropriate sample size is critical for the generalizability of
the study. Researchers should consider expected variability in participants’ visu-
alization literacy skills. Additionally, the test could have two parts: a pre-test
and post-test or a control group, allowing for comparing participants’ performance
against a baseline or reference group, providing a clearer understanding of their



A GUIDELINE TO DESIGNING CROWDSOURCED ONLINE EXPERIMENTS 67

visualization literacy levels. Moreover, the randomization of participants should
be applied to minimize potential biases and confounding variables. Randomiza-
tion ensures that participants are assigned to different experimental conditions or
tasks randomly, reducing systematic biases and increasing the generalizability of
the findings.

3.2. Platform Selection: Choosing the appropriate online platform is crucial for
conducting visualization literacy experiments effectively. One popular platform for
online experiments is Qualtrics [10], a web-based survey platform that offers a range
of features for designing and administering experiments. Qualtrics provides a user-
friendly interface with customizable survey templates, allowing researchers to create
interactive and engaging tasks for assessing visualization literacy. It also offers
options for participant recruitment, data collection, and basic analysis, making it
suitable for researchers seeking a comprehensive platform for their experiments.

Another commonly used platform is Amazon Mechanical Turk (MTurk) [6], an
online crowdsourcing marketplace allowing researchers to recruit study participants.
MTurk offers a large and diverse pool of participants, providing access to a broader
demographic range. However, it is important to consider potential limitations, such
as the need for careful participant screening and quality control measures to ensure
reliable data. Additionally, MTurk may be more suitable for simpler tasks or initial
pilot studies rather than complex visualization literacy assessments.

Sometimes, researchers may opt for custom-built web applications tailored specif-
ically to their visualization literacy experiments. Developing a custom platform
offers flexibility regarding experimental design, data collection methods, and user
interface customization. This approach gives researchers full control over the exper-
iment’s features and functionality. However, it requires technical expertise and re-
sources for development. Regardless of the platform, privacy and security measures
should be a priority. Researchers must securely collect and store participant data,
complying with relevant privacy regulations and ethical guidelines. Anonymization
of data and restricted access to sensitive information are essential considerations
when selecting an online platform.

3.3. Participant Recruitment and Sampling: Recruiting participants for on-
line experiments is a critical step in ensuring the validity and generalizability of the
findings. There are several potential sources for participant recruitment in online
experiments. Prolific [11] is a platform that offers to reach more attentive partici-
pants and can be an alternative platform to MTurk for online studies. Also, such
online platforms, consisting of pre-screened individuals who have agreed to partic-
ipate in research studies, offer a convenient and accessible option. These platforms
can provide a diverse pool of participants with various demographic backgrounds.
Furthermore, social media platforms can also effectively reach a wider audience and
engage novice individuals to participate in visualization literacy studies. Addition-
ally, academic networks and research participant pools offer access to individuals
within educational institutions, providing an opportunity to target specific popu-
lations.

Defining clear inclusion and exclusion criteria minimises biases. Researchers
should establish criteria for the target population, such as age, educational back-
ground, or prior experience with visualizations. This helps to ensure that the
sample reflects the intended user group and allows for meaningful comparisons and
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generalizations. Inclusion criteria should be carefully defined to capture the char-
acteristics and diversity of the population of interest, while exclusion criteria help
to mitigate potential confounding factors or outliers that could affect the results.

3.4. Experimental Procedure: The experimental procedure is important to en-
sure the smooth execution and reliable results of visualization literacy experiments.
The first step in the experiment is to obtain informed consent from participants,
which involves providing a detailed explanation of the purpose, procedures, poten-
tial risks or benefits, and any necessary ethical considerations. Clear instructions
and task descriptions are essential for guiding participants through the experiment.
These instructions should include a brief overview of the study, the specific tasks
participants are expected to perform, and the evaluation criteria for assessing their
visualization literacy skills. Researchers should be available to address participants’
questions or concerns throughout the experimental procedure.

3.5. Data Collection and Analysis: The data collection and analysis phase of
an online experiment for visualization literacy plays a critical role in deriving mean-
ingful insights. When collecting quantitative data, researchers can design survey
questions that assess various aspects of users’ understanding of visual designs, such
as participants’ ability to interpret visual encodings, recognize patterns, or derive
insights from complex visualizations. Adding Likert charts can capture partici-
pants’ level of agreement or questions with multiple options can aid the analysis.
It is important to carefully design the response options to adequately capture the
desired information without biasing participant responses. The analysis of partic-
ipants’ data to gauge their visualization literacy skills, the data can be analysed
using both quantitative and qualitative methods. For quantitative data, statistical
tests, such as t-tests, ANOVA, or correlation analysis, can examine relationships,
differences, or associations between variables. Qualitative data can be analyzed
through thematic analysis or coding to identify patterns within participants’ re-
sponses.

3.6. Ethical Considerations: It is essential to consider ethical considerations
when recruiting participants. Researchers should obtain informed consent from
participants, clearly explaining the purpose, procedures, and any potential risks or
benefits associated with the study. Confidentiality and privacy measures should
be implemented to protect participant data, and participants should be allowed to
withdraw from the study at any time.

3.7. Validation and Reliability: Ensuring the reliability and validity of an online
experiment is necessary to establish the credibility of the findings. Pilot testing is
an essential step in validating the reliability of the experiment. Conducting a pilot
study with a small group of participants helps identify potential experimental design
or task issues. Feedback from pilot participants can provide valuable insights for
refining the experiment and making necessary adjustments before conducting the
full-scale study.

4. Conclusion:

Increasing data volume and complexity, comprehending and interpreting visual
representations are necessary for making informed decisions and discovering mean-
ingful insights. To advance users’ ability to understand and comprehend the data,
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assessing users’ visualization literacy skills is an important step. This paper has
provided researchers and practitioners with a comprehensive guide to organizing
crowdsourced online experiments for evaluating visualization literacy due to reach-
ing a broader pool of participants with different levels and backgrounds. By follow-
ing the recommended practices and considerations, researchers can conduct reliable
and valid experiments, leading to meaningful insights into participants’ visualiza-
tion literacy skills. The findings from such experiments contribute to advancing our
understanding of visualization literacy and its assessment in the data-driven world.
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Abstract. Selective Harmonic Elimination-Pulse Width Modulation (SHE-

PWM) is a widely used modulation technique in power electronics. However,

solving SHE equations requires complex and computationally intensive calcu-
lations. To tackle this complexity, algorithms inspired by nature have been

developed. This study focuses on the solution of 11-level nonlinear SHE equa-
tions using the Harris Hawks Optimization (HHO) algorithm. The results

demonstrate the effectiveness of the HHO algorithm in solving nonlinear SHE

equations for 11-level modulation schemes within the modulation index range
of 0.1 to 1.0.

1. Introduction

Nonlinear equations are mathematical equations that do not exhibit a linear
relationship between variables. These equations involve terms with variables of dif-
ferent degrees and can include products or powers of variables, making their solu-
tions more complex than linear equations [1-2]. Nonlinear equations arise in various
fields such as physics, engineering, economics, and mathematics. They play a sig-
nificant role in accurately understanding and modelling real-world phenomena [3].
For example, nonlinear equations describe the behaviour of resistors in conjunction
with diodes in electrical systems. Ohm’s Law, which assumes a linear relationship
between these two variables, typically explains the relationship between voltage
and current in standard resistors in electrical systems. However, when diodes are
included in electrical circuits, resistors become nonlinear and depend on the current
and voltage. Solving nonlinear equations can be challenging due to their complex
nature and absence of direct analytical solutions. Various numerical methods have
been developed to solve nonlinear equations, such as the Newton-Raphson method
and gradient-based algorithms [4-5]. These methods iteratively improve estimates
to find approximate solutions for unknown variables.
The Newton-Raphson method is one of the most commonly used and effective pro-
cedures for solving nonlinear equations. This method aims to iteratively approach
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a solution by utilizing the first derivative of a function. However, the Newton-
Raphson method may have limitations in convergence when dealing with highly
nonlinear and ill-conditioned systems. Researchers have recently investigated alter-
native optimization algorithms to enhance the efficiency and effectiveness of solv-
ing nonlinear equations [6-9]. One unique optimization algorithm in this context
is the Harris Hawks Optimization (HHO) algorithm [10]. The Harris Hawk Opti-
mization algorithm is a population-based metaheuristic optimization method that
draws inspiration from Harris Hawk’s hunting techniques. This algorithm mimics
the collaboration of Harris Hawks in optimizing their hunting abilities and increas-
ing their chances of successful hunting. The Harris-Hawk Optimization algorithm
has shown promising results in solving nonlinear equations. It has successfully im-
proved the convergence process and found optimal global solutions. Utilizing the
Harris Hawk Optimization algorithm for solving nonlinear equations is particularly
beneficial when dealing with complex systems where nonlinear and analytical so-
lutions are unavailable. The Harris-Hawk Optimization algorithm effectively tack-
les the challenges of solving nonlinear equations by employing a nature-inspired
population-based approach. The algorithm iteratively improves the positions of
potential solutions, effectively searching for optimal solutions to nonlinear equa-
tions.
Although the Newton-Raphson method is widely used and practical, it can en-
counter limitations in terms of convergence when dealing with highly nonlinear
and ill-conditioned systems. In such cases, the Harris Hawks Optimization (HHO)
algorithm provides an alternative approach to overcome these limitations.

2. Mathematical Model of SHE-PWM Technique

The development and application of efficient modulation techniques is very im-
portant in the field of power electronics. These techniques play a vital role in
controlling the switching of power electronic devices, thereby providing the desired
output voltage or current waveform. One such modulation technique is Selective
Harmonic Elimination Pulse Width Modulation (SHE-PWM) [11]. SHE-PWM is
a basic switching frequency technique commonly used to control multilevel invert-
ers’ output waveform and eliminate low-order harmonics. Compared to traditional
PWM techniques, this technique offers several advantages, such as linear control of
converter output voltage by eliminating preselected low-order harmonics, the pos-
sibility to optimize specific performance parameters, improved transient response,
and improved input power factor. The mathematical model of the SHE-PWM
technique is concerned with calculating a set of switching angles that reduce the
harmonic components for a given modulation index (m) value.
There are many SHE-PWM waveforms in the literature. The stepped waveform is
the most broadcast waveform used in multilevel inverters. The purpose of using this
waveform is to generate the signal for low harmonic similar to the sine waveform.
The output voltage waveform for a single phase of a 3-phase 11-level multilevel
inverter is shown in Figure 1.

Using the Fourier series, the amplitudes and phase angles of the harmonic com-
ponents of a waveform at certain frequencies can be calculated, and the actual
waveform can be obtained as the sum of these components. The Fourier series of
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Figure 1. 11-Level Multi-level inverter SHE-PWM waveform.

the output voltage waveform can be expressed as

(2.1) vo(t) =
ao
2

+

n∑
i=0

an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

)

where ao is the constant DC term, an is the Fourier cosine coefficient and bn is
the Fourier sine coefficient. Since the output voltage has quarter-wave symmetry,
the odd harmonics with a0, an, and sine terms take the value zero. Therefore, the
output voltage waveform equation can be expressed more simply as in Eq. (2.1).

(2.2) vo(t) =

n∑
i=1,3,5,...

bn sin (nθi) .

For the step output voltage bn can be expressed as:

(2.3) bn =
4Vdc
nπ

n∑
i=1,3,5,...

cos (nθi)

For the 11-level output voltage waveform shown in Figure 1, five switching angles
θ1, θ2, θ3, θ4 and θ5 must be calculated. One of the switching angles is used to
control the fundamental harmonics, and the remaining four are used to eliminate or
reduce the selected harmonics. In three-phase systems, 3 and multiple harmonics
are eliminated due to the nature of the system. In this study, 5th,7th, 11th, and
13th harmonics will be considered. If the harmonic equations are to be rewritten
in Eq.(2.4);
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(2.4)

V1 = cos (θ1)+ cos (θ2) + cos (θ3) + cos (θ4) + cos (θ5) =Msπ/4

V5 = cos (5θ1)+ cos (5θ2) + cos (5θ3) + cos (5θ4) + cos (5θ5) = 0

V7 = cos (7θ1)+ cos (7θ2) + cos (7θ3) + cos (5θ4) + cos (7θ5) = 0

V11 = cos (11θ1)+ cos (11θ2) + cos (11θ3) + cos (11θ4) + cos (11θ5) = 0

V13 = cos (13θ1)+ cos (13θ2) + cos (13θ3) + cos (13θ4) + cos (13θ5) = 0

Due to the quarter-wave symmetry, the switching angles must satisfy the constraint
given in Eq. (2.5).

(2.5) 0 ≤ θ1 < θ2 < θ3 < θ4 < θ5 ≤ π

2

The expression M given in Eq. (2.4) represents the modulation index. It is
defined as the peak value (V1p) ratio of the desired base voltage to the total DC
input voltage. Modulation index (M) can be represented mathematically as:

(2.6) M =
V1p
sVDC

Total harmonic distortion (THD) is mathematically shown in Eq. (2.7). THD13,
which is the THD of the harmonics up to the 13th harmonic, is given in Eq. (2.8).

(2.7) THD =

√
V 2
5 + V 2

7 + V 2
11 + · · ·V 2

49

|V1|

(2.8) THD13 =

√
V 2
5 + V 2

7 + V 2
11 + V 2

13

|V1|

3. Harris Hawks Optimization Algorithm

Harris Hawks Optimization (HHO) is a metaheuristic optimization algorithm de-
veloped by Heidari et al. in 2017. Inspired by the hunting behaviour of Harris
Hawks, the algorithm mimics their collaborative hunting strategy. Harris Hawks
work together in groups to optimize their hunting abilities, tracking the prey’s lo-
cation and moving swiftly. This collaboration and fast movement strategy increase
their chances of capturing the prey. The algorithm utilizes these natural strategies
to solve optimization problems. It adopts a population-based approach and itera-
tively improves potential solutions. Harris Hawks Optimization effectively explores
the potential solution space by considering the exploration and exploitation phases.
The algorithm has been used in various studies, demonstrating successful results in
solving optimization problems, particularly in complex, multidimensional, and real-
world problems. Harris hawks randomly perch in some locations and wait based
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on two strategies to detect the prey. The first strategy is called ”Exploration.” Ac-
cording to this strategy, hawks perch randomly and scan the surrounding area to
search for the prey. They observe and try to identify potential locations of the prey.
In this stage, there is no communication or collaboration among the hawks; each
one independently conducts its own exploration. The second strategy is called ”Ex-
ploitation”. This strategy involves hawks quickly taking action and moving towards
the prey after detecting it. The hawks move rapidly and coordinate their move-
ments while tracking the prey. This strategy aims to facilitate collaboration among
the hawks for capturing the prey and minimizing the prey’s chances of escape. The
HHO algorithm combines and iteratively uses these two strategies. Initially, the
hawks settle in random locations and try to detect the prey. Then, upon finding
the prey, they swiftly move towards it, applying the exploitation strategy. This pro-
cess is repeated, effectively scanning the potential solution space. The fundamental
philosophy of HHO is to mimic the hunting strategies observed in Harris hawks
in nature. These strategies maintain a proper balance between prey detection and
capture. The HHO algorithm aims to solve optimization problems by utilizing these
strategies. In conclusion, the HHO algorithm is an optimization algorithm devel-
oped by drawing inspiration from nature. By mimicking Harris Hawks’ exploration
and exploitation strategies, it explores the potential solution space and aims to find
optimal solutions effectively [10].

The stages of the HHO algorithm are as follows:

3.1. Exploration Phase

(3.1) X(t+ 1) =

{
Xrand (t)− r1 |Xrand (t)− 2r2X(t)| q ≥ 0.5

(Xprey(t)−Xm(t))− r3 (LB + r4(UB − LB)) q < 0.5

X(t+1) is the position vector of the hawks in the next iteration. X(t) is currently
the position vector of the hawks. r1, r2, r3, r4, and q are random numbers in the
range (0,1) that are updated at each iteration. LB and UB indicate the upper
and lower bounds of the variables. Xrand(t) is a hawk randomly selected from the
current population, and Xm is the average position of the current population of
hawks. The following equation obtains the average position of the hawks:

(3.2) Xm(t) =
1

N

N∑
i=1

Xi(t)

3.2. Transition from exploration to exploitation

To model this step, a victim’s (prey) energy is modeled as:

(3.3) E = 2E0

(
1− t

T

)
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where E is the energy of the escaped prey, T is the maximum number of itera-
tions, and Eo is the initial state of the prey’s energy.

3.3. Exploitation phase

3.3.1. Soft besiege

This behaviour is modeled by the following rules:

(3.4) X(t+ 1) = ∆X(t)− E |JXprey(t)−X(t)|

(3.5) ∆X(t) = Xprey(t)−X(t)

where ∆X(t) is the difference between the rabbit’s position vector and the
current position in iteration t, r5 is a random number between 0 and 1, and J rep-
resents the rabbit’s random jump power during the escape procedure. Calculated
as J = 2(1 — r5), the J value changes randomly with each iteration to simulate the
nature of the Rabbit’s movements.

3.3.2. Hard besiege

In this case, the current positions are updated using Eq. (3.6).

(3.6) X(t+ 1) = Xprey(t)− E|∆X(t)|

3.3.3. Soft besiege with progressive rapid dives

The next movements of the hawks to perform a soft encirclement are represented
by Eq. (3.7).

(3.7) Y = Xprey(t)− E |JXprey(t)−X(t)|

It is assumed that falcons will dive with respect to LF-based models using the
following rule:

(3.8) Z = Y + S × LF (D)



76 YASİN BEKTAŞ

Here D is the problem’s dimension, S is a random vector with respect to dimen-
sion 1 x D, and LF is the flight function calculated using Eq. (3.9).

(3.9) LF (x) = 0.01× u× σ

|v|
1
β

, σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β × 2(

β−1
2 )
)


1
β

Where u, and v are coefficients that take random values between 0 and 1, β is a
default constant set to 1.5. Therefore, the final strategy to update the positions of
the hawks during the soft encirclement phase can be accomplished by Eq. (3.10).

(3.10) X(t+ 1) =

{
Y if F (Y ) < F (X(t))
Z if F (Z) < F (X(t))

Here Y and Z are obtained using Eqs. (3.7), and (3.8).

3.3.4. Hard besiege with progressive rapid dives

In case of hard siege, the following rule applies:

(3.11) X(t+ 1) =

{
Y if F (Y ∗) < F (X(t))
Z∗ if F (Z∗) < F (X(t))

Here Y* and Z* are obtained using equations (3.12) and (3.13).

(3.12) Y ∗ = Xprey(t)− E |JXprey(t)−Xm(t)|

(3.13) Z∗ = Y ∗ + S × LF (D)

3.4. The stages of the HHO algorithm

The stages of the HHO algorithm are in Table 1.

4. Application of Harris Hawks Optimization Algorithm to SHE
equations

The HHO algorithm we proposed was used with MATLAB software to solve the
SHE Eq. (4), which describe the chosen harmonics in the 11-level inverter. We
chose a population size of 100 and 100 repetitions for the algorithm. The solutions
were calculated by gradually increasing the modulation index M from 0 to 1, with
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Table 1. The stages of the HHO algorithm

1. Initialize the populatıon of hawks.
2. Evaluate the fıtness of each hawk based on the objective functıon.
3. Update the global best positıon.
4. Update the positıon and velocıty of each hawk based on exploration and

exploitation strategıesn.
5. Check for convergence crıterıa or maxımum ıteratıons.
6. Repeat steps 2 to 5 untıl convergence or maximum ıteratıons ar e reached.
7. Return the best solutıon obtamed.

a step size of 0.1. We performed the computations on a personal computer with
an Intel(R) Core (TM) i7-10870H CPU @ 2.20GHz, 16.0 GB RAM, and a GeForce
RTX 2060 NVIDIA graphics card. At each step, we evaluated the solution using
a fitness function. Our objective was to determine the switching angles in a way
that eliminates or reduces the selected low-order harmonics to an acceptable level
while maintaining the fundamental voltage at the desired value. We used the fitness
function defined in Eq. (4.1) to assess the quality of each solution set.

(4.1) f = min
θi

{
|Vref − V1p|+ (V5)

2
+ (V7)

2
+ (V11)

2
+ (V13)

2
}
= 0

In Eq. (4.1), the variable Vref represents the maximum desired base voltage,
while V1p represents the maximum base voltage obtained at the output of the
inverter when the calculated switching angles are applied. The fundamental fre-
quency of the base voltage is set at 50Hz. The total source voltage is determined
to have a maximum value of 311 volts. For the eleven-level inverter, each source is
selected to have a voltage of 311/5 volts.
To verify the accuracy and effectiveness of the algorithm, it was executed five times
for ten different modulation values ranging from 0.1 to 1.0. The obtained results,
including the best, worst, and standard deviation values, are presented in Table 2.
The statistical values in Table 2 illustrate the relationship between the modulation
index and the fitness function. As the modulation index increases, the fitness func-
tion value tends to decrease. This indicates that higher modulation indices lead to
improved results.

Table 3 displays the switching angles obtained from the best-fit function calcu-
lated for the given modulation indices. Meanwhile, Table 4 presents the results of
the simulation applied to the multi-level inverter on Matlab Simulink, using the
switching angles found in Table 3.

Table 4 shows the effect of different modulation indices on the performance of
the HHO (Harris Hawks Optimizer) algorithm. According to this table, the HHO
algorithm was able to find suitable solutions for modulation indices between 0.1
and 1.0. However, while higher harmonic distortion values were observed in sys-
tems with low modulation index, lower harmonic distortion values were obtained
in systems with high modulation index. The modulation index range where the
algorithm performs best is between 0.5 and 1.0. In these ranges, it appears that
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Table 2. Statistical Values for the Relationship Between Modu-
lation Index and Fitness Function

M Best Worst Standard deviation
0.1 292.5 951 296.5
0.2 112.6 132.6 1.6
0.3 53.3 195.5 62.2
0.4 6.8 33.9 10.3
0.5 1.3 25.4 9.9
0.6 0 2.8 1.1
0.7 0 0.6 0.3
0.8 0 0.4 0.2
0.9 0 0.2 0.1
1 0 0.3 0.1

Table 3. Calculated switching angles with HHO versus modula-
tion index

Modulation Index (M) Switching Angles (radians)
θ1 θ2 θ3 θ4 θ5

Low 0.1 1.1775 1.5614 1.5708 1.5708 1.5708
0.2 0.6675 1.5708 1.5708 1.5708 1.5708
0.3 0.1063 1.386 1.5708 1.5708 1.5708

Middle 14 0.7883 0.9972 1.2418 1.5708 1.5708
0.5 0.6407 0.8642 1.1415 1.468 1.5708
0.6 0.6168 0.8195 1.0224 1.2673 1.5331

High 0.7 0.3364 0.6722 0.982 1.1081 1.5399
0.8 0.1606 0.4358 0.7335 1.0667 1.5386
0.9 0.1308 0.477 0.7096 0.9136 1.274
1.0 0.1335 0.3363 0.5102 0.8245 1.1007

the selected harmonics are effectively suppressed.

5. Conclusion

This research proves that the Harris Hawks Optimization Algorithm is a reliable
method to optimize the modulation of multilevel inverters in power electronics.
The HHO algorithm was successful in controlling the fundamental voltage with an
error margin of less than 0.38% for the specified modulation indices. These findings
indicate that the HHO algorithm can minimize harmonic distortion and accurately
control the fundamental voltage, making power electronics systems more efficient
and achieving the desired output characteristics.
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Table 4. Simulation results by modulation index
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0.6 132 131.5 0.38% 6.84 0.04 0.01 0.01 0.02 0.02
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[3] A. Akbulut, and F. Taşcan, Application of conservation theorem and modified extended tanh-

function method to (1+ 1)-dimensional nonlinear coupled Klein–Gordon–Zakharov equation,
Chaos, Solitons and Fractals, 104, 33-40, (2017).

[4] M. Y. Lada, M. S. A. Khiar, S. A. Ghani, M. R. M. Nawawi, A. S. M. Nor, and , J. G. M.
Yuen, Performance analysis of SHE-PWM using Fourier Series and Newton-Raphson analysis,

In AIP Conference Proceedings (Vol. 1660, No. 1, p. 070046). AIP Publishing LLC, (2015).

[5] P. F., Rasmussen and N. Gautam ,Alternative PWM-estimators of the Gumbel distribution,
Journal of Hydrology, 280(1-4), 265-271. (2003).

[6] H. Karaca, and E. Bektas, Selective Harmonic Elimination Using Genetic Algorithm for Mul-

tilevel Inverter with Reduced Number of Power Switches. Engineering Letters, 24(2), (2016).
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TURKISH LANGUAGE

ERDEM DEMIROGLU, FURKAN AYAKDAS, ASUDE TANRIBUYURDU,

AND GULSUM AKKUZU KAYA

Abstract. Sign language is a common and reliable way of communicating

with deaf and dumb people. This language can be done anywhere around

the world however most people do not know and understand sign language.
When people do not understand that special group of people, they either try to

isolate themselves from the community or they get angry. In order to overcome

that type of problem, sign language applications have been developed which
help deaf and dumb people to convey their ideas to others. Sign language

tools simply convert sign language into text in real-time. This research aims
to develop a mobile application that converts sign language into text for the

Turkish Language. This research focuses on the accuracy of the recognition.

Our Application resulted in 96,3% accuracy for three words.

1. Introduction

According to the Turkish Statistical Institute (TÜİK), hearing-impaired individ-
uals, who constitute approximately a percent 3 of society, are among the special
groups within the community [1]. Among those people, hearing-impaired individ-
uals can communicate through sign language. This language also known as body
language, is a language that helps people to use visual signs instead of spoken words
[2]. With this language, especially deaf and dumb people can communicate with
other people in their daily activities. However, that special group of people still
have difficulties that have negative effects on their lives. Because they get angry
when they can not convey their needs to others.

In order to overcome this issue, a tool is needed which should receive photo
or video as input from deaf and dumb people and translate it into text for other
people. The aim of this study is to provide a real-time sign-language translator.
We intend to develop a mobile application for people to use on their phones and
integrate it with a chatbot. Artificial intelligence and image processing techniques
will be used for developing a real-time sign language translator. This application
holds great importance in terms of enabling people to use it easily and improving
their quality of life.

Date: July, 8, 2023.
Key words and phrases. Sign language recognition, Turkish Sign Language, Hand Gesture

recognition, LSTM.
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The structure of the rest of the paper is as follows. Section 2 discusses works
in the literature related to our approach and analysis. Section 3 gives a road map
of the methodological steps taken for completing this research. In Section 4, we
present and discuss the results of our analysis. In this section, we also conclude the
paper and list the limitations of this work.

2. Related Works

Recognition technology has helped researchers to recognize hand movements,
patterns, faces, body movements for various purposes. The first real-time gesture
recognition tool was introduced in 2013 [3], it used a face detector. It was a quite
successful tool as it had a success rate of around 70%. A hand gesture recognition
study was then introduced by Tarek Frikha and Abir Presentche [4]. After this
study, a dataset called EgoGesture was created in 2018, on this dataset various
techniques such as Hidden Markov Model and classification models were applied
[5]. However, it was claimed that sign-language is more effective for communication
[6, 7, 8]. This language has different forms and gestures in each country around the
world. Therefore researchers have started to develop sign-language tools for their
own language. For example, the American Sign Language tool was introduced
by Shruti Chavan, Xinrui Yu, and Jafar Saniie [10]. Similarly, Indonisian Sign
Lamguage tool was developed by Zulkarnain Iyw [9]. Chinese Sign Language tool
has been started to develop in this year [11].

As it is highlighted above, each country needs its own sign language tool. With
respect to this idea, we aim to develop Turkish Sign Language. In existing systems,
a limited number of words have been translated into sign language by generat-
ing videos for each word. Our innovative approach aims to be open-source with
libraries, and additionally, with the collaboration of expert sign language inter-
preters, it continuously incorporates new sign language equivalents of words into
our library. Once added to the library, the chatbot is enabled to interpret new
words.

3. Method and Application Development Stage

For this study, we first searched similar research papers and tools to discover
what is missing and our requirements. Figure 1 represents the main taken steps to
develop this study. The methods employed in our project are as follows:

• We aim to create a sign language recognition library using image processing
techniques. Through this library, a dataset will be generated by captur-
ing images using a camera and associating them with their corresponding
words.

• We plan to develop a mobile application and integrate it with artificial
intelligence. By combining the mobile application with AI capabilities, our
goal is to create a real-time sign language translation application.

• The dataset used in the model will be created using everyday Turkish words
that are commonly used.

• The model will be trained using the Mediapipe framework, which will record
the instantaneous images of the movements and create a dataset.

• The dataset will be generated by recording the instantaneous images of the
movements using the Mediapipe framework.
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Figure 1. Methodological Steps

4. Results with Users’ Interactions on the Application

The model has worked with four Turkish words. The dataset will be extended
with more Turkish words, especially the most frequent words used in a person’s daily
life. The accuracy resulting from the confusion matrix is 96,3%. Once the model has
been implemented, our application recognizes and converts sign languages to texts
in real-time. The application has been affected by various factors such as lighting
and background. Therefore, we needed good lighting and a plain background that
does not have objects on the box that reads hand gestures for receiving successful
results.

We perform the training and testing stages of a model by utilizing the Mediapipe
library to create the Hands and Face model, which involves addressing the process
of mapping words to their corresponding signs in sign language, creating folders for
Turkish words, and generating significant numerical values that represent body or
facial keypoints. Subsequently, we employ the Long-Short Term Memory (LSTM)
model to convert the representation of Turkish words in sign language into numeri-
cal values, enabling us to construct a language processing or time series model. We
evaluate the performance of the trained model by testing its predictions against
real-time data. Figure 2, Figure 3, and Figure 4 illustrate the different results of
this project. The tool is able to recognize three words in its current version. How-
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Figure 2. ”Tesekkürler” Translate

Figure 3. ”Merhaba” Translate

Figure 4. ”Nasilsin” Translate
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ever, we still work on it to enrich our dictionary. The aimed dictionary will cover
as much as possible daily life activities. We also intent to use different techniques
to increase the success rate of our application.
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SPACELIKE f-RECTIFYING CURVES IN MINKOWSKI SPACE

E4
1

HÜLYA GÜN BOZOK AND ÖNDER KORKMAZ

Abstract. In this paper, spacelike f -rectifying curves are introduced in Minkowski

Space E4
1 and using this definition some characterizations and classifications

are researched in Minkowski Space E4
1 .

1. Introduction

Rectifying curve is a curve whose position vector always lie in its rectifying
plane[1]. In Minkowski space the rectifying curves have similar geometric properties
as in the Euclidean space. After the definition of rectifying curves many studies
are done in Minkowski space [2, 3, 4]. Similar to this definition, an f -rectifying
curve definition was given by Iqbal and Sengupta in both Euclidean space and
Minkowski space. Firstly they studied f -Rectifying Curves in Minkowski space such
that Non-null (spacelike or timelike) f -rectifying curves in the Minkowski 3-space
[5], null (lightlike) f -rectifying curves in the Minkowski 3-space [6] and differential
geometric aspects of lightlike f-rectifying curves in Minkowski space-time [7]. Then
they researched f -rectifying curves in Euclidean n-Space [8] and Euclidean 4-space
[9]. Moreover some new characterizations of f -rectifying curves respect to type-2
quaternionic frame in R4 is investigated in [10].

In this study in analogy to rectifying curve we define spacelike f -rectifying curve
in Minkowski space E4

1 as a spacelike curve γ parametrized by its arclength s such
that its f -position vector field γf introduced by γf (s) =

∫
f (s) dγ always lies its

rectifying plane, here f is a nowhere vanishing integrable function with parameter
s. Then using this definition of spacelike f -rectifying curve we characterize and
classify these curves in E4

1 .

2. Preliminaries

Minkowski space-time E4
1 is an 4-dimensional pseudo-Euclidean space on which

metric has index ν = 1 and defined by the Lorentzian inner product

(2.1) 〈v, w〉 = −v1w1 + v2w2 + v3w3 + v4w4

Date: July, 8, 2023.
2000 Mathematics Subject Classification. 53B30,53C40,53C50.
Key words and phrases. Rectifying curve, Minkowski space-time , Spacelike curve.

85
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where v = (v1, v2, v3, v4) and w = (w1, w2, w3, w4) are vectors in E4
1 . Any arbitrary

vector v is called timelike, lightlike or spacelike if the Lorentzian inner product
〈v, v〉 is negative definite, zero or positive definite, respectively. The norm of a

vector v in E4
1 is given by ‖v‖ =

√
〈v, v〉 and if ‖v‖ = 1 the vector v is called unit

vector in E4
1 . Also the pseudo-sphere of unit radius with centre at the origin in E4

1

can be given by

S3
1(1) =

{
v ∈ E4

1 : 〈v, v〉 = 1
}

Let γ : I −→ E4
1 be an arbitrary curve in E4

1 and γ′ (t) denote its velocity vec-
tor.Then γ is spacelike if and only if γ′ (t) is spacelike i.e. 〈γ′, γ′〉 > 0, γ is timelike
if and only if γ′ (t) is timelike i.e. 〈γ′, γ′〉 < 0 and γ is null(lightlike) if and only if
γ′ (t) is null i.e. 〈γ′, γ′〉 = 0.
Let {T,N,B1, B2} the moving Frenet frame along the curve γ (s) in the space E4

1

, consisting of the tangent, the principal normal, the binormal and the trinormal
vector fields respectively. For an arbitrary spacelike curve γ (s) in E4

1 the following
Frenet formulae can be given

i. If γ (s) be a spacelike curve with timelike principal normal then Frenet
equations are

T ′ (s)
N ′ (s)
B′

1 (s)
B′

2 (s)

 =


0 k1 0 0
k1 0 k2 0
0 k2 0 k3
0 0 −k3 0



T (s)
N (s)
B1 (s)
B2 (s)

(2.2)

ii. If γ (s) be a spacelike curve with timelike binormal then Frenet equations
are 

T ′ (s)
N ′ (s)
B′

1 (s)
B′

2 (s)

 =


0 k1 0 0
−k1 0 k2 0

0 k2 0 k3
0 0 k3 0



T (s)
N (s)
B1 (s)
B2 (s)

(2.3)

iii. If γ (s) be a spacelike curve with timelike trinormal then Frenet equations
are 

T ′ (s)
N ′ (s)
B′

1 (s)
B′

2 (s)

 =


0 k1 0 0
−k1 0 k2 0

0 −k2 0 k3
0 0 k3 0



T (s)
N (s)
B1 (s)
B2 (s)

(2.4)

where k1, k2, k3 are first, second and third curvatures of the spacelike curve respec-
tively [11].

3. Spacelike f-rectifying curve in E4
1

Let γ : I −→ E4
1 be a unit speed spacelike curve with Frenet aparatus

{Tγ , Nγ , Bγ1 , Bγ2 , kγ1 , kγ2 , kγ3}. Then γ : I −→ E4
1 is a rectifying curve in E4

1 if
and only if its position vector always lies in its rectifying space, i.e., if and only if
its position vector is denoted by

γ (s) = λ (s)Tγ (s) + µ1 (s)Bγ1 (s) + µ2 (s)Bγ2 (s)

for all s ∈ I, where λ, µ1, µ2 : I −→ R are differentiable functions in parameter
s.[12]. Let f : I −→ R be a non-zero integrable function in parameter s. Then



SPACELIKE f-RECTIFYING CURVES 87

f -position vector field of the curve γ in E4
1 is expressed by γf and defined by

(3.1) γf (s) =

∫
f (s) dγ

for all s ∈ I. Here the integral sign is used in this sense that after differentiating
previous equation, the following equation can be found

γ′f (s) = f (s)Tγ (s)

for all s ∈ I.

Definition 3.1. Let γ : I −→ E4
1 be a unit speed spacelike curve with Frenet

aparatus {Tγ , Nγ , Bγ1 , Bγ2 , kγ1 , kγ2 , kγ3} and f : I −→ R be a nowhere vanish-
ing integrable function in parameter s with at least twice differentiable primitive
function F . Then the curve γ is called spacelike f -rectifying curve in E4

1 if its
f -position vector field γf =

∫
fdγ always lies in its rectifying plane of γ in E4

1 , i.e.,
if its f -position vector field γf =

∫
fdγ can be denoted as,

(3.2) γf (s) = λ (s)Tγ (s) + µ1 (s)Bγ1 (s) + µ2 (s)Bγ2 (s)

for all s ∈ I, where λ, µ1, µ2 : I −→ R are smooth functions in parameter s.

4. Characterizations of Spacelike f-rectifying curve in E4
1

Theorem 4.1. Let γ : I −→ E4
1 be a unit speed spacelike f -rectifying curve

in E4
1 parametrized by the arclength function s and having non-zero curvatures

kγ1 , kγ2 , kγ3 . Moreover assume that f : I −→ R be a nowhere vanishing integrable
function in parameter s with primitive function F ( i.e. F ′ (s) = f (s) for all s ∈ I).
Then up to isometries of E4

1 , γ is congruent to an f -rectifying curve in E4
1 if and

only if the following equations hold;

i. For spacelike f -rectifying curve with timelike binormal

(4.1)
d

ds

 d
ds

(
kγ1 (s)

kγ2(s)
F (s)

)
kγ3 (s)

− kγ1 (s) kγ3 (s)

kγ2 (s)
F (s) = 0

ii. For spacelike f -rectifying curve with timelike trinormal

(4.2) − d

ds

 d
ds

(
kγ1 (s)

kγ2(s)
F (s)

)
kγ3 (s)

+
kγ1 (s) kγ3 (s)

kγ2 (s)
F (s) = 0

iii. For spacelike f -rectifying curve with timelike principal normal

(4.3) − d

ds

 d
ds

(
kγ1 (s)

kγ2(s)
F (s)

)
kγ3 (s)

− kγ1 (s) kγ3 (s)

kγ2 (s)
F (s) = 0

for all s ∈ I.

Proof. Suppose that γ : I −→ E4
1 be a unit speed spacelike f -rectifying curve with

timelike binormal in E4
1 parametrized by the arclength function s and having non-

zero curvatures kγ1 , kγ2 , kγ3 . Then for some smooth functions λ, µ1, µ2 : I −→ R
we have f -position vector which satisfied the equation (3.2). So if we differentiate
the equation (3.2) and considering the equation (2.3) we find,

f (s)Tγ (s) = λ′ (s)Tγ (s) + (λ (s) kγ1 (s) + µ1 (s) kγ2 (s))Nγ (s)

+ (µ′
1 (s) + µ2 (s) kγ3 (s))Bγ1 (s) + (µ′

2 (s) + µ1 (s) kγ3 (s))Bγ2 (s)(4.4)
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for all s ∈ I. Equating the coefficients of equation (4.4) we obtain,

λ′ (s) = f (s) ,

λ (s) kγ1 (s) + µ1 (s) kγ2 (s) = 0 ,

−µ′
1 (s)− µ2 (s) kγ3 (s) = 0 ,(4.5)

µ′
2 (s) + µ1 (s) kγ3 (s) = 0 .

Therefore from the firs equations of (4.5) and after some calculations we get

λ (s) = F (s) ,

µ1 (s) = −kγ1 (s)

kγ2 (s)
F (s) ,(4.6)

µ2 (s) =
1

kγ3

d

ds

(
kγ1 (s)

kγ2 (s)
F (s)

)
.

Conversely we suppose that γ : I −→ E4
1 be a unit speed spacelike curve with

timelike binormal in E4
1 parametrized by the arclength function s and having non-

zero curvatures kγ1 , kγ2 , kγ3 and f : I −→ R be a non-zero integrable function in
parameter s and the equation (4.1) is satisfied. Let define a vector field V along γ
by

V (s) = γf (s)− F (s)Tγ (s) +
kγ1 (s)

kγ2 (s)
F (s)Bγ1 (s)

− 1

kγ3

d

ds

(
kγ1 (s)

kγ2 (s)
F (s)

)
Bγ2 (s)(4.7)

for all s ∈ I. Differentiating (4.7) and using (2.3) and (4.1) we obtain V ′ (s) = 0
which implies that V is constant along γ. Hence up to isometries of E4

1 , γ is
congruent to an spacelike f -rectifying curve in E4

1 . The equation (4.2) and (4.3)
can be found by using the equations (2.2), (2.4) and the similar method above. So,
the proof is completed. �

Remark 4.2. For a spacelike f -rectifying curve in E4
1 if all of its curvature functions

kγ1 , kγ2 , kγ3 are non-zero constants, let’s say kγ1 = a1 6= 0, kγ2 = a2 6= 0, kγ3 = a3 6=
0 for all s ∈ I, then we have

i. For a spacelike f -rectifying curve with timelike binormal

(4.8) F ′′ (s)− a23F (s) = 0 ,

ii. For a spacelike f -rectifying curve with timelike trinormal

(4.9) −F ′′ (s) + a23F (s) = 0 ,

iii. For a spacelike f -rectifying curve with timelike principal normal

(4.10) −F ′′ (s)− a23F (s) = 0 .

If f is non-zero constant or linear, then from (4.8),(4.9) and (4.10) we find a3 = 0
which is a contradiction. Again, if f is non-linear then from (4.8),(4.9) and (4.10)
we find a3 is non-constant which is also a contradiction.

So the following theorem can be given;
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Theorem 4.3. Let γ : I −→ E4
1 be a unit speed spacelike f -rectifying curve

in E4
1 parametrized by the arclength function s and having non-zero curvatures

kγ1 , kγ2 , kγ3 . Then γ is not congruent to an f -rectifying curve for any choice of f
if and only if all of its curvatures kγ1 , kγ2 , kγ3 are constants.

Theorem 4.4. Let γ : I −→ E4
1 be a unit speed spacelike f -rectifying curve

in E4
1 parametrized by the arclength function s and having non-zero curvatures

kγ1 , kγ2 , kγ3 . Also let f : I −→ R be a nowhere vanishing integrable function in
parameter s with primitive function F . If γ is a spacelike f -rectifying curve in E4

1

then the following equations are satisfied,

i. For spacelike f -rectifying curve with timelike binormal (timelike trinormal
or timelike principal normal) the norm function ρ = ‖γf‖ is given

ρ (s) =
√
F 2 (s) + c2

for all s ∈ I, where c is a non-zero constant.
ii. For spacelike f -rectifying curve with timelike binormal (timelike trinormal

or timelike principal normal) the tangential component 〈γf , Tγ〉 of the f -
position vector γf of γ can be given by,

〈γf , Tγ〉 = F (s)

iii. For spacelike f -rectifying curve with timelike principal normal (timelike tri-

normal or timelike principal normal) the normal component γ
Nγ
f of the

f -position vector γf of γ has constant length and the norm function is non-
constant

iv. For spacelike f -rectifying curve with timelike binormal (timelike trinormal
or timelike principal normal) the first component 〈γf , Bγ1〉 and the second
component 〈γf , Bγ2〉 of the f -position vector γf of γ can be given by,

〈γf , Bγ1〉 =
kγ1 (s)

kγ2 (s)
F (s)

〈γf , Bγ2〉 =
1

kγ3 (s)

d

ds

(
kγ1 (s)

kγ2 (s)
F (s)

)
for all s ∈ I.
Conversely γ : I −→ E4

1 be a unit speed spacelike curve in E4
1 parametrized by the

arclength function s and having non-zero curvatures kγ1 , kγ2 , kγ3 . Also let f : I −→
R be a nowhere vanishing integrable function in parameter s with primitive function
F ( i.e. F ′ (s) = f (s) for all s ∈ I). If any one of the statements (i),(ii),(iii),(iv)
is true then γ is a unit speed spacelike f -rectifying curve in E4

1 .

Proof. Suppose that γ : I −→ E4
1 be a unit speed spacelike f -rectifying curve with

timelike binormal in E4
1 parametrized by the arclength function s and having non-

zero curvatures kγ1 , kγ2 , kγ3 . Then for some differential functions λ, µ1, µ2 : I −→ R
with arclength parameter s the f -position vector γf of γ in E4

1 satisfies equation
(3.2) and from (4.5) and (4.6) we find

(4.11) −µ1µ
′
1 + µ2µ

′
2 = 0

for all s ∈ I. If we integrate the equation (4.12) we get

(4.12) −µ2
1 + µ2

2 = c2

where c is a non-zero constant.So we have
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i. Considering (3.2),(4.6) and (4.12) we get

ρ2 = ‖γf (s)‖2 = 〈γf , γf 〉 = F 2 (s) + c2

then,

ρ (s) =
√
F 2 (s) + c2

where c is a non-zero constant.
ii. Using (3.2) and (4.6) we find

〈γf (s) , Tγ (s)〉 = λ (s) = F (s) .

iii. Let α : J −→ E4
1 be an arbitrary curve then its f -position vector αf can

be written as follows,

αf (t) = ν (t)Tγ (t) + α
Nγ
f (t) , t ∈ J,

for some smooth function ν : I −→ E4
1 , here α

Nγ
f (t) is the normal com-

ponent of αf . If γ is a spacelike f -rectifying curve in E4
1 then satisfies

equation (3.2) so we can write

γ
Nγ
f (s) = µ1 (s)Bγ1 (s) + µ2 (s)Bγ2 (s) .

Then we get ∥∥∥γNγf (s)
∥∥∥ =

√
−µ2

1 (s) + µ2
2 (s)

for all s ∈ I. From the above equation we obtain
∥∥∥γNγf (s)

∥∥∥ = c. So it

satisfies that γ
Nγ
f has constant length. Moreover using the statement (i) we

have ρ = ‖γf‖ is non constant.
iv. Considering (3.2)and (4.6), the first component 〈γf , Bγ1〉 of γf is given by

〈γf , Bγ1〉 = −µ1 (s) =
kγ1 (s)

kγ2 (s)
F (s)

and the first component 〈γf , Bγ1〉 of γf is given by

〈γf , Bγ2〉 = µ2 (s) =
1

kγ3 (s)

d

ds

(
kγ1 (s)

kγ2 (s)
F (s)

)
for all s ∈ I.

Conversely let γ : I −→ E4
1 be a unit speed spacelike curve in E4

1 parametrized
by the arclength function s and having non-zero curvatures kγ1 , kγ2 , kγ3 . Also
let f : I −→ R be a nowhere vanishing integrable function in parameter s with
primitive function F ( i.e. F ′ (s) = f (s) for all s ∈ I). Assume that the statement
(i) or (ii) is true such that if (i) is true we have

〈γf (s) , γf (s)〉 = F 2 (s) + c2

where c is a non-zero constant. If we differentiate the above equation we find

(4.13) 〈γf (s) , Tγ (s)〉 = F (s) .

differentiate again and considering (2.3) we have

〈γf (s) , Nγ (s)〉 = 0 .
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Therefore we can say that γ is a spacelike f -rectifying curve in E4
1 .

If (iii) is true we get
∥∥∥γNγf (s)

∥∥∥ = c, then we can write

γf (s) = F (s)Tγ (s) + γ
Nγ
f (s)

for all s ∈ I. Then we find

〈γf (s) , γf (s)〉 = 〈γf (s) , Tγ (s)〉2 + c2

and if we differentiate this and using (2.3) we have

〈γf (s) , Nγ (s)〉 = 0

for all s ∈ I. Therefore we can say that γ is a spacelike f -rectifying curve in E4
1 .

If (iv) is true we have

〈γf , Bγ1〉 =
kγ1 (s)

kγ2 (s)
F (s)(4.14)

〈γf , Bγ2〉 =
1

kγ3 (s)

d

ds

(
kγ1 (s)

kγ2 (s)
F (s)

)
(4.15)

for all s ∈ I.If we differentiate the equation (4.14) and using (2.3) we get

kγ2 〈γf (s) , Nγ (s)〉+ kγ3 〈γf (s) , Bγ2 (s)〉 =
d

ds

(
kγ1 (s)

kγ2 (s)
F (s)

)
and from the equation (4.15) and the above equation we calculate

〈γf (s) , Nγ (s)〉 = 0 .

Consequently γ is a spacelike f -rectifying curve in E4
1 . �

5. Classification of Spacelike f-rectifying curve in E4
1

Theorem 5.1. Let γ : I −→ E4
1 be a unit speed spacelike f -rectifying curve

in E4
1 parametrized by the arclength function s and having non-zero curvatures

kγ1 , kγ2 , kγ3 . Also let f : I −→ R be a nowhere vanishing integrable function in
parameter s with primitive function F ( i.e. F ′ (s) = f (s) for all s ∈ I). If γ is
a spacelike f -rectifying curve in E4

1 iff its f -position γf is satisfied the following
equation,

(5.1) γf (t) = c sec

(
t+ arctan

(
F (s0)

c

))
α (t)

for all t ∈ I, where c is a positive constant, s0 ∈ I and α : J −→ S3
1(1) is a unit

speed curve having t : I −→ J as arclength function based at s0.

Proof. Suppose that γ : I −→ E4
1 be a unit speed spacelike f -rectifying curve in

E4
1 and having non-zero curvatures kγ1 , kγ2 , kγ3 . Then using theorem 4.3. we have,

(5.2) ρ (s) =
√
F 2 (s) + c2

for all s ∈ I and where c is a positive constant. If we define a new curve α in E4
1 by

(5.3) α (s) =
1

ρ (s)
γf (s) .

Therefore we obtain

(5.4) 〈α (s) , α (s)〉 = 1
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for all s ∈ I. So α is a curve in S3
1 . If we differentiate above equation we have

(5.5) 〈α (s) , α′ (s)〉 = 0 .

Moreover using the equations (5.2) and (5.3) we find

(5.6) γf (s) = α (s)
√
F 2 (s) + c2 .

Differentiating (5.6) and considering (5.4) and (5.5) we obtain

〈α′ (s) , α′ (s)〉 =
c2f2 (s)

(F 2 (s) + c2)
2 .

Also we have

‖α′ (s)‖ =
cf (s)

F 2 (s) + c2

for all s ∈ I. Assume that t : I −→ J be the arc length function of α based at
s0 ∈ I given by

t =

∫ s

s0

‖α′ (u)‖ du.

Then we get

t = arctan

(
F (s)

c

)
− arctan

(
F (s0)

c

)
.

Therefore we obtain

(5.7) F (s) = c tan

(
t+ arctan

(
F (s0)

c

))
.

Moreover using the equations (5.6) and (5.7) we have

(5.8) γf (t) =
c

cos
(
t+ arctan

(
F (s0)
c

))α (t) .

for all t ∈ J . Conversely let γ : I −→ E4
1 be a unit speed spacelike curve in E4

1

given by (5.1), s0 ∈ I and α : J −→ S3
1 is a unit speed curve with t : I −→ J as

arclength function based at s0. If we differentiate (5.1) we get

(5.9) γ′f (t) =
c sin

(
t+ arctan

(
F (s0)
c

))
cos2

(
t+ arctan

(
F (s0)
c

))α (t) +
c

cos
(
t+ arctan

(
F (s0)
c

))α′ (t) .

for all t ∈ J . We know that α is a unit speed curve in the unit sphere S3
1(1) so

we obtain 〈α′ (t) , α′ (t)〉 = 1, 〈α (t) , α (t)〉 = 1 and 〈α (t) , α′ (t)〉 = 0 for all t ∈ J .
Then consider the equations (5.1) and (5.9) we have

〈γf (t) , γf (t)〉 =
c2

cos2
(
t+ arctan

(
F (s0)
c

)) ,

〈
γf (t) , γ′f (t)

〉
=

c2 sin
(
t+ arctan

(
F (s0)
c

))
cos3

(
t+ arctan

(
F (s0)
c

)) ,(5.10)

〈
γ′f (t) , γ′f (t)

〉
=

c2

cos4
(
t+ arctan

(
F (s0)
c

)) .
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If we put

t = arctan

(
F (s)

c

)
− arctan

(
F (s0)

c

)
.

then s becomes arclength parameter of γ and we get

〈γf (s) , γf (s)〉 =
c2

cos2
(

arctan
(
F (s)
c

))
〈
γf (s) , γ′f (s)

〉
=

c2 sin
(

arctan
(
F (s)
c

))
cos3

(
arctan

(
F (s)
c

))(5.11)

〈
γ′f (s) , γ′f (s)

〉
=

c2

cos4
(

arctan
(
F (s)
c

))
for all s ∈ I. The normal component γ

Nγ
f of γf can be given by

〈
γ
Nγ
f (s) , γ

Nγ
f (s)

〉
= 〈γf (s) , γf (s)〉 −

〈
γf (s) , γ′f (s)

〉2
〈
γ′f (s) , γ′f (s)

〉
for all s ∈ I. Then considering the equation (5.11) in above equation we obtain〈

γ
Nγ
f (s) , γ

Nγ
f (s)

〉
=
∥∥∥γNγf (s)

∥∥∥2 = c2

for all s ∈ I. Consequently the normal component γ
Nγ
f of γf has a constant length.

Also we have

ρ (s) =
√
〈γf (s) , γf (s)〉 =

c

cos
(

arctan
(
F (s)
c

))
for all s ∈ I and it is non constant. Then applying theorem 4.3 we can say that γ
is a spacelike f -rectifying curve in E4

1 . �
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