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PREFACE 
 
Dear Conference Participants, 
 
Welcome to the Eighth International Conference on Intuitionistic Fuzzy Sets and Contemporary 
Mathematics (IFSCOM-2022). The aim of our conference is to bring together significant 
mathematician researchers with different mathematical interests from all over the world. This 
conference is one of the leading international conferences for presenting novel and fundamental 
advances in different fields of Mathematics. We want to offer a suitable environment where 
researchers can exchange ideas, discuss their recent research findings, and collaborate to produce 
new different ideas. We are pleased to have exceptional researchers in different areas including 
Algebra, Analysis, Applied Mathematics, Geometry, Graph Theory, Multi-Valued Mathematics, 
Topology, Statistics, and other fields related to engineering sciences and educational sciences, 
which are common fields of Mathematics. 
 
It is also the aim of the conference that young researchers and graduate students engage in such 
exceptional event. Their inputs and participation in such event should encourage them to do more 
research activities in the future. 
 
We would like to thank all participating scientists who made the most important contribution to this 
conference. Their contributions are the key ingredient to the success of the conference.  
We are sincerely grateful to all participants who really value our work and efforts that we develop 
every year to improve this conference. We are so proud to reach this respected level of success. 
Indeed, this was not possible without the outstanding work, efforts and supports from the members 
of the conference team: Scientific Committee Members, Referee Committee Members and Local 
Organizing Committee Members. 
 
We are very pleased to present the abstracts of the 8th International Conference on IFS and 
Contemporary Mathematics IFSCOM-2022. The conference was completed with 126 participants 
and 143 papers. The distribution of research papers delivered by the participants are classified by 
the following fields: Applied Mathematics (33), Algebra (29), Geometry (17), Topology (16), 
Analysis (14) Statistics (6) and other fields (23) such as Financial Mathematics, Fuzzy Sets, Game 
Theory, Geometric Computer Aided Design, Graph Theory, Intuitionistic Fuzzy, Machine Learning 
and Mathematical Modeling. 
 
Ten invited speakers attended the conference to share information about current studies in different 
fields with our participants. We have 126 participants participated from 19 countries: Algeria, 
Australia, Azerbaijan, Bulgaria, France, Greece, India, Indonesia, Kazakhstan, Kuwait, 
Kyrgyzstan, Mexico, Morocco, North Macedonia, Oman, Russia, Serbia, South Africa and Turkey. 
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This proceeding booklet contains the titles and proceedings of presented talks during the 
conference. Many submitted articles to this conference are considered in the following listed 
journals and books: 
 
Journals: 
• Journal of Universal Mathematics (JUM) 
• Notes on Intuitionistic Fuzzy Sets (Notes on IFS) 
• Sakarya University Journal of Science 
 
Books: 
•IFSCOM2022 Abstract Book with an ISBN number 
•IFSCOM2022 Proceeding Book with an ISBN number  
•SPRINGER Book 
 
We wish that all participants participate in all sessions, ask questions and be active in the 
conference. We also wish that this conference is a great place where you meet new friends, gain 
some knowledge, and get yourself involved in some research collaborations. 
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A GENERAL FACTOR THEOREM ON MATRIX SUMMABILITY

BAĞDAGÜL KARTAL

0000-0001-6223-0838

Abstract. This article is devoted to the absolute summability of the se-

ries
∑

anλnXn. The known theorem of Sulaiman [1], which deals with |A|k
summability, is generalized. The sufficient conditions for the φ − | A, β; δ |k
summability of the series

∑
anλnXn are established.

1. Introduction

Let
∑

an be an infinite series with its partial sums (sn). Let A = (anv) be a
normal matrix, i.e., a lower triangular matrix of non-zero diagonal entries and

An(s) =

n∑
v=0

anvsv, n = 0, 1, ...

Let (φn) be any sequence of positive real numbers. The series
∑

an is said to be
summable φ− | A, β; δ |k, k ≥ 1, δ ≥ 0 and β is a real number, if (see [2])

∞∑
n=1

φβ(δk+k−1)
n |An(s)−An−1(s)|k < ∞.

For β = 1, δ = 0 and φn = n, φ − | A, β; δ |k summability reduces to the |A|k
summability (see [3]).

2. Known Results

In [1], Sulaiman has obtained the following results.

Lemma 1. If
∑

n−1λn is convergent, then (λn) is non-negative and decreasing,
λn log n = O(1), and n∆λn = O(1/(logn)2).

Lemma 2. If
∑

n−1λnXn is convergent, and the conditions

n∆λn = O(λn) as n → ∞,(1)

Date: June 16, 2022.
2000 Mathematics Subject Classification. 40D15, 40F05, 40G99.
Key words and phrases. Absolute summability, Infinite series, Summability factors.
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2 BAĞDAGÜL KARTAL

n∑
v=1

λv = O(nλn) as n → ∞(2)

are satisfied, then

nλn∆Xn = O(1),(3)

m∑
n=1

λn∆Xn = O(1) as m → ∞,(4)

m∑
n=1

nλn∆
2Xn = O(1) as m → ∞.(5)

Let A = (anv) be a normal matrix, then two lower semimatrices Ā = (ānv) and

Â = (ânv) are defined as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ...

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ...

An(s) =

n∑
v=0

ānvav and ∆̄An(s) =

n∑
v=0

ânvav.(6)

Theorem 1. Let (λn), (Xn) be two sequences such that
∑

n−1λnXn is convergent,
and the conditions (1) and (2) are satisfied. Let A = (anv) be a normal matrix with
non-negative entries satisfying

ān0 = 1, n = 0, 1, ...,(7)

an−1,v ≥ anv, for n ≥ v + 1,(8)

nann = O (1) , 1 = O (nann)(9)

n−1∑
v=1

avvânv = O(ann).(10)

If tkv = O(1)(C, 1), where tv = 1
v+1

∑v
r=1 rar, then the series

∑
anλnXn is

summable |A|k , k ≥ 1.

3. Main Result

The concern of this paper is to get a more general theorem on φ − |A, β; δ|k
summability method. For more results on the topic, see [4–17].

Theorem 2. Let (λn), (Xn) be two sequences such that
∑

n−1λnXn is convergent,
and the conditions (1), (2), (7)-(10) are satisfied. Let (φn) be any sequence such
that

φnann = O(1), 1 = O(φnann)

m+1∑
n=v+1

φβ(δk+k−1)−k+1
n |∆v (ânv) | = O

(
φβ(δk+k−1)−k
v

)
as m → ∞,



A GENERAL FACTOR THEOREM ON MATRIX SUMMABILITY 3

m+1∑
n=v+1

φβ(δk+k−1)−k+1
n ân,v+1 = O

(
φβ(δk+k−1)−k+1
v

)
as m → ∞

n−1∑
v=1

avvân,v+1 = O(ann).

If φ
β(δk+k−1)−k+1
v tkv = O(1)(C, 1), where (tv) as in Theorem 1, then the series∑

anλnXn is summable φ− | A, β; δ |k, k ≥ 1, δ ≥ 0 and −β(δk + k − 1) + k > 0.

4. Proof of Theorem 2

Let θn = λnXn and (Mn) be the A-transform of the series
∑

anθn. By (6), we
get

∆̄Mn =

n∑
v=1

ânvθv
v

vav.

Abel’s transformation implies that

∆̄Mn =

n−1∑
v=1

∆v

(
ânvθv
v

) v∑
r=1

rar +
ânnθn
n

n∑
v=1

vav

=
n+ 1

n
annθntn +

n−1∑
v=1

∆v (ânv) θvtv +

n−1∑
v=1

ân,v+1∆θvtv +

n−1∑
v=1

ânvθvtv
v

= Mn,1 +Mn,2 +Mn,3 +Mn,4.

By using the facts that φnann = O(1), nann = O(1), and θk−1
n = O(1), we have

m∑
n=1

φβ(δk+k−1)
n | Mn,1 |k =

m∑
n=1

φβ(δk+k−1)
n

∣∣∣∣n+ 1

n
annθntn

∣∣∣∣k
= O(1)

m∑
n=1

φβ(δk+k−1)
n aknnθ

k
nt

k
n

= O(1)

m∑
n=1

φβ(δk+k−1)−k+1
n (φnann)

k−1
annθ

k
nt

k
n

= O(1)

m∑
n=1

φβ(δk+k−1)−k+1
n annθ

k
nt

k
n

= O(1)

m∑
n=1

φ
β(δk+k−1)−k+1
n θnθ

k−1
n tkn

n

= O(1)

m∑
n=1

φ
β(δk+k−1)−k+1
n θnt

k
n

n
.
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Applying Abel’s transformation to the above sum, we achieve

m∑
n=1

φβ(δk+k−1)
n | Mn,1 |k = O(1)

m−1∑
n=1

(
n∑

r=1

φβ(δk+k−1)−k+1
r tkr

)
∆

(
θn
n

)

+ O(1)

(
m∑

n=1

φβ(δk+k−1)−k+1
n tkn

)
θm
m

= O(1)

m−1∑
n=1

∆θn +O(1)

m−1∑
n=1

λnXn

n
+O(1)λmXm

= O(1) as m → ∞,

by using the hypotheses of Theorem 2 and Lemma 2. Then, by using Hölder’s
inequality, we obtain

m+1∑
n=2

φβ(δk+k−1)
n | Mn,2 |k ≤

m+1∑
n=2

φβ(δk+k−1)
n

n−1∑
v=1

|∆v (ânv)| θkv tkv

(
n−1∑
v=1

|∆v (ânv)|

)k−1

≤
m+1∑
n=2

φβ(δk+k−1)−k+1
n (φnann)

k−1
n−1∑
v=1

|∆v (ânv)| θkv tkv

= O(1)

m∑
v=1

θkv t
k
v

m+1∑
n=v+1

φβ(δk+k−1)−k+1
n |∆v (ânv)|

= O(1)

m∑
v=1

φβ(δk+k−1)−k+1
v avvθ

k
v t

k
v

= O(1) as m → ∞,

as in Mn,1.
Again using Hölder’s inequality, and the conditions of Theorem 2, we get

m+1∑
n=2

φβ(δk+k−1)
n | Mn,3 |k ≤

m+1∑
n=2

φβ(δk+k−1)
n

n−1∑
v=1

ân,v+1(∆θv)
ktkva

1−k
vv

(
n−1∑
v=1

avvân,v+1

)k−1

= O(1)
m+1∑
n=2

φβ(δk+k−1)−k+1
n (φnann)

k−1
n−1∑
v=1

ân,v+1(∆θv)
ktkva

1−k
vv

= O(1)

m∑
v=1

(∆θv)
ktkva

1−k
vv

m+1∑
n=v+1

φβ(δk+k−1)−k+1
n ân,v+1

= O(1)

m∑
v=1

φβ(δk+k−1)−k+1
v (∆θv)

ktkvv
k−1

= O(1)

m∑
v=1

φβ(δk+k−1)−k+1
v (∆θv)t

k
v

= O(1)

m∑
v=1

φβ(δk+k−1)−k+1
v tkv(∆λvXv + λv+1∆Xv)

= O(1)

m∑
v=1

φβ(δk+k−1)−k+1
v tkv∆λvXv +O(1)

m∑
v=1

φβ(δk+k−1)−k+1
v tkvλv+1∆Xv.
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For the first part, using the condition (1), and using Abel’s transformation, we get

m∑
v=1

φβ(δk+k−1)−k+1
v tkv∆λvXv = O(1)

m−1∑
v=1

(
v∑

r=1

φβ(δk+k−1)−k+1
r tkr

)
∆

(
λvXv

v

)

+ O(1)

(
m∑

v=1

φβ(δk+k−1)−k+1
v tkv

)
λmXm

m

= O(1)

m−1∑
v=1

λvXv

v
+O(1)

m−1∑
v=1

∆λvXv +O(1)

m−1∑
v=1

λv+1∆Xv

+ O(1)λmXm

= O(1) as m → ∞.

For the second part, again using Abel’s transformation, and the conditions (1), (4),
(5), (3), we achieve

m∑
v=1

φβ(δk+k−1)−k+1
v tkvλv∆Xv =

m−1∑
v=1

(
v∑

r=1

φβ(δk+k−1)−k+1
r tkr

)
∆(λv∆Xv)

+

(
m∑

v=1

φβ(δk+k−1)−k+1
v tkv

)
λm∆Xm

= O(1)

m−1∑
v=1

λv∆Xv +

m−1∑
v=1

vλv+1∆
2Xv +O(1)mλm∆Xm

= O(1) as m → ∞.

Eventually, we get
∑m+1

n=2 φ
β(δk+k−1)
n | Mn,3 |k= O(1) as m → ∞.

Finally, as in Mn,1, we obtain

m+1∑
n=2

φβ(δk+k−1)
n | Mn,4 |k ≤

m+1∑
n=2

φβ(δk+k−1)
n

n−1∑
v=1

(
1

v

)k

ânvθ
k
v t

k
va

1−k
vv

(
n−1∑
v=1

avvânv

)k−1

= O(1)
m+1∑
n=2

φβ(δk+k−1)−k+1
n (φnann)

k−1
n−1∑
v=1

ânvθ
k
v t

k
vavv

= O(1)

m∑
v=1

θkv t
k
vavv

m+1∑
n=v+1

φβ(δk+k−1)−k+1
n ânv

= O(1)

m∑
v=1

φβ(δk+k−1)−k+1
v avvθ

k
v t

k
v = O(1) as m → ∞.

Therefore,
∑∞

n=1 φ
β(δk+k−1)
n | Mn,r |k< ∞ for r = 1, 2, 3 and r = 4 are obtained,

and the proof of Theorem 2 is finished.

5. Conclusions

If we take β = 1, δ = 0 and φn = n, Theorem 2 reduces to Theorem 1. In
addition to this, if we take β = 1, then we get a theorem which is already proved
in [18].
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A SCHRÖDER POLYNOMIAL SOLUTION TO NONLINEAR

MICRO-ELECTROMECHANICAL OSCILLATOR EQUATION

ÖMÜR KIVANÇ KÜRKÇÜ

0000-0002-3987-7171

Abstract. This study is dedicated to solving a quadratic nonlinear differen-

tial equation arising in the micro-electromechanical oscillator model by means
of the matrix-colllocation method based on the Schröder polynomial. The

method essentially generates a fundamental matrix equation made up of the

matrix expansions of the linear and nonlinear terms of the model using the
collocation points. With the elimination of this equation along with the initial

conditions, the desired numerical solution is immediately obtained. For sake of
overseeing the efficiency and precision of the method, some obtained solutions

are differently established according to an excitation parameter. To do this,

numerical and graphical instruments are included. Upon investigation of the
outcomes, one can admit that the method is very proper to handle the model

in question.

1. Introduction

In recent years, nonlinear differential equations have continued to catch much
attention in the vast scientific models of mathematics, electricity, acoustics, physics,
equation of motion, fluid dynamics, mechanics, etc. [1, 2, 3]. One of which appears
in the micro-electromechanical oscillator model (MEOE) as second order, quadratic
and rational nonlinear differential equation exposed to magneto-static excitation,
which was previously studied in [4]. Essentially, it governs the physical motion of a
current-conveying wire and its schematic background is mathematically described
in [4].

In this study, by employing the matrix-collocation method endowed with the
Schröder polynomial, we shall consider a numerical solution of MEOE in the form
(see [4]):

Date: June 16, 2022.

2010 Mathematics Subject Classification. 65L60; 34C15.
Key words and phrases. Excitation parameter, Matrix-collocation method, Nonlinear oscilla-

tion, Schröder polynomial.
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(1) y′′(t) + y(t)− K

1− y(t)
= 0, t ∈ [0, T ], y(t) < 1,

subject to the homogeneous initial conditions

(2) y(0) = y′(0) = 0,

where K(> 0) is the excitation parameter, which determines the periodic solutions
of the system according to its threshold.

In case the problem (1)–(2) is solved via the proposed method, it can be smoothed
as

(3) y′′(t) + y(t)− y(t)y′′(t)− y2(t) = K, t ∈ [0, T ], y(t) < 1,

which transforms to a second order quadratic nonlinear differential equation.

A desired Schröder polynomial solution to Eq. (3) is processed as

(4) yN (t) =

N∑
n=0

anSn(t),

where an’s are the unknown coefficients that have to be determined by the method
and Sn(t) is the Schröder polynomial that is explicitly defined to be (see [5])

Sn (t) =

n∑
k=0

(−1)(n−k)

k + 1

(
2k

k

)(
n+ k

n− k

)
tk,

and whose first three elements possess

{S0(t), S1(t), S2(t)} =
{
1, t− 1, 2t2 − 3t+ 1

}
.

One can refer to [5] for more details about Schröder polynomial.

Thereby, our object is here to solve MEOE (3), stating its Schröder polynomial
solution by way of the matrix-collocation method.

2. Method of solution based on Schröder polynomial

In this section, the matrix-collocation method is proposed via the matrix expan-
sions of the linear and nonlinear terms at the collocation points. In doing so, let us
start with newly constructing the main matrix relation of the Schröder polynomial
solution (4) to Eq. (3), as

(5) y (t) = S(t)A,

where

S(t) =
[
S0(t) S1(t) · · · SN (t)

]
,

and
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A =
[
a0 a1 · · · aN

]T
,

The main matrix relation (5) of the differentiated form can be stated as

(6) y′ (t) = S′ (t)A and y′′ (t) = S′′ (t)A,

where

S′(t) =
[
S′
0(t) S′

1(t) · · · S′
N (t)

]
,

and

S′′(t) =
[
S′′
0 (t) S′′

1 (t) · · · S′′
N (t)

]
.

On the other hand, let us now construct the matrix relations of nonlinear terms in
Eq. (3). Using the matrix relations (5) and (6), it follows that

(7) [y (t) y′′ (t)] = S (t)S′′(t) A,

where

S′′(t) = diag
[
S′′(t)

]
(N+1)×(N+1)2

,

and

A =
[
a0A a1A · · · aNA

]T
1×(N+1)2

.

Analogously, the matrix relation for quadratic nonlinear term can be extracted as

(8)
[
y2 (t)

]
= S (t)S(t) A,

where

S(t) = diag[S(t)](N+1)×(N+1)2 .

Once the standard collocation points

ti =
Ti

N
, i = 0, 1, . . . , N, t0 = 0 < t1 < . . . < tN = T,

are inserted separately into the matrix relations (5)-(8), this leads to a fundamental
matrix equation{

S′′ (ti) + S (ti)
}
A−

{
S (ti)S

′′(ti) + S (ti)S(ti)
}
A = K,

or, briefly,

(9) WA+ZA = K ⇒ [W ; Z : K ] ,

where

W = S′′ + S, Z = −SS′′ − SS,

and
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K =
[
K K · · · K

]T
1×(N+1)

,

such that

S =


S(t0)

S(t1)
...

S(tN )

 =


S0(t0) S1(t0) · · · SN (t0)

S0(t1) S1(t1) · · · SN (t1)
...

...
. . .

...

S0(tN ) S1(tN ) · · · SN (tN )

 ,

S ′′ =


S′′(t0)

S′′(t1)
...

S′′(tN )

 =


S′′
0 (t0) S′′

1 (t0) · · · S′′
N (t0)

S′′
0 (t1) S′′

1 (t1) · · · S′′
N (t1)

...
...

. . .
...

S′′
0 (tN ) S′′

1 (tN ) · · · S′′
N (tN )

 ,

S = diag[S(ti)](N+1)×(N+1)2 , S
′′ = diag

[
S′′(ti)

]
(N+1)×(N+1)2

, i = 0, 1, . . . , N.

On the other hand, the matrix relations of the homogeneous initial conditions (2)
are established using the matrix relations (5) and (6), as

(10)

y (0) = S(0)A ≡ 0 ⇒ [U1; 0] ⇒
[
S0(0) S1(0) · · · SN (0) : 0

]
,

y′ (0) = S′(0)A ≡ 0 ⇒ [U2; 0] ⇒
[
S′
0(0) S′

1(0) · · · S′
N (0) : 0

]
.

As of this point of view, the augmented matrix system is now enabled to be stated
by the fundamental matrix equation (9) and the conditional matrix forms (10).
Indeed, this system is constructed by adding the conditional matrix forms (10) into
the places, from which the last two rows of W and Z are removed. Hence, the
augmented matrix system holds

[W ∗ ; Z∗ : K∗] ,

which can be readily eliminated by Solve command on Mathematica.

As soon as this system is solved, the unknown coefficients (4) are determined and
later, the Schröder polynomial solution is acquired.

3. Micro-electromechanical oscillator model

In this section, a micro-electromechanical oscillator (MEOE) model (3) is ap-
proximately treated by the Schröder matrix-collocation method with respect to N
and K. To do this, a computer program dependent upon the infrastructure of the
method is formed on Mathematica 13. Numerical and graphical illustrations are,
thus, precisely obtained.
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An Example
The approximate periodic solution (APS) of MEOE (3) was previously given by
(see [4])

y(t) =
(
1−

√
1− 4K

)
sin2

1

2

√ √
3− 12K − 4

√
1− 4K −

√
3√

3− 12K − 2
√
1− 4K − 2−

√
3
t

 .

Notice here that the Schröder polynomial solution and APS are tested through the
Mathematica solution, which is run by NDSolve command on Mathematica, since
it has no exact solution. This procedure yields the absolute errors corresponding
to the mentioned solutions. Therefore, the robust comparisons are made properly.

Consider MEOE (3) for different values of K(∈ (0, 0.15]). Implementing the pro-
posed method along with NDSolve module for various N and T , the Schröder poly-
nomial solutions are indicated in Figs. 1 and 2. Frankly, in Fig. 1, the Schröder
polynomial solution coincides well with the Mathematica solution for relatively high
K. Also, in Fig. 2, the Schröder polynomial solution follows the same profile as
the Mathematica solution, in spite of the fact that they are on long time interval
T = 5. For sake of comparison, Table 3 reveals that the the Schröder polynomial
solution is in very good agreement with APS. On the other hand, as N is increased,
the error function in Fig. 3 decays and this situation can also be noticed in Table
3. In addition, the CPU timing values in Table 3 show very remarkable amount of
time in seconds.

Figure 1. Consistent profile between Schröder polynomial and
Mathematica solutions versus K = 0.15 and T = 1.

4. Concluding Remarks

A Schröder matrix-collocation method has been introduced to solve MEOE (3),
establishing a sustainable solution form via the Schröder polynomial. The fun-
damental matrix equation has consistently worked out the method of solution for
different N and K. Thereby, the obtained solutions have achieved very good ap-
proximation to the Mathematica solution for both normal and long time intervals
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Figure 2. Consistent profile between Schröder polynomial and
Mathematica solutions versus K = 0.001 and T = 5.

Figure 3. Error profiles of the absolute error functions in terms
of N , K = 0.001 and T = 1.

ti N = 7 APS [4]

0.2 1.8239e–05 1.6623e–05

0.4 5.4594e–05 6.1493e–05

0.6 5.0969e–05 1.2055e–04

0.8 8.9203e–05 1.7344e–04

1.0 4.9651e–04 1.9784e–04
Table 1. Comparison of the absolute error values of the Schröder
polynomial solution and APS versus K = 0.15 and T = 1.

as in Figs. 1 and 2. It is also evident from Figs. 1 and 2 that the motion of a
solution has been affected due to the interference of the excitation parameter K
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ti N = 3 N = 4

0.2 1.4159e–07 5.0164e–09

0.4 6.5479e–07 1.3662e–08

0.6 5.0880e–07 2.2612e–08

0.8 2.8013e–06 4.0230e–08

1.0 1.3092e–05 4.7820e–07

Timing 0.2969 0.3906
Table 2. Evolution of the absolute error and timing values versus
the initial N ’s, K = 0.001 and T = 1.

in the method. Numerical values in Tables 3 and 3 validate the precision of the
method.

Having investigated the deductions above, one can admit that the proposed method
is very proper to handle MEOE (3) and other nonlinear differential equations of
cubic or quartic type.
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Abstract. In the previous paper [11], the author presented the q, ω-Laplace

transform and its properties and also defined the q, ω-convolution of two func-
tions and proved the q, ω-convolution theorem. In this paper, we deal with

the same q, ω-convolution and investigate its other properties and give some

examples as applications.

1. Introduction and Preliminaries

Recently, with the definition of different difference operators, such as q-difference
oparator (or Jackson difference operator), q, ω-difference operator (or Hahn differ-
ence operator), β-general difference operator ( see, respectively, [1− 3]), studies
on the classical derivative operator have started to be done for these operators as
well.

In [4] , the authors studied the properties of the q-Laplace transform and con-
nections to the other functions and integral transforms, such as Mittag-Leffler func-
tion, hypergeometric andH-function, Mellin transform, Hankel transform, etc. The
q-convolution theorem of the q-Sumudu transform was established in [5] . The β-
convolution associated with the general quantum difference operator was defined
and investigated some properties and applications in [6] . More results for q-Laplace
transform and related topics can be seen [7− 10] .

Let q ∈ (0, 1) , ω > 0, ω0 := ω
1−q and I be an interval of R containing ω0. Also let

h (x) = qx+ω, x ∈ I and kth order iteration of h (x) is given by hk (x) = qkx+ω [k]q

where [k]q =
1−qk
1−q . The Hahn difference operator (see [2, 12]) of f which is defined

on I is given by

(1) Dq,ωf (x) =

{
f(h(x))−f(x)

h(x)−x , x ̸= ω0,

f ′ (ω0) , x = ω0.
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In [11] , the q, ω-Laplace transform of a function is defined the following integral
representation:

(2) Lq,ω (f (x)) = Fq,ω (s) :=
1

s− ω0

ω0+[∞]q∫
ω0

Eq,−ω (−h (x)) f

(
x

s− ω0

)
dq,ωx,

and alternatively if f (x) has the q, ω-Taylor expansion at ω0 of the form f (x) =
∞∑
n=0

an(x−ω0)
n

[n]q !
, then its q, ω-Laplace transform is defined by

(3) Fq,ω (s) :=

∞∑
n=0

an

(s− ω0)
n+1 ,

and also q, ω-analogs of its basic properties similar to classical and q-analogs are
obtained. Similarly, the definition of q, ω-convolution of two functions and the
q, ω-convolution theorem are given in [11] , by the followings:

Definition 1.1. The q, ω-analogue of convolution of f and g functions is defined
as

(4) (f ∗ g) (x) =
x∫

ω0

f (t) g (x− (qt+ ω0)) dq,ωt,

where g (x− (qt+ ω0)) = (x− ω0 − q (t− ω0))q and (1− a)
n
q =

n−1∏
k=0

(
1− aqk

)
, (1− a)

0
q =

1.

Theorem 1.2. Let f and g be two functions and Fq,ω (s) and Gq,ω (s) be their
q, ω-Laplace transform. Then

(5) Lq,ω ((f ∗ g) (x)) = Fq,ω (s)Gq,ω (s) .

In this paper, we will make a more detailed analysis of the q, ω-convolution and
give some properties and applications. Throughout this paper, we will use some
results and properties of q, ω-Laplace transform given in [11] .

2. Some Properties and Applications of q, ω-Convolution

Theorem 2.1. Let f, g and h be the q, ω-integrable functions and c ∈ C, then the
following properties hold:

i: c (f ∗ g) = cf ∗ g = f ∗ cg,
ii: (f + g) ∗ h = f ∗ g + g ∗ h .

Proof. According to (4) and the q, ω-integral definition (see [12]) the proof will be
omitted. □

Definition 2.2. The partial q, ω-derivative for a multivariable continuous function
f (x, t, ...) is given by

(6) ∂xq,ωf (x, t, ...) =
f (h (x) , t, ...)− f (x, t, ...)

h (x)− x
, x ̸= ω0.

where ∂xq,ω :=
∂q,ω
∂q,ωx

.
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Lemma 2.3. If F (x) :=
x∫
ω0

f (x, t) dq,ωt, then Dq,ωF (x) at x ̸= ω0 exists and is

given by

(7) Dq,ωF (x) = f (h (x) , x) +

x∫
ω0

∂xq,ωf (x, t) dq,ωt.

Proof. From the q, ω-integral definition (see [12])
x∫

ω0

f (x, t) dq,ωt = (x (1− q)− ω)

∞∑
k=0

qkf
(
x, qkx+ ω [k]q

)

= (1− q) (x− ω0)

∞∑
k=0

qkf
(
x, hk (x)

)
,

and from (1), we have

Dq,ω

 x∫
ω0

f (x, t) dq,ωt



=

(1− q) (h (x)− ω0)
∞∑
k=0

qkf
(
h (x) , hk+1 (x)

)
− (1− q) (x− ω0)

∞∑
k=0

qkf
(
x, hk (x)

)
h (x)− x

=

(1− q) (x− ω0)
∞∑
k=0

qk
{
f
(
h (x) , hk (x)

)
− f

(
x, hk (x)

)}
h (x)− x

+ f (h (x) , x)

= f (h (x) , x) + (1− q) (x− ω0)

∞∑
k=0

qk∂xq,ωf
(
x, hk (x)

)
= f (h (x) , x) +

x∫
ω0

∂xq,ωf (x, t) dq,ωt.

□

Lemma 2.4. Let f and g be the q, ω-integrable functions, then we have

(8) Dq,ω (f ∗ g) (x) = f (x) g (ω0) + (f ∗ ∂q,ωg) (x) .

Proof. By Definition 1.1 and Lemma 2.3 and using the equality h (x)−q (x− ω0) =
ω0, we get

Dq,ω (f ∗ g) (x) = f (x) g (h (x)− q (x− ω0)) +

x∫
ω0

f (t) ∂xq,ωg (x− q(t− ω0)) dq,ωt

= f (x) g (ω0) +
(
f ∗ ∂xq,ωg

)
(x) .

□

In view of the equality ([11])

(9) Lq,ω (Dq,ωf (x)) = (s− ω0)Fq,ω (s)− f (ω0) ,
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and using Theorem 1.2, we get

(10)
Lq,ω (Dq,ω (f ∗ g) (x)) = (s− ω0)Lq,ω ((f ∗ g) (x))− (f ∗ g) (ω0)
= (s− ω0)Fq,ω (s)Gq,ω (s) .

If we take the inverse q, ω-Laplace transform and using Lemma 2.4, then we have

(11)

L−1
q,ω ((s− ω0)Fq,ω (s)Gq,ω (s))

= f (x) g (ω0) +
x∫
ω0

f (t) ∂xq,ωg (x− q(t− ω0)) dq,ωt.

Now we give some applications of q, ω-convolution theorem.

Example 2.5. Using the q, ω-convolution theorem, find the followings for α, β ∈ R

i: (x− ω0)
α ∗ (x− ω0)

β

ii: eq,αω (αx) ∗ eq,βω (βx)
For i: Using Theorem 1.2, we have

Lq,ω

(
(x− ω0)

α ∗ (x− ω0)
β
)

= Lq,ω (x− ω0)
α
Lq,ω (x− ω0)

β

=
Γq,ω (α+ 1)

(s− ω0)
α+1

Γq,ω (β + 1)

(s− ω0)
β+1

=
[α]q! [β]q!

(s− ω0)
α+β+2

.

Then by taking the inverse q, ω-Laplace transform we get

(x− ω0)
α ∗ (x− ω0)

β
= [α]q! [β]q!L

−1
q,ω

(
1

(s− ω0)
α+β+2

)

= [α]q! [β]q!
(x− ω0)

α+β+1

[α+ β + 1]q!

= (x− ω0)
α+β+1

Bq,ω (α+ 1, β + 1) ,

where Bq,ω (t, s) =
ω0+1∫
ω0

(x− ω0)
t−1

(1− q (t− ω0))
s−1
q dq,ωt (see [11]).

For ii: Using Theorem 1, we have

Lq,ω (eq,αω (αx) ∗ eq,βω (βx)) =
1

s− ω0 − α

1

s− ω0 − β

=
1

α− β

{
1

s− ω0 − α
− 1

s− ω0 − β

}
.

Then appliying the inverse q, ω-Laplace transform we obtain

eq,αω (αx) ∗ eq,βω (βx)

=
1

α− β

{
L−1
q,ω

(
1

s− ω0 − α

)
− L−1

q,ω

(
1

s− ω0 − β

)}
=

1

α− β
{eq,αω (αx)− eq,βω (βx)} .
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Example 2.6. Using the q, ω-Laplace transform and q, ω-convolution theorem, find
the solution of the q, ω-initial value problem

D2
q,ωy (x) + c2y (x) = c2f (x) ,
y (ω0) = 0, Dq,ωy (ω0) = 0.

By taking the q, ω-Laplace transform and using its properties (see [11]), we have

(s− ω0)
2
Yq,ω (s) + c2Yq,ω (s) = c2Fq,ω (s) ,

where Lq,ωy (x) = Yq,ω (s) and Lq,ωf (x) = Fq,ω (s) ,so that

Yq,ω (s) =
c2Fq,ω (s)

(s− ω0)
2
+ c2

= Lq,ω (c sinq,cω (cx))Fq,ω (s)

= Lq,ω (c sinq,cω (cx) ∗ f (x)) ,

hence

y (x) = c sinq,cω (cx) ∗ f (x) .

3. Conclusion

The present paper continues the paper [11] which based on q, ω-Laplace trans-
form and its properties. Also the q, ω-convolution definition and theorem was given
in [11] . The aim of the present paper is to investigate the other properties and
applications of q, ω-convolution.
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ALİ ÖZTÜRK
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Abstract. In this paper, in the setting of ∆-symmetric quasi-metric spaces,
we introduce the notion of (ψ,φ)-contraction and we prove a fixed point the-

orem for (ψ,φ)-contractive mappings.

1. Introduction

Banach fixed-point theorem [4] has plenty of extension. One of them is the
following theorem, given by Boyd and Wong.

Theorem 1.1. [5] Let (X, d) be a complete metric space and T : X → X a mapping
which satisfies the contractive type condition:

d(Tx, Ty) ≤ φ(d(x, y))forallx, y ∈ X,

where φ : R+ → R is a functions such that

(i) φ(t) < t for all t > 0,
(ii) lim sups→t+ φ(s) < t for all t > 0.

Then, T has a unique fixed point z ∈ X and Tn(x0) → z for each x0 ∈ X, as
n→ ∞.

The significant result of Proinov is the following:

Theorem 1.2. [1] Let (X, d) be a complete metric space and T : X → X a mapping
which satisfies the contractive type condition:

ψ(d(Tx, Ty)) ≤ φ(d(x, y))forallx, y ∈ Xwithd(Tx, Ty) > 0,

where ψ,φ : R+ → R are two functions such that

(i) φ(t) < ψ(t) for all t > 0,
(ii) ψ is non-decreasing,
(iii) lim supt→ϵ+ φ(t) < ψ(ϵ+) for all t > 0.
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Then, T has a unique fixed point z ∈ X and Tn(x0) → z for each x0 ∈ X, as
n→ ∞.

First of all we shall fix the basic notations: Throughout the paper, N and N0

denote the set of positive integers and the set of nonnegative integers. Similarly, let
R, R+ and R+

0 represent the set of reals, positive reals and the set of nonnegative
reals, respectively. Throughout the paper, all consider set Q is non-empty.

Definition 1.3. [2] A function Q×Q → R+
0 is called quasi-metric if the following

hold:

(q1) q(u, v) = q(v, u) = 0 ⇔ u = v;
(q2) q(u,w) ≤ q(u, v) + q(v, w),for all u, v, w ∈ Q

The pair (Q, q) is called a quasi-metric space.

Definition 1.4. [2] Let (Q, q) be a quasi metric space. We say that it is ∆-
symmetric if there exists a positive real number ∆ > 0 such that:

q(u, v) ≤ ∆q(v, u) for all s, t ∈ Q

The pair (Q, qδ) is called a ∆-symmetric quasi-metric space.

In the case of ∆ = 1, (Q, qδ) become a metric space.

Example 1.5. Let (Q, q) be a quasi metric space and a function q : Q×Q → R+

defined as follows:

q(u, v) =

{
5d(v, u), if v ≥ u
d(u, v), otherwise

(Q, q) is a five-symmetric quasi-metric space, but it is not a metric space

For recalling the main properties of (Q, qδ), we give the following:

Lemma 1.6. [3] Suppose that (Q, qδ) be a ∆-symmetric quasi-metric space and
{an} be a sequence in Q and a ∈ Q. Then,

i) {an} right-converges to a ⇔ {an} left-converges to a ⇔ {an} converges to
a.

ii) {an} is right-Cauchy ⇔ {an} is left-Cauchy⇔ {an} is Cauchy.
iii) If {bn} is a sequence in Q and qδ(an, bn) → 0 then qδ(bn, an) → 0.

Lemma 1.7. Let (Q, qδ) be a ∆-symmetric quasi-metric space and {xn} be a se-
quence in Q such that qδ(xn, xn+1) → 0 as n→ ∞. If {xn} is not Cauchy sequence
then there exists an ϵ > 0 and sequence of positive integers {mk} and {nk} with
mk > nk such that

i)

(1.1) lim
k→∞

qδ(xnk+1
, xmk+1

) = ϵ+

ii)

(1.2) lim
k→∞

qδ(xnk , xmk) = lim
k→∞

qδ(xnk+1
, xmk) = lim

k→∞
qδ(xnk , xmk+1

) = ϵ

Proof. If If {xn} is not Cauchy sequence and limk→∞ qδ(xn, xn+1) → 0 then there
exists an ϵ > 0 and N0 such that for every N > N0 there exists sequences of positive
integers {mk} and {nk} with mk > nk > N satisfying qδ(xnk+1, xmk+1) > ϵ. By
choosing mk, the least positive integer satisfying qδ(xnk+1, xmk+1) > ϵ we have
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qδ(xnk+1, xmk+1) > ϵ and qδ(xnk+1, xmk) < ϵ with mk > nk > N . By these
inequalities and the triangular inequality, we have

ϵ < qδ(xnk+1, xmk+1) ≤ qδ(xnk+1, xmk) + qδ(xmk , xmk+1)
≤ ϵ+∆qδ(xmk+1, xmk), where∆ > 0.

We obtain the limit in 1.1.
We have limk→∞ qδ(xnk+1

, xmk) < ϵ. Hence,

lim sup
k→∞

qδ(xnk+1
, xmk) < ϵ

By using triangular inequality, we have

ϵ < qδ(xnk+1, xmk+1) ≤ qδ(xnk+1, xmk) + qδ(xmk , xmk+1)

Hence,
ϵ ≤ lim inf

k→∞
qδ(xnk+1, xmk) ≤ lim sup

k→∞
qδ(xnk+1, xmk) ≤ ϵ

Thus we get limk→∞ qδ(xnk+1
, xmk) = ϵ in 1.2.

By using triangular inequality, we have

ϵ < qδ(xnk+1, xmk+1) ≤ qδ(xnk+1, xnk) + qδ(xnk , xmk+1)
≤ ∆qδ(xnk , xnk+1) + qδ(xnk , xmk+1)

So we have, ϵ ≤ lim infk→∞ qδ(xnk , xmk+1) and from

qδ(xnk , xmk+1) ≤ qδ(xnk , xnk+1) + qδ(xnk+1, xmk+1)

we get
lim sup
k→∞

qδ(xnk , xmk+1) ≤ ϵ.

Thus we get limk→∞ qδ(xnk , xmk+1) = ϵ in 1.2.
Now consider

ϵ < qδ(xnk+1, xmk+1) ≤ qδ(xnk+1, xnk) + qδ(xnk , xmk) + qδ(xmk , xmk+1)
≤ ∆qδ(xnk , xnk+1) + qδ(xnk , xmk) + qδ(xnk , xmk+1)

So we have, ϵ ≤ lim infk→∞ qδ(xnk , xmk) and from

qδ(xnk , xmk) ≤ qδ(xnk , xnk+1) + qδ(xnk+1, xmk),

we get
lim sup
k→∞

qδ(xnk , xmk) ≤ ϵ.

Thus we get limk→∞ qδ(xnk , xmk) = ϵ in 1.2.
□

2. Main result

Now we are ready to state our main theorem that is the extension of Theorem
1.2.

Theorem 2.1. Let (Q, qδ) be a complete ∆-symmetric quasi-metric space and T :
Q → Q a mapping which satisfies the contractive type condition:

(2.1) ψ(qδ(Tu, Tv)) ≤ φ(qδ(u, v)) for all u.v ∈ Q with qδ(Tu, Tv) > 0,

where ψ,φ : R+ → R are two functions such that

(i) φ(t) < ψ(t) for all t > 0,
(ii) ψ is non-decreasing,
(iii) lim supt→ϵ+ φ(t) < ψ(ϵ+) for all t > 0.
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Then, T has a unique fixed point z ∈ Q and Tn(x0) → z for each x0 ∈ Q, as
n→ ∞.

Proof. Starting with the point x0 ∈ Q we define sequence {xn}
x1 = Tx0, x2 = Tx1, ..., Txn+1 = Txn, ...

with xn ̸= xn+1 ̸= xn+2 ∀n ∈ N. (Otherwise we can find n0 ∈ N such that
xn0

= xn0+1 and we have xn0
is the fixed point). Let u = xn and v = xn+1 in 2.1

and d(Txn−1, Txn) = qδ(xn, xn+1) > 0 we get

ψ(qδ(xn, xn+1)) ≤ ψ(qδ(Txn−1, Txn)) ≤ φ(qδ(xn−1, xn))

and by the condition [(i)] of Theorem 2.1 we have

ψ(qδ(xn, xn+1)) ≤ ψ(qδ(xn−1, xn))

and taking [(ii)] of Theorem 2.1 in to account we find that qδ(xn, xn+1) < qδ(xn−1, xn).
This shows us that the sequence xn , where xn = qδ(xn, xn+1) ∀n ∈ N, is a non-
increasing sequence of positive real numbers, so that there exists ζ ≥ 0 such that
limn→∞ xn = ζ. We try to show that ζ = 0. Let us assume that ζ > 0, taking the
limit superior in the equality

ψ(xn) ≤ φ(xn−1) ≤ ψ(xn−1)

and taking in to account [(iii)] we get

ψ(ζ+) = lim
n→∞

ψ(xn) ≤ lim sup
n→∞

φ(xn−1) < lim sup
n→∞

ψ(xn−1) < ψ(ζ+)

which is a contradiction so that

lim
n→∞

qδ(xn−1, xn) = 0.

Next, we prove that the sequence xn is Cauchy. Assume that it is not. By Lemma
1.7, we can find ϵ > 0 and two sequences of positive real numbers αk and βk,
βk > αk > k such that qδ(xαk+1, xβk+1) > ϵ for all k ≥ 1. Consider 2.1 with
u = xαk and v = xβk we get

(2.2) ψ(qδ(xαk+1, xβk+1)) ≤ φ(qδ(xαk , xβk)).

Hence, taking in to account that φ < ψ, we obtain

ψ(qδ(xαk+1, xβk+1)) ≤ φ(qδ(xαk , xβk)) < ψ(qδ(xαk , xβk)).

From the monotonicity of ψ, we have qδ(xαk+1, xβk+1) < qδ(xαk , xβk). It follows
from Lemma 1.7 that qδ(xαk+1, xβk+1) → ϵ+ and qδ(xαk , xβk) → ϵ+. By taking
limit superior in 2.2, we get

ψ(ϵ+) = lim
k→∞

ψ(qδ(xαk+1, xβk+1)) ≤ lim sup
k→∞

φ(qδ(xαk , xβk)) < ψ(ϵ+)

Which is a contradiction to [(ii)] of Theorem 2.1.
Since (Q, qδ) be a complete ∆-symmetric quasi-metric space, we can find z ∈ Q

such that
lim
n→∞

(qδ(xn, z)) = 0

Of course, if we suppose that qδ(Txk, T z) = 0 for (infinetly) many values of k, then

qδ(z, Tz) ≤ qδ(z, Txk) + qδ(Txk, T z) = qδ(z, xk+1) + ∆qδ(z, xk+1).

Letting k → ∞ the above inequalities lead us to qδ(z, Tz) ≤ 0, this means that is
Tz = z, that is z is a fixed point of T .
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Supposing that z∗ ∈ Q is an other fixed point of T , but different than z we have
that qδ(Tz, Tz

∗) > 0 and then by 2.1 and [(i)] of Theorem 2.1,

ψ(qδ(z, z
∗)) ≤ ψ(qδ(Tz, Tz

∗)) ≤ φ(qδ(z, z
∗)) < ψ(qδ(z, z

∗))

and taking [(ii)] of Theorem 2.1 in to account and monotonicity of ψ, we obtain
qδ(z, z

∗) < qδ(z, z
∗), which is a contradiction. Thus we have z = z∗. □

Theorem 2.1 extended in the setting (α,ψ, φ)-contraction by [6].
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Abstract. In this paper, the important approach features of a Kantorovich-
type modified operator on a mobile range will be examined. Approximation

results will be given practically with numerical calculations and graphics.

1. Introduction

After Korovkin’s theorem proof that he gave the necessary conditions for the
uniform convergence of linear positive operator sequences to a function, many op-
erators and many spaces in which convergence were investigated were defined in
this field. Approximation to functions by convenient operators for work in many
fields includes a technique that makes things easier. With this intention, many
operators have been given and made available to researchers. A few examples of
these operators can be given as follows: [1], [2], [3], [4], [5], [6]. After the occur of
quantum theory, q modifications of many known operators have been created. For
example: [7], [8], [9]. With the emergence of post-quantum theory in many areas
of mathematics, (p, q)versions of operators began to be defined. [10], [11], [12],
[13] are a few examples of these operators. One of the important operators, whose
modifications were defined and developed by different researchers at different times,
is the Gadjiev Ibragimov operator. This operator was first defined in [14]. Here are
some examples of later work: [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25].
In the study, first of all, the necessary equations for the main theorem are proven,
then important numerical calculations are made by showing that the operator pro-
vides a Korovkin type theorem. With the applications made later, approximation
and rate of convergence of the operator were examined.

2. Basic Definitions and Theorems

Definition 2.1. Let µ, ψ ∈ R+, ρr and ξr be sequences of real numbers provides
the following properties
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limr→∞ ξr =∞ , limr→∞
ρr

ξr+r+ψ
= 0 , limr→∞

r+µ
ξr+r+ψ

= 0 and limr→∞
ρr

ξr+r+ψ
r

= 1. Also,let Rr,θ (x) be a function that satisfies the following conditions depending
on θ and r parameters:

i) For all r,θ ∈ N0 and all x ∈
[
0, r+µr+ψ

]
,

(−1)θRr,θ (x) ≥ 0.

ii) For all x ∈
[
0, r+µr+ψ

]
,

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!
= 1,

iii) For every x ∈
[
0, r+µr+ψ

]
,let m be an integer where r +m is a natural number.

Rr,θ (x) = −rxRr+m,θ−1 (x)

With the help of this information, a generalization of the Gadjiev Ibragimov oper-
ator is defined by [27] as:

N̂r (f, x) =

∞∑
θ=0

f

(
θ + r + µ

ξr + r + ψ

)
Rr,θ (x)

(−ρr)θ

θ!
.

Lemma 2.2. The following equations are valid for the Nr (f, x) operator [27].

i)N̂r (1, x) = 1,

ii)N̂r (t, x) =
rρrx

ξr + r + ψ
+

r + µ

ξr + r + ψ
,

iii)N̂r
(
t2, x

)
=

ρ2rr (r +m)

(ξr + r + ψ)
2x

2 +
(2 (r + µ) + 1) rρr

(ξr + r + 2)
2 x+

(r + µ)
2

(ξr + r + ψ)
2 .

Theorem 2.3. For all f ∈
[
0, r+µr+ψ

]
and

N̂r (f, x) =

∞∑
θ=0

f

(
θ + r + µ

ξr + r + ψ

)
Rr,θ (x)

(−ρr)θ

θ!
,

lim
r→∞

||N̂r (f, x)− f (x) ||C[0, r+µr+ψ ]
= 0.

Theorem 2.4. For all f ∈
[
0, r+µr+ψ

]
, for a sufficiently large number of r and a

constant P independent of the sequences (ρr) , (ξr) ,

||N̂r (f, x)− f (x) ||C[0, r+µr+ψ ]
≤ Pω{f ; δr}

inequality is valid. Here,

δr :=

√(
ρrr

ξr + r + ψ
− 1

)2

+
2ρr

ξr + r + ψ
m+ 5.
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3. Materials and Methods

Definition 3.1. Let f : L1

[
0, r+µr+ψ

]
→ C

[
0, r+µr+ψ

]
.The operator defined as

̂̂
Nr (f, x) = (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

f (p) dp

is called the Kantorovich generalization of the Gadjiev-Ibragimov type an oper-
ator. Here Rr,θ (x); satisfies the conditions in Definition 2.1

Theorem 3.2. Let f : L1

[
0, r+µr+ψ

]
→ C

[
0, r+µr+ψ

]
and for operators

̂̂
Nr (f, x) = (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

f (p) dp

the following equations are provided.

i)
̂̂
Nr (1, x) = 1,

ii)
̂̂
Nr (t, x) =

rρrx

ξr + r + ψ
+

2r + 2µ+ 1

2(ξr + r + ψ)
,

iii)
̂̂
Nr

(
t2, x

)
=

ρ2rr (r +m)

(ξr + r + ψ)
2x

2 +
2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2 x

+
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2 .

Proof. From the definition of the operator

i)
̂̂
Nr (1, x) = (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

1dp

= (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

(
1

ξr + r + ψ

)
= 1

equation is obtained.
ii) Description of the operator and from Lemma 2.2 i) and ii) using the

(θ → θ + 1) transform

̂̂
Nr (t, x) = (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

pdp
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=
(ξr + r + ψ)

2

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[(
θ + r + µ+ 1

ξr + r + ψ

)2

−
(
θ + r + µ

ξr + r + ψ

)2
]

=

∞∑
θ=1

(
−rx

ξr + r + ψ

)
Rr+m,θ−1 (x)

(−ρr)θ

(θ − 1)!
+

(
2r + 2µ+ 1

2 (ξr + r + ψ)

)
(θ → θ + 1, (r +m) ∈ N)

=
rρrx

ξr + r + ψ
+

2r + 2µ+ 1

2(ξr + r + ψ)

is obtained.

iii)
̂̂
Nr

(
t2, x

)
=

∞∑
θ=0

θ (θ − 1)

(ξr + r + 2)
2Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

2θr

(ξr + r + 2)
2Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

2θµ

(ξr + r + 2)
2Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

2θ

(ξr + r + 2)
2Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + 2)
2 Rr,θ (x)

(−ρr)θ

θ!

=
ρ2rr (r +m)

(ξr + r + ψ)
2x

2 +
2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2 x

+
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2

is achived.Thus the theorem is proven. □

Theorem 3.3. For
̂̂
Nr (f, x) and all f ∈

[
0, r+µr+ψ

]
,

lim
r→∞

||N̂r (f, x)− f (x) ||C[0, r+µr+ψ ]
= 0

is valid.

Proof. The equations in Theorem 3.2 will be used for proof, we have

lim
r→∞

∥∥∥ ̂̂Nr (1, x)− 1
∥∥∥
C[0, r+µr+ψ ]

= 0

From Theorem 3.2 ii)

∣∣∣ ̂̂Nr (t, x)− x
∣∣∣ = ∣∣∣∣x( rρr

ξr + r + ψ
− 1

)∣∣∣∣+ ∣∣∣∣ 2r + 2µ+ 1

2(ξr + r + ψ)

∣∣∣∣
can be written. Here since x ∈

[
0, r+µr+ψ

]
and limr→∞

ρr
ξr+r+ψ

r = 1, then

max
x∈[0, r+µr+ψ ]

∣∣∣ ̂̂Nr (t, x)− x
∣∣∣ ≤ ∣∣∣∣ r + µ

r + ψ

∣∣∣∣ ∣∣∣∣ rρr
ξr + r + ψ

− 1

∣∣∣∣+ ∣∣∣∣ 2r + 2µ+ 3

2(ξr + r + ψ)

∣∣∣∣
inequality is valid. If the limit of both sides is taken since

lim
r→∞

∥∥∥N̂r (t, x)− x
∥∥∥
C[0, r+µr+ψ ]

≤ lim
r→∞

∣∣∣∣ r + µ

r + ψ

∣∣∣∣ limr→∞

∣∣∣∣ rρr
ξr + r + ψ

− 1

∣∣∣∣
+ lim
r→∞

∣∣∣∣ 2r + 2µ+ 1

2(ξr + r + ψ)

∣∣∣∣
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then

lim
r→∞

∥∥∥N̂r (t, x)− x
∥∥∥
C[0, r+µr+ψ ]

= 0

is written. Here, if we use∣∣∣ ̂̂Nr

(
t2, x

)
− x2

∣∣∣ =

∣∣∣∣∣ ρ2rr (r +m)

(ξr + r + ψ)
2x

2 +
2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2 x

+
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2 − x2

∣∣∣∣∣
so

max
x∈[0, r+µr+ψ ]

∣∣∣ ̂̂Nr

(
t2, x

)
− x2

∣∣∣ ≤ ( r + µ

r + ψ

)2
∣∣∣∣∣ ρ2rr (r +m)

(ξr + r + ψ)
2 − 1

∣∣∣∣∣
+

∣∣∣∣∣2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2

∣∣∣∣∣
∣∣∣∣ r + µ

r + ψ

∣∣∣∣+
∣∣∣∣∣3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2

∣∣∣∣∣
is obtained. Using

lim
r→∞

ρ2rr(r +m)

(ξr + r + ψ)
2 = lim

r→∞

ρ2rr
2

(ξr + r + ψ)
2 + lim

r→∞

ρ2rrm

(ξr + r + ψ)
2 = 1

lim
r→∞

2rρr (r + 1)

(ξr + r + ψ)
2

(
r + µ

r + ψ

)
= 0, lim

r→∞

2µρrr

(ξr + r + ψ)
2

(
r + µ

r + ψ

)
= 0

and

lim
r→∞

3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2 = 0,

then we get

lim
r→∞

∥∥∥ ̂̂Nr

(
t2, x

)
− x2

∥∥∥
C[0, r+µr+ψ ]

= 0.

Hence using the Korovkin Theorem, we get

lim
r→∞

∥∥∥ ̂̂Nr (f, x)− f (x)
∥∥∥
C[0, r+µr+ψ ]

= 0.

□

Theorem 3.4. Let f ∈ C0
ρ [0,∞). Then

lim
r→∞

∥∥∥ ̂̂Nr (f, x)− f (x)
∥∥∥
ρ,[0, r+µr+ψ ]

= 0

is valid.

Proof. Let
x

1 + x2
< 1, the demonstration of convergence for the test functions is

sufficient for proof. Firstly, it can be easily shown that

∥∥∥ ̂̂Nr (1, x)− 1
∥∥∥
ρ,[0, r+µr+ψ ]

= lim
r→∞

sup
x∈[0, r+µr+ψ ]

∣∣∣ ̂̂Nr (1, x)− 1
∣∣∣

1 + x2
= 0
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Similarly, from the definition of the operator

lim
r→∞

∥∥∥ ̂̂Nr (t, x)− x
∥∥∥
ρ,[0, r+µr+ψ ]

≤ lim
r→∞

(
rρr

ξr + r + ψ
− 1 +

2r + 2µ+ 1

2(ξr + r + ψ)

)
= 0,

then

lim
r→∞

∥∥∥ ̂̂Nr (t, x)− x
∥∥∥
ρ,[0, r+µr+ψ ]

= 0

is valid. Finally, if we take the limit of both sides of the∥∥∥ ̂̂Nr

(
t2, x

)
− x2

∥∥∥
ρ,[0, r+µr+ψ ]

≤

(
ρ2rr (r +m)

(ξr + r + ψ)
2 − 1

)
+

2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2

+
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2 .

So, it will be that

lim
r→∞

∥∥∥ ̂̂Nr

(
t2, x

)
− x2

∥∥∥
ρ,[0, r+µr+ψ ]

= lim
r→∞

(
ρ2rr(r +m)

(ξr + r + ψ)
2 − 1

)

+ lim
r→∞

(
2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2

)
+ lim
r→∞

(
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2

)
Therefore,

lim
r→∞

∥∥∥ ̂̂Nr (f, x)− f (x)
∥∥∥
ρ,[0, r+µr+ψ ]

= 0

is obtained. Thus, the proof is complete. □

Lemma 3.5. The following equations are valid for
̂̂
Nr (f, x) .

i)
̂̂
Nr

(
t3, x

)
=

ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
3 x3 +

(
18ρ2rr(r+m)

4(ξr+r+ψ)
3 +

3ρ2rr
2(r+m)

(ξr+r+ψ)
3

+
3ρ2rµr(r+m)

(ξr+r+ψ)
3

)
x2 +

(
(6rµρr+6r2ρr+3r3ρr+6r2µρr+3rµ2ρr)

(ξr+r+ψ)
3

+ 14rρr
4(ξr+r+ψ)

3

)
x+ 4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1

4(ξr+r+ψ)
3 ,

ii)
̂̂
Nr

(
t4, x

)
=

ρ4rr(r+m)(r+2m)(r+3m)

(ξr+r+ψ)
4 x4

+
(4r+4µ+8)ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
4 x3

+
(6r2+18r+15+12rµ+6µ2+18µ)ρ2rr(r+m)

(ξr+r+ψ)
4 x2

+
(4r3+4µ3+12r2+12µ2+12r2µ+12µ2r+24rµ+14r+14µ+6)ρrr

(ξr+r+ψ)
4 x

+
(5r4+5µ4+10r3+10µ3+20r3µ+20rµ3+10r2+10µ2)

5(ξr+r+ψ)
4

+
(5r+5µ+30r2µ+30rµ2+30r2µ2+20rµ+1)

5(ξr+r+ψ)
4 .
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Proof. i) Using the equations

ρ4−b4 = (ρ− b) (ρ+ b)
(
ρ2 + b2

)
, θ3 = θ (θ − 1) (θ − 2)+3θ2−2θ and θ2 = θ (θ − 1)+θ

then we write

̂̂
Nr

(
t3, x

)
= (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

p3dp

=
(ξr + r + ψ)

4

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
(2θ + 2r + 2µ+ 1)

(ξr + r + ψ)
2

(
2θ2 + 4θr + 4θµ+ 2θ

)
(ξr + r + ψ)

2

]

+
(ξr + r + ψ)

4

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
(2θ + 2r + 2µ+ 1)

(ξr + r + ψ)
2

×
(
2r2 + 4rµ+ 2r + 2µ2 + 2µ+ 1

)
(ξr + r + ψ)

2

]

=
(ξr + r + ψ)

4

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
4θ3 + 12θ2r + 12θ2µ+ 6θ2 + 12θr2

(ξr + r + ψ)
4

]

+
(ξr + r + ψ)

4

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
12θr + 4θ + 24θrµ+ 12θµ2 + 12θµ

(ξr + r + ψ)
4

+
4r3 + 6r2 + 4r + 4µ3 + 6µ2 + 4µ+ 12r2µ+ 12rµ2 + 12rµ+ 1

(ξr + r + ψ)
4

]
Using next equality

4θ3 + 12θ2r + 12θ2µ+ 6θ2 + 12θr2 + 12θr + 4θ + 24θrµ+ 12θµ2

+12θµ+ 4r3 + 6r2 + 4r + 4µ3 + 6µ2 + 4µ+ 12r2µ+ 12rµ2 + 12rµ+ 1

= 4 (θ (θ − 1) (θ − 2) + 3 (θ (θ − 1) + θ)− 2θ) + 12r (θ (θ − 1) + θ)

+12µ (θ (θ − 1) + θ) + 6 (θ (θ − 1) + θ) + 12θr2 + 12θr + 4θ + 24θrµ

+12θµ2 + 12θµ+ 4r3 + 6r2 + 4r + 4µ3 + 6µ2 + 4µ+ 12r2µ+ 12rµ2 + 12rµ+ 1

we get

̂̂
Nr

(
t3, x

)
=

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
(4θ(θ−1)(θ−2)+18θ(θ−1)+12rθ(θ−1)+12µθ(θ−1))

4(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
24θµ+24θr+14θ+12θr2+24θrµ+12θµ2

4(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1

4(ξr+r+ψ)
3

]
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=

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
θ(θ−1)(θ−2)

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
18θ(θ−1)

4(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
3rθ(θ−1)

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
3µθ(θ−1)

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
6θµ

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
6θr

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
14θ

4(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
3θr2

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
6θrµ

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
3θµ2

(ξr+r+ψ)
3

]
+

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1

4(ξr+r+ψ)
3

]

Then

̂̂
Nr

(
t3, x

)
=

ρ3rr(r +m) (r + 2m)

(ξr + r + ψ)
3 x3 +

(
18ρ2rr(r +m)

4 (ξr + r + ψ)
3 +

3ρ2rr
2(r +m)

(ξr + r + ψ)
3

+
3ρ2rµr(r +m)

(ξr + r + ψ)
3

)
x2 +

((
6rµρr + 6r2ρr + 3r3ρr + 6r2µρr + 3rµ2ρr

)
(ξr + r + ψ)

3

+
14rρr

4 (ξr + r + ψ)
3

)
x+ 4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1

4(ξr+r+ψ)
3 ,

is written.
ii) Since the following equations can be written easily

c5 − d5 = (c+ d)
(
c4 − d4

)
− cd

(
c3 − d3

)
, θ4 = θ (θ − 1) (θ − 2) (θ − 3) + 6θ3 − 11θ2 + 6θ,

θ3 = θ (θ − 1) (θ − 2) + 3θ2 − 2θ, θ2 = θ (θ − 1) + θ.

Then,we get

̂̂
Nr

(
t4, x

)
= (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

p4dp
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=

∞∑
θ=0

5 (θ (θ − 3) (θ − 2) (θ − 1))

5 (ξr + r + ψ)
4 Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

20rθ (θ − 1) (θ − 2)

5 (ξr + r + ψ)
4 Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

20µθ (θ − 1) (θ − 2)

5 (ξr + r + ψ)
4 Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

40θ (θ − 1) (θ − 2)

5 (ξr + r + ψ)
4 Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

75θ (θ − 1)

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

90rθ (θ − 1)

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

30r2θ (θ − 1)

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

60rµθ (θ − 1)

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

30µ2θ (θ − 1)

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

90µθ (θ − 1)

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

30θ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

70rθ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

70µθ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

20r3θ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

20µ3θ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

60µ2θ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

60r2θ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

60r2µθ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+
∞∑
θ=0

60µ2rθ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!
+

∞∑
θ=0

120rµθ

5 (ξr + r + ψ)
4Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

5r4 + 5µ4 + 10r3 + 10µ3 + 20r3µ+ 20rµ3 + 10r2 + 10µ2

5 (ξr + r + ψ)
4 Rr,θ (x)

(−ρr)θ

θ!

+

∞∑
θ=0

30r2µ+ 30rµ2 + 30r2µ2 + 20rµ+ 5r + 5µ+ 1

5 (ξr + r + ψ)
4 Rr,θ (x)

(−ρr)θ

θ!

The desired equality is obtained from the equations. □

In the following Lemma, some of the central moments of the operator
̂̂
Nr (f, x)

are calculated.

Lemma 3.6. The following equations are valid for the first five central moments

of the operator
̂̂
Nr (f, x) .

i)
̂̂
Nr

(
(t− x)

0
, x
)
= 1,
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ii)
̂̂
Nr

(
(t− x)

1
, x
)
=
rρr − (ξr + r + ψ)

ξr + r + ψ
x+

2r + 2µ+ 1

2(ξr + r + ψ)
,

iii)
̂̂
Nr

(
(t− x)

2
, x
)

=

(
ρ2rr (r +m)

(ξr + r + ψ)
2 − 2rρr

ξr + r + ψ
+ 1

)
x2

+

(
2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2 − 2r + 2µ+ 1

ξr + r + ψ

)
x

+
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2 ,

iv)
̂̂
Nr

(
(t− x)

3
, x
)

=
(
ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
3 − 3rρr

ξr+r+ψ
+

3ρ2rr(r+m)

(ξr+r+ψ)
2 − 1

)
x3

+
(

18ρ2rr(r+m)

4(ξr+r+ψ)
3 +

3ρ2rr
2(r+m)

(ξr+r+ψ)
3 +

3ρ2rµr(r+m)

(ξr+r+ψ)
3

− 6r+6µ+3
2(ξr+r+ψ)

+ 6r2ρr+6rρr+6µrρr
(ξr+r+ψ)

2

)
x2

+

(
(6rµρr+6r2ρr+3r3ρr+6r2µρr+3rµ2ρr)

(ξr+r+ψ)
3

+ 14rρr
4(ξr+r+ψ)

3 + 3r2+6rµ+3r+3µ2+3µ+1
(ξr+r+ψ)

2

)
x

+ 4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1
4(ξr+r+ψ)

3

v)
̂̂
Nr

(
(t− x)

4
, x
)

=
(
ρ4rr(r+m)(r+2m)(r+3m)

(ξr+r+ψ)
4 − 4ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
3 +

6ρ2rr(r+m)

(ξr+r+ψ)
2

− 4rρr
ξr+r+ψ

+ 1
)
x4 +

(
(4r+4µ+8)ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
4 − 18ρ2rr(r+m)

(ξr+r+ψ)
3

− 12ρ2rr
2(r+m)

(ξr+r+ψ)
3 − 12ρ2rµr(r+m)

(ξr+r+ψ)
3 + 12r2ρr+12rρr+12µrρr

(ξr+r+ψ)
2

− 4r+4µ+2
(ξr+r+ψ)

)
x3 +

(
(6r2+18r+15+12rµ+6µ2+18µ)ρ2rr(r+m)

(ξr+r+ψ)
4

− 24rµρr+24r2ρr+12r3ρr+24r2µρr+12rµ2ρr
(ξr+r+ψ)

3 − 14rρr
(ξr+r+ψ)

3

+ 6r2+12rµ+6r+6µ2+6µ+2
(ξr+r+ψ)

2

)
x2

+

(
(4r3+4µ3+12r2+12µ2+12r2µ+12µ2r+24rµ+14r+14µ+6)ρrr

(ξr+r+ψ)
4

− 4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1
(ξr+r+ψ)

3

)
x

+
(5r4+5µ4+10r3+10µ3+20r3µ+20rµ3+10r2+10µ2)

5(ξr+r+ψ)
4

+
(5r+5µ+30r2µ+30rµ2+30r2µ2+20rµ+1)

5(ξr+r+ψ)
4 .

Proof. i)Clearly ̂̂
Nr

(
(t− x)

0
, x
)
= 1.
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ii) Using definition of operators

̂̂
Nr

(
(t− x)

1
, x
)

=
̂̂
Nr (t, x)− x

̂̂
Nr (1, x)

=

(
rρr

ξr + r + ψ
− 1

)
x+

2r + 2µ+ 1

2(ξr + r + ψ)

=
rρr − (ξr + r + ψ)

ξr + r + ψ
x+

2r + 2µ+ 1

2(ξr + r + ψ)
.

iii) We write

̂̂
Nr

(
(t− x)

2
, x
)

=
̂̂
Nr

(
t2, x

)
− 2x

̂̂
Nr (t, x) + x2

̂̂
Nr (1, x)

=
ρ2rr (r +m)

(ξr + r + ψ)
2x

2 +
2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2 x

+
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2

−2x

(
rρr

ξr + r + ψ
x+

2r + 2µ+ 1

2(ξr + r + ψ)

)
+ x2

=

(
ρ2rr (r +m)

(ξr + r + ψ)
2 − 2rρr

ξr + r + ψ
+ 1

)
x2

+

(
2r2ρr + 2rρr + 2µrρr

(ξr + r + ψ)
2 − 2r + 2µ+ 1

ξr + r + ψ

)
x

+
3r2 + 6rµ+ 3r + 3µ2 + 3µ+ 1

3 (ξr + r + ψ)
2 .

iv)We get

̂̂
Nr

(
(t− x)

3
, x
)

=
̂̂
Nr

(
t3, x

)
− 3x2

̂̂
Nr (t, x) + 3x

̂̂
Nr

(
t2, x

)
− x3

̂̂
Nr (1, x)

=
ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
3 x3 +

(
18ρ2rr(r+m)

4(ξr+r+ψ)
3 +

3ρ2rr
2(r+m)

(ξr+r+ψ)
3 +

3ρ2rµr(r+m)

(ξr+r+ψ)
3

)
x2

+

(
(6rµρr+6r2ρr+3r3ρr+6r2µρr+3rµ2ρr)

(ξr+r+ψ)
3 + 14rρr

4(ξr+r+ψ)
3

)
x

+ 4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1
4(ξr+r+ψ)

3

−3x2
(

rρr
ξr+r+ψ

x+ 2r+2µ+1
2(ξr+r+ψ)

)
+3x

(
ρ2rr(r+m)

(ξr+r+ψ)
2x

2 + 2r2ρr+2rρr+2µrρr
(ξr+r+ψ)

2 x

+ 3r2+6rµ+3r+3µ2+3µ+1
3(ξr+r+ψ)

2

)
− x3

=
(
ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
3 − 3rρr

ξr+r+ψ
+

3ρ2rr(r+m)

(ξr+r+ψ)
2 − 1

)
x3

+
(

18ρ2rr(r+m)

4(ξr+r+ψ)
3 +

3ρ2rr
2(r+m)

(ξr+r+ψ)
3 +

3ρ2rµr(r+m)

(ξr+r+ψ)
3

− 6r+6µ+3
2(ξr+r+ψ)

+ 6r2ρr+6rρr+6µrρr
(ξr+r+ψ)

2

)
x2
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+

(
(6rµρr+6r2ρr+3r3ρr+6r2µρr+3rµ2ρr)

(ξr+r+ψ)
3 + 14rρr

4(ξr+r+ψ)
3

+ 3r2+6rµ+3r+3µ2+3µ+1
(ξr+r+ψ)

2

)
x

+ 4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1
4(ξr+r+ψ)

3 .

v)Finally,

̂̂
Nr

(
(t− x)

4
, x
)

=
̂̂
Nr

(
t4, x

)
− 4x

̂̂
Nr

(
t3, x

)
+ 6x2

̂̂
Nr

(
t2, x

)
−4x3

̂̂
Nr (t, x) + x4

̂̂
Nr (1, x)

=
ρ4rr(r +m) (r + 2m) (r + 3m)

(ξr + r + ψ)
4 x4 + x4

+
(4r + 4µ+ 8) ρ3rr(r +m) (r + 2m)

(ξr + r + ψ)
4 x3

+

(
6r2 + 18r + 15 + 12rµ+ 6µ2 + 18µ

)
ρ2rr(r +m)

(ξr + r + ψ)
4 x2

+
(4r3+4µ3+12r2+12µ2+12r2µ+12µ2r+24rµ+14r+14µ+6)ρrr

(ξr+r+ψ)
4 x

+
(5r4+5µ4+10r3+10µ3+20r3µ+20rµ3+10r2+10µ2)

5(ξr+r+ψ)
4

+
(5r+5µ+30r2µ+30rµ2+30r2µ2+20rµ+1)

5(ξr+r+ψ)
4

−4x
(
ρ3rr(r+m)(r+2m)

(ξr+r+ψ)
3 x3 +

(
18ρ2rr(r+m)

4(ξr+r+ψ)
3 +

3ρ2rr
2(r+m)

(ξr+r+ψ)
3

+
3ρ2rµr(r+m)

(ξr+r+ψ)
3

)
x2 +

(
(6rµρr+6r2ρr+3r3ρr+6r2µρr+3rµ2ρr)

(ξr+r+ψ)
3

+ 14rρr
4(ξr+r+ψ)

3

)
x

+ 4r3+6r2+4r+4µ3+6µ2+4µ+12r2µ+12rµ2+12rµ+1
4(ξr+r+ψ)

3

)
+6x2

(
ρ2rr(r+m)

(ξr+r+ψ)
2x

2 + 2r2ρr+2rρr+2µrρr
(ξr+r+ψ)

2 x

+ 3r2+6rµ+3r+3µ2+3µ+1
3(ξr+r+ψ)

2

)
+4x3

(
rρr

ξr+r+ψ
x+ 2r+2µ+1

2(ξr+r+ψ)

)
□

Theorem 3.7. For all f ∈
[
0, r+µr+ψ

]
,µ ≤ ψ and a sufficiently large r also for K is

a constant independent of (ρr) and (ξr)∥∥∥ ̂̂Nr (f, x)− f(x)
∥∥∥
C[0, r+µr+ψ ]

≤ Kω (f ; δr) .

Here δr is defined as δr =

{(
ρrr

ξr + r + ψ
− 1

)2

+ (r+µ+1)
(ξr+r+ψ)

+ (r+µ+1)2

(ξr+r+ψ)
2

}1/2
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Proof. Using ∣∣∣ ̂̂Nr (f, x)− f(x)
∣∣∣ ≤ ̂̂

Nr (|f (t)− f (x)| ;x)

we get

∣∣∣ ̂̂Nr (f, x)− f(x)
∣∣∣ ≤ (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

|f (p)− f (x)| dp

Then, from the modulus of continuity for all δr > 0, we can write

|f (p)− f (x)| ≤ ω (f ; δr)

(
1 +

(p− x)
2

δ2r

)
.

So,

∣∣∣ ̂̂Nr (f, x)− f(x)
∣∣∣ ≤ (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ
θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

|f (p)− f (x)| dp

≤ ω (f ; δr) (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ
θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

(
1 + (p−x)2

δ2r

)
dp.

Thus, we have

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

(
1 +

(p− x)
2

δ2r

)
dp =

1

ξr + r + ψ
+

1

δ2r

(
p3

3
− xp2 + x2p

)∣∣∣∣
θ+r+µ+1
ξr+r+ψ

θ+r+µ
ξr+r+ψ

.

We define θ+r+µ
ξr+r+ψ

:= a,

(
p3

3
− xp2 + x2p

)∣∣∣∣a+ 1
ξr+r+ψ

a

=
a3

3
+

a2

ξr + r + ψ
+

a

(ξr + r + ψ)
2 +

1

3 (ξr + r + ψ)
3

−xa2 − 2ax

ξr + r + ψ
− x

(ξr + r + ψ)
2 + x2a+

x2

ξr + r + ψ
− a3

3
+ xa2 − x2a.

So, we have

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

(
1 +

(p− x)
2

δ2r

)
dp =

1

ξr + r + ψ
+

1

δ2r

[
θ2 + 2θr + r2 + 2θµ+ 2rµ+ µ2

(ξr + r + ψ)
3

+
θ + r + µ

(ξr + r + ψ)
3 +

1

3 (ξr + r + ψ)
3 − 2θx+ 2rx+ 2µx

(ξr + r + ψ)
2

− x

(ξr + r + ψ)
2 +

x2

ξr + r + ψ

]
.
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Since,∣∣∣ ̂̂Nr (f, x)− f(x)
∣∣∣ ≤ (ξr + r + ψ)ω (f ; δr)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ

θ!

[
1

ξr + r + ψ

+
1

δ2

[
θ2 + 2θr + r2 + 2θµ+ 2rµ+ µ2

(ξr + r + ψ)
3 +

θ + r + µ

(ξr + r + ψ)
3

+
1

3 (ξr + r + ψ)
3 − 2θx+ 2rx+ 2µx

(ξr + r + ψ)
2

− x

(ξr + r + ψ)
2 +

x2

ξr + r + ψ

]]
,

then we have∣∣∣ ̂̂Nr (f, x)− f(x)
∣∣∣ ≤ ω (f ; δr) + ω (f ; δr)

1

δ2

{(
ρ2rr(r+m)

(ξr+r+ψ)
2 − 2ρrr

(ξr+r+ψ)
+ 1
)
x2

+ 1
3(ξr+r+ψ)

2 +
(

2ρrr
2+2ρrµr+ρrr
(ξr+r+ψ)

2 − 2r+2µ+1
(ξr+r+ψ)

)
x

+ 2µr+µ2+r+µ+r2

(ξr+r+ψ)
2

}
≤ K

(
ω (f ; δr)

1

δ2

{(
ρrr

ξr + r + ψ
− 1

)2

+
(r + µ+ 1)

(ξr + r + ψ)
+

(r + µ+ 1)
2

(ξr + r + ψ)
2

})
.

So

δr =

{(
ρrr

ξr + r + ψ
− 1

)2

+ (r+µ+1)
(ξr+r+ψ)

+ (r+µ+1)2

(ξr+r+ψ)
2

}1/2

. □

Example 3.8. Let
̂̂
Nr (f, x) = (ξr + r + ψ)

∞∑
θ=0

Rr,θ (x)
(−ρr)θ
θ!

θ+r+µ+1
ξr+r+ψ∫
θ+r+µ
ξr+r+ψ

f (p) dp, r =

25,m = 30 and for x ∈
[
0, r+µr+ψ

]
, let Rr,θ (x) = (−1)

θ
(rx)

θ
e−rxρr .In this case,

the graph of the operator’s approximation to the f (x) = x3+1
e4x+1 is given in grafics.

The drawing is made for
̂̂
N10 (f, x) in green,

̂̂
N11 (f, x) in red,

̂̂
N12 (f, x) in black,̂̂

N13 (f, x) in cyan,
̂̂
N14 (f, x) in magenta, f (x) in blue. µ = 20, ψ = 10 and (ρr) = r

and (ξr) = r2 selected in Figure 1 a), µ = 10, ψ = 20 and (ρr) = r and (ξr) =
r2selected in Figure 1 b),µ = 10, ψ = 20 and (ρr) = r and (ξr) = r2 + 1selected in
Figure 1 c).

Example 3.9. The error bound of f(x) = sin 30
(x2+2)2 +1 for x ∈

[
0, r+3

r+4

]
, (ρr) = 1,

(ξr) = r and (ρr) = r, (ξr) = r2. It can be seen from the table below that the error
in approximation to this function is smaller when (ρr) = r, (ξr) = r2.
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, ,

Figure 1. Approximation to function f

n Error Bounds for (ρr) = 1, (ξr) = r n Error Bound for(ρr) = r, (ξr) = r2

10 2.893844918 10 0.8267063506
102 2.964092648 102 0.2219790137
103 2.964094871 103 0.06877279786
104 2.964094872 104 0.02170248013
105 2.964094872 105 0.006861490344
106 2.964094872 106 0.001755626608
107 2.964094872 107 0.0006861332312
108 2.964094872 108 0.0002169743338
109 2.964094872 109 0.00006861330746

Table 1. The error bounds of f by different sequnces.

4. Conclusions

In this study, which is defined on a mobile range and examined the important
approach features of the operator; It is thought that it will shape their studies by
approaching the functions and will guide the researchers who cannot work on a
fixed interval.
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Abstract. Metric fixed-point theory has been extensively studied with vari-

ous perspectives. One of them is to generalize the used metric space such as

S-metric and b-metric spaces. Another approach is to solve the raised open
problems such as the Rhoades’ discontinuity problem. We combine these two

approaches and consider the set of simulation functions to present new solu-

tions to the Rhoades’ discontinuity problem on the existence of a self-mapping
which has a fixed point but is not continuous at the fixed point on an S-metric

and a b-metric space.

1. Introduction and Motivation

Recently, the set of simulation functions defined in [15] has been used for metric
fixed-point theory and generalizations to solve some open problems (for example,
see [6, 14, 15, 16, 17, 21, 25, 29, 31, 32]).

Recall that the function ζ : [0,∞)×[0,∞) → R is said to be a simulation function
in the Khojasteh et al.’s sense, if the following hold:

(ζ1) ζ(0, 0) = 0,
(ζ2) ζ(t, s) < s− t for all s, t > 0,
(ζ3) If {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0,

then
lim sup
n→∞

ζ(tn, sn) < 0.

The set of all the simulation functions is denoted by Z (see [15] and [6] for more
details).

In [31], Roldán-López-de-Hierro et al. modified this definition of simulation
functions. For this purpose, only the condition (ζ3) was replaced by the following
condition (ζ3)

∗ as follows:

Date: June 16, 2022.
2000 Mathematics Subject Classification. 54H25; 47H09; 47H10.
Key words and phrases. Discontinuity problem, Simulation function, S-metric space, b-metric

space.
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(ζ3)
∗ If {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0

and

tn < sn for all n ∈ N,

then

lim sup
n→∞

ζ(tn, sn) < 0.

Every simulation function in the Khojasteh et al.’s sense is also a simulation
function in the Roldán-López-de-Hierro et al.’s sense, the converse is not true (for
example see Example 3.3 in [31]).

Some examples of simulation functions ζ : [0,∞)× [0,∞) → R are

• ζ(t, s) = λs− t, where λ ∈ [0, 1),
• ζ(t, s) = s − φ(s) − t, where φ : [0,∞) → [0,∞) is a continuous function

such that φ(t) = 0 if and only if t = 0,
• ζ(t, s) = sϕ(s) − t, where ϕ : [0,∞) → [0, 1) is a mapping such that
lim supϕ(t)

t→r+
< 1 for all r > 0,

• ζ(t, s) = η(s) − t, where φ : [0,∞) → [0,∞) be an upper semi-continuous
mapping such that η(t) < t for all t > 0 and η(0) = 0,

• ζ(t, s) = s −
t∫
0

ψ(t)dt, where ψ : [0,∞) → [0, 1) is a function such that

t∫
0

ψ(t)dt exists and
ε∫
0

ψ(u)du > ε for each ε > 0.

For study metric fixed-point theory, one of the used approaches is to generalize
a metric space. For this aim, the notion of an S-metric space defined in [33] as
follows:

An S-metric on a nonempty setX is a function S : X×X×X → [0,∞) satisfying
the subsequent conditions:

(S1) S(x, y, z) = 0 if and only if x = y = z,
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a), for all x, y, z, a ∈ X.

The pair (X,S) is known as an S-metric space.
The following theorem establishes the association of an S-metric with a b-metric

[1].

Theorem 1.1. [34] Let (X,S) be an S-metric space and

dS(x, y) = S(x, x, y),

x, y ∈ X. Then

(1) dS is a b-metric on X,
(2) xn → x in (X,S) if and only if xn → x in (X, dS),
(3) {xn} is a Cauchy sequence in (X,S) if and only if {xn} is a Cauchy se-

quence in (X, dS).

The b-metric dS arises from S-metric S.

Relationships between a metric and an S-metric have been studied in many
works (see [10], [11], and [23] for more details). Let (X, d) be a metric space. Hieu
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et al. gave the following relation between a metric and an S-metric space [11]: The
function Sd : X ×X ×X → [0,∞) defined by

(1.1) Sd(x, y, z) = d(x, z) + d(y, z), x, y, z ∈ X,

is an S-metric on X. Here Sd is called the S-metric that generated from the metric
d [23]. But, there may exist an S-metric which is not obtained from a metric as
seen in the following example:

Example 1.2. [23] Suppose the function S : R × R × R → [0,∞) is defined on R
as follows:

S(x, y, z) = |x− z|+ |x+ z − 2y| , x, y, z ∈ X,

then S is an S-metric on X which is not generated from any standard metric d.

Now, consider an S-metric space (X,S). Gupta [10] showed that each S-metric
describes a metric such as:

(1.2) dS(x, y) = S(x, x, y) + S(y, x, x), x, y ∈ X.

However, the function dS does not always describe a metric since all the elements of
X do not verify the triangle inequality everywhere as seen in the following example
(see, [23] for more details):

Example 1.3. [23] Suppose the function S : X × X × X → [0,∞) is defined on
X = {1, 2, 3} as:

S(x, y, z) =

{
1, if x ̸= y ̸= z

0, if x = y = z
,

S(1, 1, 2) = S(2, 2, 1) = 5, S(2, 2, 3) = S(3, 3, 2) = S(1, 1, 3) = S(3, 3, 1) = 2,

x, y, z ∈ X, then S is an S-metric on X which does not satisfy the equality (1.2)
for any standard metric dS .

In this paper, we focus on the Rhoades’ discontinuity problem (see, [30]) at
fixed point using the properties of simulation functions on both S-metric and b-
metric spaces. We obtain new solutions to this problem. Some recent solutions
of this problem have been given in the literature using different techniques (see
[2, 3, 4, 5, 9, 26, 27, 28, 29] and the references therein) and these solutions are
important because of the applications to some applied areas (for example, see [5,
7, 8, 18, 19, 20, 24]).

In [22], geometric properties of the non-unique fixed points of a self-mapping
have been investigated via simulation functions on metric (resp. S-metric and b-
metric) spaces. The auxiliary numbers M(x, y), MS(x, y) and MdS (x, y) defined
by
(1.3)

M(x, y) = max

{
ad(x, fx) + (1− a)d(y, fy),

(1− a)d(x, fx) + ad(y, fy), d(x,fy)+d(y,fx)
2

}
, (0 ≤ a < 1)

(1.4)

MS(x, y) = max

{
aS(x, x, fx) + (1− a)S(y, y, fy),

(1− a)S(x, x, fx) + aS(y, y, fy), S(x,x,fy)+S(y,y,fx)
4

}
, (0 ≤ a < 1)
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and
(1.5)

MdS (x, y) = max

{
adS(x, fx) + (1− a)dS(y, fy),

(1− a)dS(x, fx) + adS(y, fy), d
S(x,fy)+dS(y,fx)

2

}
, (0 ≤ a < 1)

had an efficient role for investigation of the geometric properties of the non-unique
fixed points and for the studies on the Rhoades’ discontinuity problem (see, [29]
and [22] for more details). Here we will make use of the numbers MS(x, y) and
MdS (x, y). The following symmetry property

(1.6) S (x, x, y) = S (y, y, x) ,

for all x, y ∈ X on an S-metric space (X,S), has also a key role in the studies for
self-mappings of an S-metric space [33].

2. Simulation Functions and the Discontinuity Problem on S-metric
spaces

In this section, we present new solutions to the Rhoades’ problem on disconti-
nuity at fixed point using the properties of simulation functions and the number
MS(x, y) defined in (1.4) with the theory of an S-metric space. To do this, we use
the Jachymski technique (see, [12] and [13]).

Theorem 2.1. Let (X,S) be a complete S-metric space and f : X → X a self-
mapping satisfying the following conditions

(i) Given ε > 0, there exists a δ > 0 such that

ε ≤MS(x, y) < ε+ δ =⇒ S(fx, fx, fy) < ε,

(ii) ζ (S(fx, fx, fy),MS(x, y)) ≥ 0,
for all x, y ∈ X. Then f has a unique fixed point z and the sequence {fnx} for
each x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z,
and if a = 0 then f is discontinuous at z if and only if lim

x→z
MS(x, z) ̸= 0.

Proof. Let x0 be any point inX. Let us define a sequence {xn} inX as xn = fxn−1,
that is, xn = fnx0. If xn = xn+1 for some n then xn = xn+1 = xn+2 . . .. Hence
{xn} is a Cauchy sequence and xn is a fixed point of f . Therefore, we assume that
xn ̸= xn+1 for each n. Hence we obtain

MS(xn−1, xn) = max

{
aS(xn−1, xn−1, xn) + (1− a)S(xn, xn, xn+1),

(1− a)S(xn−1, xn−1, xn) + aS(xn, xn, xn+1),
S(xn−1,xn−1,xn+1)

4

}
.

Using the condition (ii), we get
(2.1)
0 ≤ ζ (S(fxn−1, fxn−1, fxn),MS(xn−1, xn)) = ζ (S(xn, xn, xn+1),MS(xn−1, xn)) .

Suppose that a ̸= 0. Let us consider the following cases:
Case 1. LetMS(xn−1, xn) = aS(xn−1, xn−1, xn)+(1−a)S(xn, xn, xn+1). From

the inequality (2.1) and the condition (ζ2), we have

0 ≤ ζ (S(xn, xn, xn+1), aS(xn−1, xn−1, xn) + (1− a)S(xn, xn, xn+1))

< aS(xn−1, xn−1, xn) + (1− a)S(xn, xn, xn+1)− S(xn, xn, xn+1)

= aS(xn−1, xn−1, xn)− aS(xn, xn, xn+1)
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and so

S(xn, xn, xn+1) < S(xn−1, xn−1, xn).

Case 2. LetMS(xn−1, xn) = (1−a)S(xn−1, xn−1, xn)+aS(xn, xn, xn+1). From
the inequality (2.1) and the condition (ζ2), we get

0 ≤ ζ (S(xn, xn, xn+1), (1− a)S(xn−1, xn−1, xn) + aS(xn, xn, xn+1))

< (1− a)S(xn−1, xn−1, xn) + aS(xn, xn, xn+1)− S(xn, xn, xn+1)

= (1− a)S(xn−1, xn−1, xn)− (1− a)S(xn, xn, xn+1)

and so

S(xn, xn, xn+1) < S(xn−1, xn−1, xn).

Case 3. Let MS(xn−1, xn) =
S(xn−1,xn−1,xn+1)

4 . From the inequality (2.1), the
symmetry property (1.6) and the condition (ζ2), we obtain

0 ≤ ζ

(
S(xn, xn, xn+1),

S(xn−1, xn−1, xn+1)

4

)
<

S(xn−1, xn−1, xn+1)

4
− S(xn, xn, xn+1)

and so

S(xn, xn, xn+1) < S(xn−1, xn−1, xn).

Now assume that a = 0 and we consider the following cases:
Case 1

′
. Let MS(xn−1, xn) = S(xn−1, xn−1, xn). From the inequality (2.1) and

the condition (ζ2), we get

0 ≤ ζ (S(xn, xn, xn+1),S(xn−1, xn−1, xn)) < S(xn−1, xn−1, xn)− S(xn, xn, xn+1)

and so

S(xn, xn, xn+1) < S(xn−1, xn−1, xn).

Case 2
′
. Let MS(xn−1, xn) = S(xn, xn, xn+1). From the inequality (2.1) and

the condition (ζ2), we obtain

0 ≤ ζ (S(xn, xn, xn+1),S(xn, xn, xn+1)) < S(xn, xn, xn+1)− S(xn, xn, xn+1) = 0,

a contradiction.
Case 3

′
. Let MS(xn−1, xn) =

S(xn−1,xn−1,xn)
4 . By the similar arguments used

in Case 3, we find

S(xn, xn, xn+1) < S(xn−1, xn−1, xn).

From the above cases, {S(xn, xn, xn+1)} is a strictly decreasing sequence of pos-
itive real numbers and it tends to a limit α ≥ 0. Let α > 0. Then there exists a
positive integer N such that

(2.2) n ≥ N =⇒ α < S(xn, xn, xn+1) < α+ δ(α),

or equivalently

α < max


aS(xn, xn, fxn) + (1− a)S(xn+1, xn+1, fxn+1),
(1− a)S(xn, xn, fxn) + aS(xn+1, xn+1, fxn+1),

S(xn,xn,fxn+1)
4

 < α+ δ(α).

From the condition (i), we get

S(fxn, fxn, fxn+1) = S(xn+1, xn+1, xn+2) < α,

contradicts with (2.2). So S(xn, xn, xn+1) → 0 as n→ ∞.
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Now we show that {xn} is a Cauchy sequence. On the contrary, we suppose that
it is not Cauchy. Then there exist an ε > 0 and a subsequence {xni} of {xn} such
that

(2.3) S(xni
, xni

, xni+1
) > 2ε.

Let us select δ in the condition (i) such that 0 < δ ≤ ε. Since lim
n→∞

S(xn, xn, xn+1) =

0, then there exists an integer N > 0 such that

(2.4) S(xn, xn, xn+1) <
δ

12
,

whenever n ≥ N . Let ni > N . Then there exist integers mi such that ni < mi <
ni+1 and

(2.5) S(xni , xni , xmi) ≥ ε+
δ

3
.

If not, using the inequalities (2.4), (2.5) and the symmetry property (1.6), we obtain

S(xni
, xni

, xni+1
) = S(xni+1

, xni+1
, xni

)

≤ 2S(xni+1
, xni+1

, xni+1−1) + S(xni
, xni

, xni+1−1)

<
2δ

12
+ ε+

δ

3
= ε+

δ

2
< 2ε,

a contradiction with the inequality (2.3). Let m∗
i be the smallest of mi satisfying

ni < mi < ni+1 and

(2.6) S(xni
, xni

, xm∗
i
) ≥ ε+

δ

3
.

Then we have

S(xni , xni , xm∗
i −1) < ε+

δ

3
.

From the inequality (2.6), the condition (ii) and the condition (ζ2), we get

ε < ε+
δ

3
≤ S(xni

, xni
, xm∗

i
) = S(fxni−1, fxni−1, fxm∗

i −1) < MS(xni−1, xm∗
i −1)

= max


aS(xni−1, xni−1, xni) + (1− a)S(xm∗

i −1, xm∗
i −1, xm∗

i
),

(1− a)S(xni−1, xni−1, xni
) + aS(xm∗

i −1, xm∗
i −1, xm∗

i
),

S(xni−1,xni−1,xm∗
i
)+S(xm∗

i
−1,xm∗

i
−1,xni

)

4


≤ max

{
S(xni−1, xni−1, xni) + S(xm∗

i −1, xm∗
i −1, xm∗

i
),

S(xni−1, xni−1, xm∗
i
) + S(xm∗

i −1, xm∗
i −1, xni

)

}
≤ max

{
S(xni−1, xni−1, xni

) + S(xm∗
i −1, xm∗

i −1, xm∗
i
),

S(xni−1, xni−1, xni) + S(xm∗
i −1, xm∗

i −1, xni)

}
= S(xni−1, xni−1, xni) + S(xm∗

i −1, xm∗
i −1, xni)

<
δ

12
+ ε+

δ

3
= ε+

5δ

12
< ε+ δ.(2.7)

By the inequality (2.7) and the condition (i), we get

S(fxni−1, fxni−1, fxm∗
i −1) ≤ ε,

that is,

S(xni
, xni

, xm∗
i
) ≤ ε
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which contradicts with the inequality (2.6). Hence {xn} is Cauchy. Using the
completeness hypothesis, there exists a point z ∈ X such that

lim
n→∞

xn = lim
n→∞

fnx0 = z.

Now we prove that z is a fixed point of f , that is, fz = z. Conversely, we assume
that fz ̸= z. Let us consider the following two cases:

Case (i). Let a = 0. For sufficiently large n, we obtain

MS(xn, z) = max

{
S(z, z, fz),S(xn, xn, fxn),

S(xn, xn, fz) + S(z, z, fxn)
4

}
= max

{
S(z, z, fz), α1,

S(xn, xn, fz) + α2

4

}
= S(z, z, fz),

where lim
n→∞

αi = 0(i ∈ {1, 2}). By the conditions (ii) and (ζ2), we get

0 ≤ ζ (S(fxn, fxn, fz),MS(xn, z)) = ζ (S(fxn, fxn, fz),S(z, z, fz))
and so taking a limit for n→ ∞, we obtain

0 ≤ lim
n→∞

ζ (S(fxn, fxn, fz),S(z, z, fz)) < 0,

a contradiction. Hence it should be fz = z.
Case (ii). Let a ̸= 0. For sufficiently large n, we find

MS(xn, z) = max

{
aS(xn, xn, fxn) + (1− a)S(z, z, fz),

(1− a)S(xn, xn, fxn) + aS(z, z, fz), S(xn,xn,fz)+S(z,z,fxn)
4

}
= max

{
α1 + (1− a)S(z, z, fz), α2 + aS(z, z, fz), S(xn, xn, fz) + α3

4

}
= α,

where α < S(z, z, fz) and lim
n→∞

αi = 0 (i ∈ {1, 2, 3}). Using the conditions (ii) and

(ζ2), we get

0 ≤ ζ (S(fxn, fxn, fz),MS(xn, z)) = ζ (S(fxn, fxn, fz), α)
< α− S(fxn, fxn, fz)

and so taking a limit for n→ ∞, we obtain

0 ≤ α− S(z, z, fz) < 0,

a contradiction. So it should be fz = z.
Under the above cases, z is a fixed point of f . We show that the fixed point z is

a unique fixed point. On the contrary, suppose w is another fixed point of f such
that z ̸= w. Therefore, we find

MS(z, w) = max

{
aS(z, z, fz) + (1− a)S(w,w, fw),

(1− a)S(z, z, fz) + aS(w,w, fw), S(z,z,fw)+S(w,w,fz)
4

}
=

S(z, z, w)
2

and using the conditions (ii) and (ζ2), we have

0 ≤ ζ (S(fz, fz, fw),MS(z, w)) = ζ

(
S(z, z, w), S(z, z, w)

2

)
<

S(z, z, w)
2

− S(z, z, w) = −S(z, z, w)
2

,



ON DISCONTINUITY PROBLEM VIA SIMULATION FUNCTIONS 49

a contradiction. It should be z = w. Hence z is a unique fixed point of f . To
prove the last part of this theorem, we show that f is continuous at z if and only
if lim

x→z
MS(x, z) = 0. Assume that f is continuous at the fixed point z and xn → z

as n→ ∞. Using the continuity of f , we have fxn → fz = z and by the condition
(ζ2), we obtain

S(xn, xn, fxn) ≤ 2S(xn, xn, z) + S(fxn, fxn, z) → 0,

as n → ∞. So we get lim
n→∞

MS(xn, z) = 0. Conversely, if lim
n→∞

MS(xn, z) = 0

then S(xn, xn, fxn) → 0 as xn → z, which implies fxn → z = fz, that is, f is
continuous at the fixed point z. □

We give the following corollaries. To do this, we suppose that the self-mapping
f satisfies the condition (i) of Theorem 2.1 in all of the following corollaries.

If the following condition holds

S(fx, fx, fy) ≤ λMs(x, y), λ ∈ [0, 1)

for all x, y ∈ X, then f has a unique fixed point z and the sequence {fnx} for each
x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z, and
if a = 0 then f is discontinuous at z if and only if lim

x→z
MS(x, z) ̸= 0.

Proof. Let us consider the mapping ζ1 : [0,∞)
2 → R defined by

ζ1(t, s) = λs− t,

for all s, t ∈ [0,∞) [15]. Then f satisfies the condition (ii) of Theorem 2.1 with
respect to ζ1 ∈ Z. Hence, the proof can be easily obtained by taking ζ = ζ1 in
Theorem 2.1. □

If the following condition holds

S(fx, fx, fy) ≤Ms(x, y)− φ (Ms(x, y)) ,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is lower semi continuous function and
φ−1(0) = {0}, then f has a unique fixed point z and the sequence {fnx} for each
x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z, and
if a = 0 then f is discontinuous at z if and only if lim

x→z
MS(x, z) ̸= 0.

Proof. Let us consider the mapping ζ2 : [0,∞)
2 → R defined by

ζ2(t, s) = s− φ(s)− t,

for all s, t ∈ [0,∞) [15]. Then f satisfies the condition (ii) of Theorem 2.1 with
respect to ζ2 ∈ Z. Therefore, the proof can be easily obtained by taking ζ = ζ2 in
Theorem 2.1. □

If the following condition holds

S(fx, fx, fy) ≤ ϕ (Ms(x, y))Ms(x, y),

for all x, y ∈ X, where ϕ : [0,∞) → [0, 1) is a mapping such that lim sup
t→r+

ϕ(t) < 1

for all r > 0, then f has a unique fixed point z and the sequence {fnx} for each
x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z, and
if a = 0 then f is discontinuous at z if and only if lim

x→z
MS(x, z) ̸= 0.
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Proof. Let us consider the mapping ζ3 : [0,∞)
2 → R defined by

ζ3(t, s) = sϕ(s)− t,

for all s, t ∈ [0,∞) [15]. Then f satisfies the condition (ii) of Theorem 2.1 with
respect to ζ3 ∈ Z. Therefore, the proof can be easily obtained by taking ζ = ζ3 in
Theorem 2.1. □

If the following condition holds

S(fx, fx, fy) ≤ η (Ms(x, y)) ,

for all x, y ∈ X, where η : [0,∞) → [0,∞) is an upper semi continuous mapping
such that η(t) < t for all t > 0 and η(0) = 0, then f has a unique fixed point z and
the sequence {fnx} for each x ∈ X converges to the fixed point z. If 0 < a < 1
then f is continuous at z, and if a = 0 then f is discontinuous at z if and only if
lim
x→z

MS(x, z) ̸= 0.

Proof. Let us consider the mapping ζ4 : [0,∞)
2 → R defined by

ζ4(t, s) = η(s)− t,

for all s, t ∈ [0,∞) [15]. Then f satisfies the condition (ii) of Theorem 2.1 with
respect to ζ4 ∈ Z. Therefore, the proof can be easily obtained by taking ζ = ζ4 in
Theorem 2.1. □

If the following condition holds

S(fx,fx,fy)∫
0

ψ(u)du ≤Ms(x, y),

for all x, y ∈ X, where ψ : [0,∞) → [0,∞) is a function such that
ε∫
0

ψ(u)du exists

and
ε∫
0

ψ(u)du > ε for each ε > 0, then f has a unique fixed point z and the

sequence {fnx} for each x ∈ X converges to the fixed point z. If 0 < a < 1
then f is continuous at z, and if a = 0 then f is discontinuous at z if and only if
lim
x→z

MS(x, z) ̸= 0.

Proof. Let us consider the mapping ζ5 : [0,∞)
2 → R defined by

ζ5(t, s) = s−
t∫

0

ψ(u)du,

for all s, t ∈ [0,∞) [15]. Then f satisfies the condition (ii) of Theorem 2.1 with
respect to ζ5 ∈ Z. Therefore, the proof can be easily obtained by taking ζ = ζ5 in
Theorem 2.1. □
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3. Discontinuity Problem on b-Metric Spaces

In this section, we give some solutions to the Rhoades’ discontinuity problem
on b-metric spaces using Theorem 1.1 and the number MdS (x, y) defined in (1.5).
The followings are natural consequences of the proved discontinuity results in the
previous section and so the proofs of them are clear.

Theorem 3.1. Let (X, dS) be a complete b-metric space and f : X → X a self-
mapping satisfying the following conditions

(i) Given ε > 0, there exists a δ > 0 such that

ε ≤MdS (x, y) < ε+ δ =⇒ dS(fx, fy) < ε,

(ii) ζ
(
dS(fx, fy),MdS (x, y)

)
≥ 0,

for all x, y ∈ X. Then f has a unique fixed point z and the sequence {fnx} for
each x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z,
and if a = 0 then f is discontinuous at z if and only if lim

x→z
MdS (x, z) ̸= 0.

In all of the following corollaries, suppose that the self-mapping f satisfies the
condition (i) of Theorem 3.1.

If the following condition holds

dS(fx, fy) ≤ λMdS (x, y), λ ∈ [0, 1)

for all x, y ∈ X, then f has a unique fixed point z and the sequence {fnx} for each
x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z, and
if a = 0 then f is discontinuous at z if and only if lim

x→z
MdS (x, z) ̸= 0.

If the following condition holds

dS(fx, fy) ≤MdS (x, y)− φ (MdS (x, y)) ,

for all x, y ∈ X, where φ : [0,∞) → [0,∞) is lower semi continuous function and
φ−1(0) = {0}, then f has a unique fixed point z and the sequence {fnx} for each
x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z, and
if a = 0 then f is discontinuous at z if and only if lim

x→z
MdS (x, z) ̸= 0.

If the following condition holds

dS(fx, fy) ≤ ϕ (MdS (x, y))MdS (x, y),

for all x, y ∈ X, where ϕ : [0,∞) → [0, 1) is a mapping such that lim sup
t→r+

ϕ(t) < 1

for all r > 0, then f has a unique fixed point z and the sequence {fnx} for each
x ∈ X converges to the fixed point z. If 0 < a < 1 then f is continuous at z, and
if a = 0 then f is discontinuous at z if and only if lim

x→z
MdS (x, z) ̸= 0.

If the following condition holds

dS(fx, fy) ≤ η (MdS (x, y)) ,

for all x, y ∈ X, where η : [0,∞) → [0,∞) is an upper semi continuous mapping
such that η(t) < t for all t > 0 and η(0) = 0, then f has a unique fixed point z and
the sequence {fnx} for each x ∈ X converges to the fixed point z. If 0 < a < 1
then f is continuous at z, and if a = 0 then f is discontinuous at z if and only if
lim
x→z

MdS (x, z) ̸= 0.
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If the following condition holds

dS(fx,fy)∫
0

ψ(u)du ≤MdS (x, y),

for all x, y ∈ X, where ψ : [0,∞) → [0,∞) is a function such that
ε∫
0

ψ(u)du exists

and
ε∫
0

ψ(u)du > ε for each ε > 0, then f has a unique fixed point z and the

sequence {fnx} for each x ∈ X converges to the fixed point z. If 0 < a < 1
then f is continuous at z, and if a = 0 then f is discontinuous at z if and only if
lim
x→z

MdS (x, z) ̸= 0.
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Matemáticas, 113(3), 2923-2957, (2019).

[7] L.J. Cromme, I. Diener. Fixed Point Theorems for Discontinuous Mapping. Mathematical

Programming. 51(2), 257-267, (1991).

[8] L.J. Cromme, Fixed Point Theorems for Discontinuous Functions and Applications, Proceed-

ings of the Second World Congress of Nonlinear Analysts, Part 3 (Athens, 1996). Nonlinear

Analysis. 30(3), 1527-1534, (1997).
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ABSTRACT. In this study, the existence and uniqueness of common fixed points of com-
patible mappings satisfying F*-contraction are proved in the modular metric spaces. More-
over, some corollaries related to the main theorem are given.

1. INTRODUCTION

In 2008, Chistyakov introduced the notion of modular metric spaces, which has a phys-
ical interpretation [1] and he gave the fundamental properties of modular metric spaces
[2]. Some authors proved different type fixed point theorems in modular metric spaces
[6, 7, 9, 10].

Jungck gave some common fixed point theorems for commuting mappings satisfying
contractive type conditions in 1976 [4]. Afterwards, he introduced the more generalized
concept compatibility than commutativity and weak commutativity in metric space and
proved common fixed point theorems [5].

In 2012, Wardowski introduced the concept of F-contraction as follows:[12]

Definition 1.1. Let F : R+ → R be a mapping satisfying:

(F1) F is strictly increasing,
(F2) For each sequence {αn}n∈N of positive numbers lim

n→∞
αn = 0 if and only if

lim
n→∞

F(αn) =−∞,

(F3) There exists k ∈ (0,1) such that lim
α→0+

αkF(α) = 0.

F is the family of all functions F that satisfy the conditions (F1), (F2) and (F3).
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Definition 1.2. Let (X ,d) be metric space. A self-mapping T on X is called an F-
contraction if there exist F ∈ F and τ ∈ R+ such that

(1.1) d(T x,Ty)> 0 ⇒ τ +F(d(T x,Ty))≤ F(d(x,y))

for each x,y ∈ X .

In 2016, Piri and Kumam described a large class of functions by replacing the condition
(F2) in the definition of F-contraction introduced by Wardowski with the following one:

(F2′) F is continuous on R+.
They denoted by FG the family of all functions F : R+ →R which satisfy conditions (F1)
and (F2′). Using these families, Piri and Kumam introduced the modified generalized F-
contractions and gave some fixed point result for these type mappings on complete metric
space[13].

In this study, we prove the existence and uniqueness of common fixed points of compat-
ible mappings satisfying F∗-contraction in the modular metric spaces. Moreover, we give
some corollaries related to the main theorem.

2. PRELIMINARIES

Here, we express a series of definitions of some basic concepts related to modular metric
spaces.

Definition 2.1. [11] Let X be a linear space on R. If a functional ρ : X → [0,∞] satisfies
the following conditions, we call that ρ is a modular on X :

(1) ρ(0) = 0;
(2) If x ∈ X and ρ(αx) = 0 for all numbers α > 0, then x = 0;
(3) ρ(−x) = ρ(x), for all x ∈ X ;
(4) ρ(αx+βy)≤ ρ(x)+ρ(y) for all α,β ≥ 0 with α +β = 1 and x,y ∈ X .

Let X ̸= /0 and λ ∈ (0,∞). Generally, a function ω : (0,∞)×X ×X → [0,∞] is denoted
as ωλ (x,y) = ω(λ ,x,y) for all x,y ∈ X and λ > 0.

Definition 2.2. [2] Let X ̸= /0. A function ω : (0,∞)×X ×X → [0,∞], which satisfies the
following conditions for all x,y,z ∈ X , is called a metric modular on X :
(m1) ωλ (x,y) = 0 for all λ > 0 ⇔ x = y;
(m2) ωλ (x,y) = ωλ (y,x) for all λ > 0;
(m3) ωλ+µ(x,y)≤ ωλ (x,z)+ωµ(z,y) for all λ ,µ > 0.

If 0 < µ < λ , from properties of metric modular, we obtain that

ωλ (x,y)≤ ωλ−µ(x,x)+ωµ(x,y) = ωµ(x,y)

for all x,y ∈ X .
From [2, 3], we know that for a fixed x0 ∈ X , the set

Xω = Xω(x0) = {x ∈ X : ωλ (x,x0)→ 0 as λ → ∞}
is said to be modular metric space.

Definition 2.3. [7] Let ω be a metric modular in X , Xw be a modular metric space induced
by ω , {xn}n∈N be a sequence in Xω and C ⊆ Xω . Then
(1) {xn}n∈N is called a convergent sequence such that xn → x, x ∈ Xω , if for λ > 0

ωλ (xn,x)→ 0 as n → ∞.
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(2) {xn}n∈N is called a Cauchy sequence, if for λ > 0

ωλ (xn,xm)→ 0 as m,n → ∞.

(3) C is called closed, if the limit of a convergent sequence in C always belong to C.
(4) C is called complete modular, if every Cauchy sequence {xn}n∈N in C is convergent in
C.

Definition 2.4. [4] Self maps f and g of a metric space (X ,d) are said to be commuting if
f g(x) = g f (x) for all x ∈ X .

Definition 2.5. [5] Self maps f and g of a metric space (X ,d) are said to be compatible
if lim

n→∞
d( f g(xn),g f (xn)) = 0 whenever {xn}n∈N is a sequence in X such that lim

n→∞
f xn =

lim
n→∞

gxn = t.

Lemma 2.6. [5] If f and g are compatible self maps of a metric space (X ,d) and lim
n→∞

f xn =

lim
n→∞

gxn = t in X, then lim
n→∞

g f xn = f t, if f is continuous.

We can rewrite the above definitions and lemma for modular metric spaces.

Definition 2.7. Self maps f and g of a modular metric space Xw are said to be commuting
if f g(x) = g f (x) for all x ∈ Xw.

Definition 2.8. Self maps f and g of a modular metric space Xw are said to be compatible
if lim

n→∞
ωλ ( f g(xn),g f (xn)) = 0 whenever {xn}n∈N is a sequence in Xw such that lim

n→∞
f xn =

lim
n→∞

gxn = t.

Lemma 2.9. If f and g are compatible self maps of a modular metric space Xw and
lim
n→∞

f xn = lim
n→∞

gxn = t in Xw, then lim
n→∞

g f xn = f t, if f is continuous.

3. MAIN RESULTS

Definition 3.1. Let ω be a metric modular in X , Xw be a modular metric space induced
by ω . A pair of self mappings ( f ,g) in Xw is said to be a F∗-contraction if there exists
F ∈ FG and τ > 0 such that

(3.1) τ +F(ωλ (gx,gy))≤ F(ωλ ( f x, f y))

for all gx ̸= gy in Xw and for all λ > 0, where FG is the family of all functions F : R+ →R
such that

(1) F is strictly increasing.
(2) F is continuous on R+.

Remark 3.2. Let f and g be two self mappings in modular metric space Xw such that

τ +F(ωλ (gx,gy))≤ F(ωλ ( f x, f y))

where τ > 0 and F ∈ FG for all gx ̸= gy and λ > 0. Then
(a) ωλ (gx,gy)< ωλ ( f x, f y) for all gx ̸= gy and λ > 0.
(b) g is continuous, whenever f is continuous.

Theorem 3.3. Let ω be a metric modular in X, Xw be a complete modular metric space
induced by ω and ( f ,g) be a pair of F∗-contraction, compatible self mappings in Xw. Let
f be continuous and g(X)⊆ f (X). Then f and g have a unique common fixed point in Xw.
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Proof. Let x0 ∈ Xw be arbitrary. Since g(X)⊆ f (X), there exists x1 ∈ Xw such that f x1 =
gx0. By continue this process, we get f xn = gxn−1 for all n > 0. We show that { f xn}n∈N is
a Cauchy sequence. Then from (3.1) we get

F(ωλ ( f xn+1, f xn)) = F(ωλ (gxn,gxn−1))

< τ +F(ωλ (gxn,gxn−1))

≤ F(ωλ ( f xn, f xn−1))

for all n > 0 and λ > 0. Since F is strictly increasing, we have

ωλ ( f xn+1, f xn)< ωλ ( f xn, f xn−1)

for all n> 0 and λ > 0. Then we can say that {ωλ ( f xn+1, f xn)}n∈N is a positive decreasing
sequence of real numbers. Hence this sequence converges to a limit r ≥ 0. We show that
r = 0. We assume that r > 0. Then we get r ≤ ωλ ( f xn+1, f xn) for all n > 0 and λ > 0.
Using equation (3.1), we have

F(r) ≤ F(ωλ ( f xn+1, f xn))

= F(ωλ (gxn,gxn−1))

≤ F(ωλ ( f xn, f xn−1))− τ

= F(ωλ (gxn−1,gxn−2))− τ

≤ F(ωλ ( f xn−1, f xn−2))−2τ

...
≤ F(ωλ ( f x1, f x0))−nτ

for all n > 0 and λ > 0. Since F(r)∈R and lim
n→∞

[F(ωλ ( f x1, f x0))−nτ] =−∞, there exists
n1 > 0 such that

F(ωλ ( f x1, f x0))−nτ < F(r)
for all n > n1 and λ > 0. Thus we get

F(r)≤ F(ωλ ( f x1, f x0))−nτ < F(r)

for all n > n1 and λ > 0, which is a contradiction. Hence we have

lim
n→∞

ωλ ( f xn+1, f xn) = 0

for all λ > 0. So for each λ > 0, we have for all ε > 0 there exists n0 ∈ N such that
ωλ ( f xn+1, f xn) < ε for all n ∈ N with n ≥ n0. Without loss of generality, we suppose
m,n ∈ N and m > n. We can say that for λ

m−n > 0, there exists n λ
m−n

∈ N such that

ω λ
m−n

( f xn+1, f xn)<
ε

m−n

for all m,n ≥ λ

m−n ∈ N. Then we have

ωλ ( f xn, f xm) < ω λ
m−n

( f xn+1, f xn)+ω λ
m−n

( f xn+2, f xn+1)+ · · ·+ω λ
m−n

( f xm, f xm−1)

<
ε

m−n
+

ε

m−n
+ · · ·+ ε

m−n
= ε

for all m,n ≥ n λ
m−n

∈ N. This is implies that { f xn}n∈N is a Cauchy sequence. Since Xw is
complete, we have

lim
n→∞

f xn = lim
n→∞

gxn = t
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for some t ∈ X . Now from (3.1), we get

F(ωλ (gx,gy))< τ +F(ωλ (gx,gy))≤ F(ωλ ( f x, f y))

for all gx ̸= gy and λ > 0. Then g is continuous, as f is continuous. Therefore, we say that
g f xn → gt and f gxn → f t as n → ∞. Since f and g compatible, by Lemma 2.9, g f xn → f t
and they commute at their coincidence points. So we get

(3.2) f ( f t) = f (gt) = g( f t) = g(gt).

We show that g(gt) = gt. We suppose that g(gt) ̸= gt. Then we get

F(ωλ (gt,g(gt))) < τ +F(ωλ (gt,g(gt)))

≤ F(ωλ ( f t, f (gt)))

= F(ωλ (gt,g(gt)))

for all λ > 0. This is a contradiction. So we get g(gt)= gt. Using (3.2), we say that f (gt)=
g(gt) = gt. Then gt is a common fixed point of f and g. Now we show the uniqueness
of the common fixed point. We suppose that there exist x ̸= y such that x = f x = gx and
y = f y = gy, then we get from (3.1)

F(ωλ (gx,gy))< τ +F(ωλ (gx,gy))≤ F(ωλ ( f x, f y)) = F(ωλ (gx,gy))

for all λ > 0. This is a contradiction. Therefore, f and g have a unique common fixed
point in Xw. □

Corollary 3.4. Let ω be a metric modular in X, Xw be a complete modular metric space
induced by ω . f and g be commuting self mappings in Xw such that f be continuous and
g(X)⊆ f (X). If there exists F ∈ FG, τ > 0 and a positive integer k such that

τ +F(ωλ (g
kx,gky))≤ F(ωλ ( f x, f y))

for all gx ̸= gy in Xw and for all λ > 0, then f and g have a unique common fixed point in
Xw.

Proof. gk commutes with f and gk(X)⊆ g(X)⊆ f (X). From Theorem 3.3, f and gk have
a unique common fixed point in Xw. Let z be this fixed point. Then

(3.3) z = f (z) = gk(z).

On the other hand, since f and g commute, using equality (3.3), we obtain that

g(z) = g( f (z)) = f (g(z)) = gk(g(z)).

Then g(z) is a common fixed point of f and gk. That contradicts with uniqueness of the
common fixed point z. Therefore, z = g(z) = f (z). Then f and g have a unique common
fixed point in Xw. □

Corollary 3.5. Let ω be a metric modular in X, Xw be a complete modular metric space
induced by ω . f and g be commuting self mappings in Xw such that f be continuous and
g(X)⊆ f (X). If there exists α ∈ (0,1) and a positive integer k such that

(3.4) ωλ (g
kx,gky)≤ ωλ ( f x, f y)

for all x,y ∈ Xw and λ > 0, then f and g have a unique common fixed point in Xw.
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Proof. If we take ln on both sides of equation 3.4, then we get

ln(ωλ (g
kx,gky))≤ ln(ωλ ( f x, f y))

for all λ > 0. So we get

ln
1
α
+ ln(ωλ (g

kx,gky))≤ ln(ωλ ( f x, f y))

for all λ > 0. Since α ∈ (0,1), we can take as τ = ln 1
α
> 0. And, let F(α) = ln(α).

Then F is strictly increasing and continuous on (0,∞). From Corollary 3.4, f and g have a
unique common fixed point in Xw. □
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Abstract. This work presents some new existence theorems for fixed-circles

of self-mappings on metric spaces. To do this, we obtain new conditions us-
ing the Caristi type contractive condition. Also, we confirm our results by

illustrative examples.

1. Introduction and Preliminaries

Fixed point theory on metric spaces has been widely studied in the literature. In
the last years, fixed-circle results with a geometric interpretation of this theory have
been obtained in the context of both metric spaces and generalized metric spaces
[1]-[15]. In this paper, we introduce new fixed-circle theorems for self-mappings on
metric spaces.

This section provides some necessary definitions and concepts related to metric
spaces.

Definition 1.1. A metric space is a set X together with a function d (called a
metric or distance function) which assigns a real number d(x, y) to every pair x, y ∈
X satisfying the properties:

(M1) d(x, y) ≥ 0,
(M2) d(x, y) = d(y, x),
(M3) d(x, y) = 0 if and only if x = y,
(M4) d(x, y) ≤ d(x, z) + d(z, y).

Definition 1.2. Let X be a nonempty set and T : X → X be a self-mapping. The
point x ∈ X satisfying Tx = x is called a fixed point of the self-mapping T.

Özgür and Taş [6] first proposed the concept of a fixed-circle on metric spaces
in the study carried out in 2019.

Definition 1.3. [6] Let (X, d) be a metric space and Cx0,r = {x ∈ X : d(x, x0) = r}
be a circle. For a self-mapping T : X → X, if Tx = x for every x ∈ Cx0,r, then the
circle Cx0,r is called the fixed-circle of T .
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2. Some New Existence Conditions for Fixed-Circles on Metric
Spaces

Now, we give the following existence theorems for a fixed-circle using Caristi
type contractive condition [16].

Theorem 2.1. Let (X, d) be a metric space and Cx0,r be any circle on X. Define
the mapping

(2.1) ϕ : X → [0,∞), ϕ(x) = d(x, x0)

for all x ∈ X. In this case, if the self-mapping T : X → X satisfies the following
conditions

(1) d(x, Tx) ≤ r2

r+ϕ(x) −
1
2ϕ(Tx),

(2) d(Tx, x0) ≥ r
for all x ∈ Cx0,r, then the circle Cx0,r is a fixed-circle of the mapping T .

Proof. Let X be a nonempty set and d is a metric on X. Let Cx0,r be a circle in
(X, d) metric space. Think the function ϕ : X → [0,∞) as defined in (2.1) and
take T : X → X. For any arbitrary x ∈ Cx0,r, we claim that x = Tx, that is, x is a
fixed-point of T. Together with the condition (1) and the definition of ϕ, we obtain

d(x, Tx) ≤ r2

r + ϕ(x)
− 1

2
ϕ(Tx)

=
r2

r + d(x, x0)
− 1

2
d(Tx, x0)

=
r2

r + r
− 1

2
d(Tx, x0)

=
r

2
− 1

2
d(Tx, x0)

=
1

2
(r − d(Tx, x0))(2.2)

Since the condition (2) is satisfied, the point Tx should be lies on or exterior
of the circle Cx0,r. Hence, there are two cases. If the point Tx is the exterior of
the circle, that is, d(Tx, x0) > r, we obtain a contraction because of the inequality
(2.2). In this case, it should be d(Tx, x0) = r, that is the point Tx should be lies
on the circle. Thus, we obtain

d(x, Tx) ≤ 1

2
(r − d(Tx, x0))

=
1

2
(r − r)

= 0.

This gives Tx = x. Consequently, the self-mapping T fixes the circle Cx0,r. □

Next, we present a fixed-circle example.

Example 2.1. Let (R, d) be the usual metric space. Let us take the circle C0,5. If
we define T : R → R by

Tx =

{
x , x ∈ C0,5

10 , otherwise
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for all x ∈ R, then T confirms that the conditions (1) and (2) in Theorem 2.1.
Hence, the circle C0,5 is a fixed-circle of T.

Now, in the following examples, we provide some examples of self-mappings that
satisfy the condition (1) and do not satisfy the condition (2) and right after it,
which fulfil the condition (2) and do not fulfil the condition (1).

Example 2.2. Let (X, d) be any metric and Cx0,r be any circle on X. Let α be
chosen such that d(α, x0) = ρ < r and consider the self-mapping T : X → X defined
by

Tx = α

for all x ∈ X. Since the self-mapping T does not fix the circle Cx0,r, at least one of
the conditions of Theorem 2.1 (the condition (2)) is not satisfied.

Example 2.3. Let (R, d) be the usual metric space. Let us consider the circle C1,2.
Define T : R → R by

Tx =

{
3 , x ∈ {−1, 3}
5 , otherwise

for all x ∈ R. Since the self-mapping T does not fix the circle Cx0,r, at least one of
the conditions of Theorem 2.1 (the condition (1)) is not satisfied.

In the following example does not meet either the condition(1) or the condition
(2).

Example 2.4. Let (X, d) be any metric and Cx0,r be any circle on X. Define
T : X → X as Tx = x0 for x ∈ X. Since the self-mapping T does not fix the circle
Cx0,r, at least one of the conditions of Theorem 2.1 (both the condition (1) and the
condition (2)) is not satisfied.

We give another existence theorem for fixed-circles.

Theorem 2.2. Let (X, d) be a metric space and Cx0,r be any circle on X. Let the
mapping ϕ be defined as (2.1). In this case, if the self-mapping T : X → X satisfies
the following conditions

(3) d(x, Tx) ≤ max{ϕ(x),ϕ(Tx)}−r
min{ϕ(x),ϕ(Tx)}+r ,

(4) d(Tx, x0) ≤ r
for all x ∈ Cx0,r, then the circle Cx0,r is a fixed-circle of the mapping T .

Proof. Let us consider the mapping ϕ defined in (2.1). Let x ∈ Cx0,r be any
arbitrary point. We show that Tx = x whenever x ∈ Cx0,r. Using the condition
(3) and the definition of ϕ, we obtain

d(x, Tx) ≤ max{ϕ(x), ϕ(Tx)} − r

min{ϕ(x), ϕ(Tx)}+ r

=
max{d(x, x0), d(Tx, x0)} − r

min{d(x, x0), d(Tx, x0)}+ r

=
max{r, d(Tx, x0)} − r

min{r, d(Tx, x0)}+ r

Since the condition (4) is satisfied, the point Tx should be lies on or interior of
the circle Cx0,r. Therefore, there are two cases. That is, either d(Tx, x0) < r or
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d(Tx, x0) = r. In both cases, we obtain

d(x, Tx) ≤ max{r, d(Tx, x0)} − r

min{r, d(Tx, x0)}+ r
=

r − r

d(Tx, x0) + r
= 0

and so we find Tx = x. Consequently, Cx0,r is a fixed-circle of T. □

Next, we present a fixed-circle example.

Example 2.5. Let (R, d) be the usual metric space. Let us take the circle C0,2. If
we define T : R → R by

Tx =
3x+ 4

√
2√

2x+ 3

for all x ∈ R, then T confirms that the conditions (3) and (4) in Theorem 2.2.
Hence, the circle C0,2 is a fixed-circle of T.

In the next example, we present an example of a self-mapping which verifies the
condition (3) and does not verify the condition (4).

Example 2.6. Let (X, d) be any metric and Cx0,r be any circle on X. Let α be
chosen such that d(α, x0) = ρ > r and consider the self-mapping T : X → X defined
by

Tx = α

for all x ∈ X. Since the self-mapping T does not fix the circle Cx0,r, at least one of
the conditions of Theorem 2.2 (the condition (4)) is not satisfied.

Example 2.7. Let (R, d) be the usual metric space. Let us think the circle C0,4

and define the self-mapping T : R → R as

Tx =

{
3 , x ∈ {−4, 4}
7 , otherwise

for all x ∈ R. Since the self-mapping T does not fix the circle Cx0,r, at least one of
the conditions of Theorem 2.2 (the condition (3)) is not satisfied.

Now, we prove another existence fixed-circle theorem on metric spaces.

Theorem 2.3. Let (X, d) be a metric space and Cx0,r be any circle on X. Let the
mapping ϕ be defined as (2.1). Suppose that the following conditions hold:

(5) d(x, Tx) ≤ 1− eϕ(Tx)−ϕ(x)

(6) d(Tx, x0) ≥ r
for all x ∈ Cx0,r such that T : X → X. Then, the circle Cx0,r is a fixed-circle of T .

Proof. Let x ∈ Cx0,r be any arbitrary point. Together with (5), we obtain

d(x, Tx) ≤ 1− eϕ(Tx)−ϕ(x) = 1− ed(Tx,x0)−r.(2.3)

Because of the condition (6), the point (Tx) should be lies on or exterior of the
circle Cx0,r. Then, we have two cases. If d(Tx, x0) > r, then using (2.3) we obtain
a contradiction. Therefore, it should be d(Tx, x0) = r. If d(Tx, x0) = r, then using
(2.3) we get

d(x, Tx) ≤ 1− ed(Tx,x0)−r = 1− er−r = 1− 1 = 0

and so we find Tx = x. As a result, Cx0,r is a fixed-circle of T. □
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Example 2.8. Let (R, d) be the usual metric space. Let us consider the circle C0,1

and define the self-mapping T : R → R as

Tx =

{
1
x , x ∈ C0,1

3 , otherwise

for all x ∈ R. Then, the self-mapping T satisfy the conditions (5) and (6). Obvi-
ously, T fixs the circle C0,1.

Example 2.9. Let X = R and the mapping d : X2 → R be defined by

d(x, y) = |ex − ey|

for all x, y ∈ X. Let us take the circle C0,3 and define the self-mapping T : X → X
by

Tx =

{
ln5 , x ∈ C0,3

ln2 , otherwise

for all x ∈ X. Since the self-mapping T does not fix the circle Cx0,r, at least one of
the conditions of Theorem 2.3 (the condition (5)) is not satisfied.

Remark 2.1. The ones in the literature provide the uniqueness of the obtained
existence theorems (see [6] ).

3. Conclusion

In this paper, we obtain some new existence conditions for fixed-circle theorems
on metric spaces. The relevant researchers can investigate the uniqueness conditions
different from those in the literature of these existence theorems.
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[2] N. Mlaiki, U. Çelik, N. Taş, N.Y. Özgür, A. Mukheimer, Wardowski type contractions and

the fixed-circle problem on S-metric spaces, J. Math., Art. ID 9127486, 9, (2018).
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[13] N. Taş,Various types of fixed-point theorems on S-metric spaces, J. BAUN Inst. Sci. Technol,
20(2), 211-223, (2018).

[14] A. Tomar, M. Joshi, , S.K. Padaliya, Fixed point to fixed circle and activation function in
partial metric space, Journal of Applied Analysis, (2021).
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Abstract. The fixed point theory is an important research area in various

disciplines. Moreover, this theory has wide theoretical and application areas

in mathematics. In this work, the convergence of an iteration method under
integral type conditions for a given mapping class has been shown. In ad-

dition, by using the definition of stability given by Harder and Hicks, it has

been shown that this iteration method is stable under integral type conditions.

1. Introduction and Preliminaries

Theorem 1.1. [1] Let (X, d) be a complete metric space, λ ∈ (0, 1), and let T :
X → X be a mapping such that for each x, y ∈ X,

d(Tx, Ty) ≤ λd(x, y)(1.1)

then T has a unique fixed point p ∈ X such that for each x ∈ X, limn→∞ Tnx = p.

Definition 1.2. [2, 3] Let T : X → X. Define a fixed point iteration scheme by
xn+1 = f(T, xn) such that {xn} converges to a fixed point p of T . Let {yn} be an
arbitrary sequence in X. Define

εn = ‖yn+1 − f(T, yn)‖

for n ≥ 1. A fixed point iteration scheme is said to be T -stable if the following
condition is satisfied:

lim
n→∞

εn = 0 if and only if lim
n→∞

yn = p.

Lemma 1.3. [4] Let {bn}∞n=0 and {dn}∞n=0 be nonnegative real sequences satisfying
the following inequality:

bn+1 ≤ (1− rn) bn + dn
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where rn ∈ (0, 1) for all n ∈ N,
∞∑
n=0

rn = ∞ and limn→∞
dn
rn

= 0. Then bn → 0 as

n→∞.

Theorem 1.4. [5] Let (X, d) be a complete metric space, λ ∈ (0, 1), and let T :
X → X be a mapping such that for each x, y ∈ X,∫ d(Tx,Ty)

0

ϕ(t)dt ≤ λ
∫ d(x,y)

0

ϕ(t)dt(1.2)

where ϕ : [0,∞) → [0,∞) is Lebesgue-integrable mapping which is summable (i.e.,
with finite integral) on each compact subset of [0,∞) nonnegative, and such that
for each ε > 0,

∫ ε
0
ϕ(t)dt > 0; then T has a unique fixed point p ∈ X such that for

each p ∈ X, limn→∞ Tnx = p.

Lemma 1.5. [6] Let (X, d) be a complete metric space and ϕ : R+ → R+ a
Lebesgue-Stieltjes integrable mapping which is summable, nonnegative, and such
that for each ε > 0,

∫ ε
0
ϕ(t)dt. Suppose that {un}∞n=0, {vn}∞n=0 ⊂ X and {an}∞n=0 ⊂

(0, 1) are sequances such that be nonnegative real sequences satisfying the following
inequality: ∣∣∣∣∣d(un, vn)−

∫ d(un,vn)

0

ϕ(t)dt

∣∣∣∣∣ ≤ an,
with limn→∞ an = 0.Then,

d(un, vn)− an ≤
∫ d(un,vn)

0

ϕ(t)dt ≤ d(un, vn) + an.

2. Fixed Point Algorithms

The general form of the iterative algorithm is as follows:
Let (X, d) be a metric space and T : X→X is self mapping.

(2.1)

{
x0 ∈ X

xn+1 = f(xn, T ) n = 0, 1, 2, ...

in which X is an arbitrary space, x0 is initial point, T : X → X is an operator, and
f is some function.
In 1890, Picard [7] defined Picard iterative algorithm as follows:

Algorithm 2.1. Let (X, d) be a metric space and T : X→X is self mapping.

(2.2)

{
x0 ∈ C

xn+1 = Txn n = 0, 1, 2, ...

In 1953, Mann [8] introduced Mann iterative algorithm as follows:

Algorithm 2.2. Let (X, d) be a metric space and T : X→X is self mapping.

(2.3)

{
x0 ∈ C

xn+1 = (1− αn)xn + αnTxn n = 0, 1, 2, ...

in which {αn}∞n=0 ∈ [0, 1],
∑∞
n=0 αn=∞.

The Ishikawa iterative algorithm given in [9] is defined by



FIXED POINT THEOREMS 69

Algorithm 2.3. Let C be nonempty convex subset of a norm space (X, ‖.‖) and
T : C→C is self mapping.

(2.4)


x0 ∈ C

xn+1 = (1− αn)xn + αnTyn

yn = (1− β)xn + βnTxn n = 0, 1, 2, ...

in which {αn}∞n=0, {βn}∞n=0 ∈ [0, 1],
∑∞
n=0 αn=∞.

Noor [10] proposed an iterative algorithm as follows:

Algorithm 2.4. Let C be nonempty convex subset of a norm space (X, ‖.‖) and
T : C→C is self mapping.

(2.5)


x0 ∈ C

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTzn

zn = (1− γn)xn + γnTxn n = 0, 1, 2, ...

in which {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 ∈ [0, 1],
∑∞
n=0 αn=∞.

Karakaya et al. established an iterative algorithm in [11] as follows:

Algorithm 2.5. Let C be nonempty convex subset of a norm space (X, ‖.‖) and
T : C→C is self mapping.

(2.6)


x0 ∈ C

xn+1 = (1− αn − βn) yn + αnTyn + βnTzn

yn = (1− an − bn) zn + anTzn + bnTxn

zn = (1− cn)xn + cnTxn n = 0, 1, 2, ...

in which {αn + βn}∞n=0, {an + bn}∞n=0 ∈ [0, 1],
∑∞
n=0 (αn + βn)=∞.

3. convergence and stability

Theorem 3.1. [12] Let C be nonempty closed convex subset of a Banach space
(X, ‖.‖), T : C→C satisfy condition (1.2) with ϕ : [0,∞) → [0,∞) is Lebesgue-
integrable mapping which is summable, nonnegative, and such that for each ε > 0,∫ ε
0
ϕ(t)dt > 0. Let {xn}∞n=0 be a sequence generated by Algorithm 2.5 with control

sequences. Then, the iterative sequence {xn}∞n=0 converges to the fixed point of T .

Proof. By using Algorithm 2.5, Lemma 1.5, and condition (1.2), we have

(3.1)

∫ ‖xn+1−p‖

0

ϕ(t)dt = ‖xn+1 − p‖+ kn

≤ (1− αn − βn)

∫ ‖yn−p‖
0

ϕ(t)dt

+ λαn

∫ ‖yn−p‖
0

ϕ(t)dt+ λβn

∫ ‖zn−p‖
0

ϕ(t)dt+ 2kn

and

(3.2)
∫ ‖zn−p‖
0

ϕ(t)dt ≤ (1− cn)

∫ ‖xn−p‖
0

ϕ(t)dt+ λcn

∫ ‖xn−p‖
0

ϕ(t)dt+ 2kn
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and
(3.3)∫ ‖yn−p‖

0

ϕ(t)dt ≤ (1− an − bn) (1− cn)

∫ ‖xn−p‖
0

ϕ(t)dt

+ λcn (1− an − bn)

∫ ‖xn−p‖
0

ϕ(t)dt+ λbn

∫ ‖xn−p‖
0

ϕ(t)dt

+ λan(1− cn)

∫ ‖xn−p‖
0

ϕ(t)dt+ λ2ancn

∫ ‖xn−p‖
0

ϕ(t)dt+ 6kn

Substituting (3.2) and (3.3) in (3.1), we obtain

(3.4)
∫ ‖xn+1−p‖

0

ϕ(t)dt ≤ (1− (αn + βn)(1− λ))

∫ ‖xn−p‖
0

ϕ(t)dt+ 16kn

Taking the limit on both sides of (3.4) and using limn→∞ kn = 0 and Lemma 1.3,
we get limn→∞ ‖xn − p‖ = 0.

�

Corollary 3.2. [12] Let C be nonempty closed convex subset of a Banach space
(X, ‖.‖), T, S : C→C satisfy condition (1.2) with ϕ : [0,∞) → [0,∞) is Lebesgue-
integrable mapping which is summable, nonnegative, and such that for each ε > 0,∫ ε
0
ϕ(t)dt > 0. Let {xn}∞n=0 be a sequence generated by Algorithm 2.5 with the

control sequences. Then, the iterative sequence {xn}∞n=0 converges to common fixed
point of T and S.

Theorem 3.3. [12] Let C be nonempty closed convex subset of a Banach space
(X, ‖.‖), T, S : C→C satisfy condition (1.2) with ϕ : [0,∞) → [0,∞) is Lebesgue-
integrable mapping which is summable, nonnegative, and such that for each ε > 0,∫ ε
0
ϕ(t)dt > 0. Let {xn}∞n=0 be a sequence generated by Algorithm 2.5 with the

control sequences. Then, the iterative sequence {xn}∞n=0 converges to common fixed
point of T . Then, the Algorithm 2.5 is stable.

Proof. Let {yn}∞n=0 be an arbitrary sequence, limn→∞ ε = 0 such that
εn = ‖yn+1 − f(T, yn)‖. We have

(3.5)


yn+1 = (1− αn − βn) sn + αnTsn + βnTzn

sn = (1− an − bn) zn + anTzn + bnTyn

zn = (1− cn) yn + cnTyn n = 0, 1, 2, ...

in which {αn + βn}∞n=0, {an + bn}∞n=0 ∈ [0, 1],
∑∞
n=0 (αn + βn)=∞.

(3.6)

∫ ‖yn+1−p‖

0

ϕ(t)dt = ‖yn+1 − p‖+ kn

≤
∫ εn

0

ϕ(t)dt+ (1− αn − βn)

∫ ‖sn−p‖
0

ϕ(t)dt

+ λαn

∫ ‖sn−p‖
0

ϕ(t)dt+ λβn

∫ ‖zn−p‖
0

ϕ(t)dt+ 3kn

and

(3.7)
∫ ‖zn−p‖
0

ϕ(t)dt ≤ (1− cn)

∫ ‖yn−p‖
0

ϕ(t)dt+ λcn

∫ ‖yn−p‖
0

ϕ(t)dt+ 2kn
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and
(3.8)∫ ‖sn−p‖

0

ϕ(t)dt ≤ (1− an − bn) (1− cn)

∫ ‖yn−p‖
0

ϕ(t)dt

+ λcn (1− an − bn)

∫ ‖yn−p‖
0

ϕ(t)dt+ λbn

∫ ‖yn−p‖
0

ϕ(t)dt

+ λan(1− cn)

∫ ‖yn−p‖
0

ϕ(t)dt+ λ2ancn

∫ ‖yn−p‖
0

ϕ(t)dt+ 6kn

Substituting (3.7) and (3.8) in (3.6), we obtain
(3.9)∫ ‖yn+1−p‖

0

ϕ(t)dt ≤ (1− (αn + βn)(1− λ))

∫ ‖yn−p‖
0

ϕ(t)dt+

∫ εn

0

ϕ(t)dt+ 15kn

Taking the limit on both sides of (3.9) and using limn→∞ kn = 0 and Lemma 1.3,
we get limn→∞ ‖yn − p‖ = 0.
Suppose that limn→∞ ‖yn − p‖ = 0
(3.10)∫ εn

0

ϕ(t)dt ≤
∫ ‖yn+1−p‖

0

ϕ(t)dt+ (1− (αn + βn)(1− λ))

∫ ‖yn−p‖
0

ϕ(t)dt+ 15kn.

Taking the limit both side of the above inequality, we have limn→∞
∫ εn
0
ϕ(t)dt =

0. �

Corollary 3.4. [12] Let C be nonempty closed convex subset of a Banach space
(X, ‖.‖), T, S : C→C satisfy condition (1.2) with ϕ : [0,∞) → [0,∞) is Lebesgue-
integrable mapping which is summable, nonnegative, and such that for each ε > 0,∫ ε
0
ϕ(t)dt > 0. Let {xn}∞n=0 be a sequence generated by Algorithm 2.5 with the

control sequences. Then, the iterative sequence {xn}∞n=0 converges to common fixed
point of T and S. Then, the Algorithm 2.5 is stable.
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Abstract. This work aims to examine the complex behaviors of a conformable
fractional order predator-prey model. For this purpose, two-dimensional dis-

crete system of the model is created by using of a discretization process based

on the use of piecewise constant arguments. Then, we use the Schur-Cohn
criterion to obtain the necessary and sufficient conditions for the stability of

the equilibrium points. Finally, numerical simulations are used to show that

the analytical results are correct.

1. Introduction

In recent years, there has been a significant increase in the use of fractional
derivatives in many disciplines such as biology, mathematics, chemistry and physics,
as the fractional derivative is more convenient than the integer derivative in model-
ing [1, 2, 3, 7, 4, 5, ?, 6]. The fractional derivative gives an excellent instrument for
the description of memory and hereditary properties of various materials and pro-
cesses. Mohammed et al. [7] have investigated Lotka-Volterra based of COVID-19
model as follows:

(1.1)

{
Dαx(t) = ax(t)− bx(t)y(t) + ey(t)

Dαy(t) = bx(t)y(t) + (c− d− e) y(t), 0 < α ≤ 1

where the healthy individual population by x(t) at time t and the infected individual
population is given by y(t) at time t. Let b > 0 represents the infection rate (1-
protection rate), the immigration rate of healthy individuals is given by a > 0, and
c > 0 will introduce the immigration rate of infected individuals. Finally, the death
rate is given by d > 0 and the cure rate is given by e > 0.

There are many definitions of the fractional derivative and one of them is con-
formable derivative in [8] which is introduced by Khalil et al. According to this
definition, the left conformable fractional derivative starting from a of the function
f : [a,∞) → ∞ of order 0 < α ≤ 1 is given by
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(1.2) (T aαf)(t) = lim
ϵ→0

f(t+ ϵ(t− a)1−α)− f(t)

ϵ

and the right conformable fractional derivative of order 0 < α ≤ 1 terminating at
b of f is defined by

(1.3) (bαTf)(t) = − lim
ϵ→0

f(t+ ϵ(b− t)1−α)− f(t)

ϵ
.

Note that if f is differentiable then

(1.4) (T aαf)(t) = (t− a)1−αf ′(t) , (bαTf)(t) = −(b− t)1−αf ′(t).

The aim of this study is to investigate dynamic behavior of a conformable frac-
tional order COVID-19 model with piecewise constant arguments that is given as
follows ;

(1.5)

{
Tαx(t) = ax(t)− bx(t)y

(
[ th ]h

)
+ ey

(
[ th ]h

)
Tαy(t) = bx

(
[ th ]h

)
y(t) + (c− d− e) y(t)

where [t] denotes the integer part of t ∈ [0,∞) and h > 0 is a discretization
parameter.

2. Discretization process

In here, we discretize the model (1.5) using the discretization method introduced
in [9]. Using the left conformable fractional derivative (1.5), one gets

(2.1) (t− nh)1−α
dx(t)

dt
+ (by(nh)− a)x(t) = ey(nh).

From (2.1),

(2.2) x′(t) +
(by(nh)− a)

(t− nh)1−α
x(t) =

ey(nh)

(t− nh)1−α
.

The equation 2.2 is multiplied by e(by(nh)−a)
(t−nh)α

α gives

(2.3)
d

dt

(
x(t)e(by(nh)−a)

(t−nh)α

α

)
=

ey(nh)

(t− nh)1−α
e(by(nh)−a)

(t−nh)α

α ,

where t ∈ [nh, (n + 1)h). Integrating both sides of 2.3 with respect to t on [nh, t)
we obtain

(2.4) x(t)e(by(nh)−a)
(t−nh)α

α − x(nh) =
ey(nh)

(by(nh)− a)
e(by(nh)−a)

(t−nh)α

α − 1]

Let t → (n+ 1)h in equation 2.4 and replacing x(nh) and y(nh) by x(n) and y(n)
yields

(2.5) x(n+ 1) = (x(n)− ey(n)

(by(n)− a)
)e(a−by(n))

hα

α +
ey(n)

by(n)− a
.

Using the same procedures, discretizing the second equation of the system (1.5)

(2.6) Tαy(t) = bx

(
[
t

h
]h

)
y(t) + (c− d− e) y(t)

obtains to the following difference equation

(2.7) y(n+ 1) = y(n)e(bx(n)+c−d−e)
hα

α .
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From the equation (2.5) and (2.7), we obtain the two-dimensional discrete system
as follows:

(2.8)

{
x(n+ 1) = (x(n)− ey(n)

(by(n)−a) )e
(a−by(n))hα

α + ey(n)
by(n)−a

y(n+ 1) = y(n)e(bx(n)+c−d−e)
hα

α

.

3. Stability Analysis

In this section,, we examine local asymptotic stability of the system 2.8. As can
be easily seen, the system 2.8 and the system 1.1 have the same equilibrium points

and those are E0 = (0, 0) and E1 =

(
e+ d− c

b
,
a(e+ d− c)

b(d− c)

)
where d ̸= c. From

these, E0 is the trivial and E1 is coexistence equilibrium points.

Theorem 3.1. The trivial equilibrium point of the system 2.8 is saddle when the
immigration rate of infected individuals is less than the summation of the death rate
and the cure rate (c < d+ e), otherwise it is unstable node (c > d+ e).

Proof. The Jacobian matrix of the system 2.8 about E0 = (0, 0) is

J =

(
e

ahα

α (e
ahα

α − 1) ea
0 e(c−d−e)

hα

α

)
and has eigenvalues λ1 = e

ahα

α > 1 and λ2 = e(c−d−e)
hα

α which imply that |λ2| < 1
for c < d+ e. Therefore, the equilibrium point E0 is a saddle point. □

Theorem 3.2. Let the death rate be bigger than the immigration rate of infected
individuals (i.e. d > c). The coexistence equilibrium point of the system 2.8 is local

asymptotically stable if and only if e > (c+d)2hα

α−dhα+chα .

Proof. The Jacobian of the system 2.8 at E1 is

J =

 e
aehα

(c−d)α
(c−d)2(e

aehα

(c−d)α −1)
ae

a(c− d− e)hα

(c− d)α
1


and its characteristic equation is

(3.1) λ2 + p1λ+ p0 = 0

where

p0 = e
aehα

(c−d)α +
(d− c)(d− c+ e)(1− e

aehα

(c−d)α )

eα
and

p1 = −1− e
aehα

(c−d)α .

For the stability conditions of E1, we consider the Jury conditions which are defined
as below 1 + p1 + p0 > 0, 1− p1 + p0 > 0 and 1− p0 > 0.

Putting values d > c, the condition 1 + p1 + p0 > 0 yields

(d− c)(1− e
aehα

(c−d)α )(d− c+ e)hα

eα
> 0

and from 1− p1 + p0 > 0, we get

2 + 2e
aehα

(c−d)α +
(d− c)(1− e

aehα

(c−d)α )(d− c+ e)hα

eα
> 0
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Figure 1. Stable equilibrium point of the system (2.8) for pram-
eter values a = 0.1, b = 0.2, c = 0.01, d = 0.2, h = 0.5, α = 0.75,
e = 0.08 and (x0, y0) = (0.25, 0.3).
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Figure 2. Graph of iteration solution of the system (2.8) for e =
0.0411632. The other parameters and initial conditions are the
same as Figure (1).

those always hold. Furthermore, if e > (c+d)2hα

α−dhα+chα , then we have

(e
aehα

(c−d)α − 1)(c2hα + d2hα + dehα − c(2d+ e)hα − eα)

eα
> 0

which implies that 1− p0 > 0.
Thus, the proof is completed. □
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Abstract. Assume that ω1, ω2, ω3 are any weight functions on Rn. Let

m (ξ, η) be a bounded, measurable function on Rn× Rn. One defines

Bm (f, g) (x) =

∫
Rn

∫
Rn

f̂ (ξ) ĝ (η)m (ξ, η) e2πi⟨ξ+η,x⟩dξdη

for all f, g ∈ C∞
c (Rn). We say that m (ξ, η) is a bilinear multiplier on Rn of

type (WL (p1 (.) , q1 (.) , r1,ω1; p2 (.) , q2 (.) , r2, ω2; p3 (.) , q3 (.) , r3, ω3)) if Bm

is bounded operator from
W

(
Lp1(.),q1(.), Lr1

ω1

)
× W

(
Lp2(.),q2(.), Lr2

ω2

)
to W

(
Lp3(.),q3(.), Lr3

ω3

)
where

pi (.) , qi (.) , ri ∈ ℘1 ([0, l]) , (i = 1, 2, 3). We denote by

BM (WL (p1 (.) , q1 (.) , r1,ω1; p2 (.) , q2 (.) , r2, ω2; p3 (.) , q3 (.) , r3, ω3)) the vec-
tor space of bilinear multipliers of type

(WL (p1 (.) , q1 (.) , r1,ω1; p2 (.) , q2 (.) , r2, ω2; p3 (.) , q3 (.) , r3, ω3)). In this

work, we consider some properties of this space and we find examples of these
bilinear multipliers.

1. Introduction

We denote by C∞
c (Rn) the space of infinitely differentiable complex-valued func-

tions with compact support on Rn. For 1 ≤ p ≤ ∞, Lp (Rn) denotes the usual
Lebesque space. Assume that f is a complex valued measurable function on Rn.

For f ∈ L1 (Rn), the Fourier transform of f is denoted by f̂ . It is known that f̂
is a continuous function on Rn, which vanishes at infinity and it has the inequality∥∥∥f̂∥∥∥

∞
≤ ∥f∥1 [6]. The translation and character operators Tx, Mx are defined by

Txf (y) = f (y − x) and Mxf (y) = e2πi⟨x,y⟩f (y) , respectively for x, y ∈ Rn. For
1 ≤ p ≤ ∞ and 1

p + 1
p′ = 1, one gets

(Txf) ˆ (ξ) =M−xf̂ (ξ) , (Mxf) ˆ (ξ) = Txf̂ (ξ) .

Date: June 16, 2022.
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A continuous function ω satisfying 1 ≤ ω (x) and ω (x+ y) ≤ ω (x)ω (y) for x, y ∈
Rn will be called a weight function on Rn. If ω1 (x) ≤ ω2 (x) for all x ∈ Rn, we
say that ω1 ≤ ω2. For 1 ≤ p ≤ ∞, we set Lp

ω (Rn) = {f : fω ∈ Lp (Rn)} [6]. The
distribution function of f is given by

λf (y) = µ ({x ∈ Rn : |f (x)| > y}) =
∫

{x∈R:|f(x)|>y}

dµ (x) .

The rearrangement function of f is given by

f∗ (t) = inf {y > 0 : λf (y) ≤ t} = sup {y > 0 : λf (y) > t} , t ≥ 0.

Also, the average function of f is defined to be

f∗∗ (t) =
1

t

t∫
0

f∗ (s) ds

[8]. Assume that 0 < l ≤ ∞. We use the notations

p− = inf
x∈[0,l]

p (x) , p+ = sup
x∈[0,l]

p (x) .

Also assume that Pa = {p : a < p− ≤ p+ <∞} , a ∈ R. In this work, we take
the special cases of the Pa with a = 0 or a = 1. The set ℘ [0, l] is the family of
p ∈ L∞ ([0, l]) such that there exist the limits p (0) = lim

x→0
p (x), p (∞) = lim

x→∞
p (x)

and we have

|p (x)− p (0)| ≤ C

ln 1
|x|

, |x| ≤ 1

2
(C > 0)

and

(1.1) |p (x)− p (∞)| ≤ C

ln (e+ |x|)
, (C > 0) .

If l = ∞, then it’s enough to the inequality (1.1) satisfies. We also denote
℘a ([0, l]) = ℘ ([0, l])∩Pa ([0, l]) [4]. Let Ω be an open set in Rn.We denote l = µ (Ω).
Assume that p, q ∈ ℘0 ([0, l]) . The variable exponent Lorentz space Lp(.),q(.)(Ω) is
defined as the set of all (equivalence classes) measurable functions f on Ω such that
ρp,q(f) <∞ [4], where

(1.2) ρp,q (f) =

l∫
0

t
q(t)
p(t)

−1 (f∗ (t))
q(t)

dt.

We use the notation

∥f∥1Lp(.),q(.)(Ω) = inf

{
λ > 0 : ρp,q(

f

λ
) ≤ 1

}
.

The space Lp(.),q(.)(Ω) is a normed vector space with norm

∥f∥Lp(.),q(.)(Ω) = inf

{
λ > 0 : ρp,q(

f

λ
) ≤ 1

}
,
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where

ρp,q (f) =

l∫
0

t
q(t)
p(t)

−1 (f∗∗ (t))
q(t)

dt.

Many researchers worked on Wiener amalgam spaces in [3], [5], [7], [12]. Some
of characterization of these spaces has been given in [1]. In [11], a kind of gen-
eralization of W

(
Lp(.),q(.), Lr

ω

)
has been given. Let p (.) , q (.) , r ∈ ℘1 ([0, l]). The

space
(
Lp(.),q(.) (Rn)

)
loc

consists classes of measurable functions f on Rn such that

fχK ∈ Lp(.),q(.) (Rn) for any compact subset K ⊂ Rn, where χK is the charac-
teristic function of K. Fix compact set Q ⊂ Rn and Qo ̸= ∅. The weighted
variable exponent Wiener amalgam space W

(
Lp(.),q(.), Lr

ω

)
consists of all elements

f ∈
(
Lp(.),q(.) (Rn)

)
loc

such that Ff (z) = ∥fχz+Q∥Lp(.),q(.) belongs to Lr
ω (Rn); the

norm of W
(
Lp(.),q(.), Lr

ω

)
is ∥f∥W(Lp(.),q(.),Lr

ω)
= ∥Ff∥r,ω. Moreover it is known

that the space C∞
c (Rn) is dense in weighted variable exponent Wiener amalgam

space W
(
Lp(.),q(.), Lr

ω

)
[11].

In this work, we will investigate bilinear multipliers for weighted variable ex-
ponent Wiener amalgam space whose local compenent is variable exponet Lorentz
space.

2. Main Results

Definition 2.1. Let pi (.) , qi (.) , ri ∈ ℘1 ([0, l]) , (i = 1, 2, 3). Assume that ω1, ω2,
ω3 are any weight functions on Rn. Let m (ξ, η) be a bounded, measurable function
on Rn× Rn. One defines

Bm (f, g) (x) =

∫
Rn

∫
Rn

f̂ (ξ) ĝ (η)m (ξ, η) e2πi⟨ξ+η,x⟩dξdη

for all f, g ∈ C∞
c (Rn). Then m is said to be a bilinear multiplier on Rn of type

(WL (p1 (.) , q1 (.) , r1,ω1; p2 (.) , q2 (.) , r2, ω2; p3 (.) , q3 (.) , r3, ω3))
(shortly (WL (pi (.) , qi (.) , ri,ωi))), if there exists C > 0 such that

∥Bm (f, g)∥W(Lp3(.),q3(.),L
r3
ω3)

≤ C ∥f∥W(Lp1(.),q1(.),L
r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

for all f , g ∈ C∞
c (Rn). In other words, Bm extends to a bounded bilinear operator

from W
(
Lp1(.),q1(.), Lr1

ω1

)
×W

(
Lp2(.),q2(.), Lr2

ω2

)
to W

(
Lp3(.),q3(.), Lr3

ω3

)
.

Furthermore, one denotes byBM (WL (p1 (.) , q1 (.) , r1,ω1; p2 (.) , q2 (.) , r2, ω2; p3 (.) , q3 (.) , r3, ω3))
(shortly BM (WL (pi (.) , qi (.) , ri,ωi))) the space of all bilinear multipliers of type

(WL (p1 (.) , q1 (.) , r1,ω1; p2 (.) , q2 (.) , r2, ω2; p3 (.) , q3 (.) , r3, ω3)) and the norm;

∥m∥WL(p1(.),q1(.),r1,ω1;p2(.),q2(.),r2,ω2;p3(.),q3(.),r3,ω3)
= ∥Bm∥ ,

or briefly

∥m∥WL(pi(.),qi(.),ri,ωi)
= ∥Bm∥ .

Theorem 2.2. Let 1
p3(x)

+ 1
p′
3(x)

= 1, 1
q3(x)

+ 1
q′3(x)

= 1, 1
r3
+ 1

r′3
= 1, q3 (−x) = q3 (x),

p3 (−x) = p3 (x) and ω3 be symetric weight function. Thenm ∈ BM (WL (pi (.) , qi (.) , ri,ωi))
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if and only if there exists C > 0 such that∣∣∣∣∣∣
∫
Rn

∫
Rn

f̂ (ξ) ĝ (η) ĥ (ξ + η)m (ξ, η) dξdη

∣∣∣∣∣∣
≤ C ∥f∥W(Lp1(.),q1(.),L

r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

∥h∥
W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

)
for all f , g, h ∈ C∞

c (Rn).

Proof. Suppose that m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)). From Theorem 2.2 in [9],
we have for all f , g, h ∈ C∞

c (Rn)∣∣∣∣∣∣
∫
Rn

∫
Rn

f̂ (ξ) ĝ (η) ĥ (ξ + η)m (ξ, η) dξdη

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Rn

h (y) B̃m (f, g) (y) dy

∣∣∣∣∣∣
(2.1) ≤

∫
Rn

|h (y)|
∣∣∣B̃m (f, g) (y)

∣∣∣ dy,
where B̃m (f, g) (y) = Bm (f, g) (−y). Change the variable −t = u. Then we get

∥∥∥B̃m (f, g)
∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

=
∥∥∥FQ

B̃m(f,g)

∥∥∥
r3,ω3

=
∥∥∥Bm (f, g) (u)χQ+x (−u)∥Lp3(.),q3(.)

∥∥
r3,ω3

(2.2) =
∥∥∥Bm (f, g) (u)χ−Q−x (u)∥Lp3(.),q3(.)

∥∥
r3,ω3

=
∥∥∥F−Q

Bm(f,g) (−x)
∥∥∥
r3,ω3

.

Using the fact that ω3 is symetric weight function and taking −x = y, we find

(2.3)
∥∥∥B̃m (f, g)

∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

=
∥∥∥F−Q

Bm(f,g) (y)
∥∥∥
r3,ω3

.

It is known that the definition of W
(
Lp3(.),q3(.), Lr3

ω3

)
is independed of the choice

of Q [11]. So there exists C > 0 such that

(2.4)
∥∥∥F−Q

Bm(f,g) (y)
∥∥∥
r3,ω3

≤ C1

∥∥∥FQ
Bm(f,g) (y)

∥∥∥
r3,ω3

.

Hence, by (2.3) and (2.4), we have

(2.5)∥∥∥B̃m (f, g)
∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

≤ C1

∥∥∥FQ
Bm(f,g) (y)

∥∥∥
r3,ω3

= C1 ∥Bm (f, g)∥W(Lp3(.),q3(.),L
r3
ω3)

By the assumption m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)) , we write

B̃m (f, g) ∈W
(
Lp3(.),q3(.), Lr3

ω3

)
. Also again, since

m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)), there exists C2 > 0 such that

(2.6)
∥Bm (f, g)∥W(Lp3(.),q3(.),L

r3
ω3)

≤ C2 ∥f∥W(Lp1(.),q1(.),L
r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

.
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Using the inequalities (2.5) and (2.6) , we get
(2.7)∥∥∥B̃m (f, g)

∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

≤ C1C2 ∥f∥W(Lp1(.),q1(.),L
r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

.

From the Theorem 3.4 in [11] and the inequality (2.7), we achieve∣∣∣∣∣∣
∫
Rn

∫
Rn

f̂ (ξ) ĝ (η) ĥ (ξ + η)m (ξ, η) dξdη

∣∣∣∣∣∣
≤
∥∥∥B̃m (f, g)

∥∥∥
W(Lp1(.),q1(.),L

r1
ω1)

∥h∥
W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

)
≤ C1C2 ∥f∥W(Lp1(.),q1(.),L

r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

∥h∥
W

(
Lp′3 ,L

q′3
ω
−1
3

) .

Now assume that there exists a constant C > 0 such that∣∣∣∣∣∣
∫
Rn

∫
Rn

f̂ (ξ) ĝ (η) ĥ (ξ + η)m (ξ, η) dξdη

∣∣∣∣∣∣
(2.8) ≤ C ∥f∥W(Lp1(.),q1(.),L

r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

∥h∥
W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

)
for all f , g, h ∈ C∞

c (Rn). So by (2.8), we rewrite∣∣∣∣∣∣
∫
Rn

h (y) B̃m (f, g) (y) dy

∣∣∣∣∣∣
(2.9) ≤ C ∥f∥W(Lp1(.),q1(.),L

r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

∥h∥
W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

) .

Define a function l from C∞
c (Rn) ⊂W

(
Lp′

3(.),q
′
3(.), L

r′3
ω−1

3

)
to C such that

ℓ (h) =

∫
Rn

h (y) B̃m (f, g) (y) dy.

By (2.9), we can easily say that ℓ is linear and bounded. Using the density

C∞
c (Rn) = W

(
Lp′

3(.),q
′
3(.), L

r′3
ω−1

3

)
, we find that ℓ extends to a bounded function

from W
(
Lp′

3(.),q
′
3(.), L

r′3
ω−1

3

)
to C. Thus we get ℓ ∈

(
W
(
Lp′

3(.),q
′
3(.), L

r′3
ω−1

3

))∗
=

W
(
Lp3(.),q3(.), Lr3

ω3

)
. From the definition of weighted variable exponent Wiener

amlgam space, there exists C3 > 0 such that

(2.10) ∥Bm (f, g)∥W(Lp3(.),q3(.),L
r3
ω3)

≤ C3

∥∥∥B̃m (f, g)
∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

.

From (2.9) and (2.10), we achieve

∥Bm (f, g)∥W(Lp3(.),q3(.),L
r3
ω3)

≤ C3

∥∥∥B̃m (f, g)
∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)
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= C3 ∥ℓ∥ = C3 sup
∥h∥

W

L
p′3(.),q′3(.)

,L
r′3
ω
−1
3

≤1

|l (h)|
∥h∥

W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

)

≤ C3C ∥f∥W(Lp1(.),q1(.),L
r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

.

□

Theorem 2.3. Let ωi (i = 1, 2, 3, 4) be weight functions. Ifm ∈ BM (WL (pi (.) , qi (.) , ri,ωi)) ,
then T(ξ0,η0)m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)) and∥∥T(ξ0,η0)m

∥∥
WL(pi(.),qi(.),ri,ωi)

= ∥m∥WL(pi(.),qi(.),ri,ωi)

for all (ξ0, η0) ∈ R2n.

Proof. Take any f, g ∈ C∞
c (Rn). So, we write

∥M−ξ0f∥W(Lp1(.),q1(.),L
r1
ω1)

=
∥∥∥∥∥∥e2πi⟨−ξ0,.⟩f (.)χz+Q (.)

∥∥∥
Lp1(.),q1(.)

∥∥∥
r1,ω1

= ∥f∥W(Lp1(.),q1(.),L
r1
ω1)

.

Using the same method, we can easily write the equality

∥M−η0g∥W(Lp2(.),q2(.),L
r2
ω2)

= ∥g∥W(Lp2(.),q2(.),L
r2
ω2)

.

Also we have the following equality by [9].

BT(ξ0,η0)m (f, g) (x) = Bm (M−ξ0f,M−η0
g) (x) .

From these equalities and the assumption m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)) , we
get∥∥∥BT(ξ0,η0)m (f, g)

∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

= ∥Bm (M−ξ0f,M−η0
g)∥W(Lp3(.),q3(.),L

r3
ω3)

≤ ∥Bm∥ ∥M−ξ0f∥W(Lp1(.),q1(.),L
r1
ω1)

∥M−η0
g∥W(Lp2(.),q2(.),L

r2
ω2)

= ∥Bm∥ ∥f∥W(Lp1(.),q1(.),L
r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

.

Thus T(ξ0,η0)m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)). Hence, we obtain∥∥T(ξ0,η0)m
∥∥
WL(pi(.),qi(.),ri,ωi)

= ∥m∥WL(pi(.),qi(.),ri,ωi)
.

□

Theorem 2.4. Assume that m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)). Then Φ ∗ m ∈
BM (WL (pi (.) , qi (.) , ri,ωi)) and there exists C > 0 such that

∥Φ ∗m∥WL(pi(.),qi(.),ri,ωi)
≤ C ∥Φ∥1 ∥m∥WL(pi(.),qi(.),ri,ωi)

for all Φ ∈ L1
(
R2n

)
.

Proof. Given f, g ∈ C∞
c (Rn). By Proposition 2.5 in [2]. The following equality is

written

(2.11) BΦ∗m (f, g) (x) =

∫
Rn

∫
Rn

Φ (u, v)BT(ξu,ηv)m (f, g) (x) dudv.

Since m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)) , from Theorem 2.1, we write that T(u,v)m
in the space BM (WL (pi (.) , qi (.) , ri,ωi)) and we have∥∥T(u,v)m∥∥WL(pi(.),qi(.),ri,ωi)

= ∥m∥WL(pi(.),qi(.),ri,ωi)
.
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By the equation (2.11) and the last equality, there exists C > 0 such that

∥BΦ∗m (f, g)∥W(Lp3(.),q3(.),L
r3
ω3)

=

∥∥∥∥∥∥
∥∥∥∥∥∥
∫

Rn

∫
Rn

Φ (u, v)BT(u,v)m (f, g) dudv

χz+Q

∥∥∥∥∥∥
Lp3(.),q3(.)

∥∥∥∥∥∥
r3,ω3

≤ C

∫
Rn

∫
Rn

|Φ (u, v)|
∥∥∥∥∥BT(u,v)m (f, g)χz+Q

∥∥
Lp3(.),q3(.)

∥∥∥
r3,ω3

dudv

= C

∫
Rn

∫
Rn

|Φ (u, v)|
∥∥BT(u,v)m (f, g)

∥∥
W(Lp3(.),q3(.),L

r3
ω3)

dudv

≤ C

∫
Rn

∫
Rn

|Φ (u, v)|
∥∥T(u,v)m∥∥WL(pi(.),qi(.),ri,ωi)

∥f∥W(Lp1(.),q1(.),L
r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

dudv

(2.12) = C ∥m∥WL(pi(.),qi(.),ri,ωi)
∥f∥W(Lp1(.),q1(.),L

r1
ω1)

∥g∥W(Lp2(.),q2(.),L
r2
ω2)

∥Φ∥1 .

Thus we achieve Φ ∗ m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)). Finally from (2.12), we
obtain that

∥Φ ∗m∥WL(pi(.),qi(.),ri,ωi)
≤ C ∥Φ∥1 ∥m∥WL(pi(.),qi(.),ri,ωi)

.

□

Now we will give examples for bilinear multipliers in the following theorems.

Theorem 2.5. Let 1
p3(x)

+ 1
p′
3(x)

= 1, 1
q3(x)

+ 1
q′3(x)

= 1, 1
r3
+ 1

r′3
= 1, q3 (−x) = q3 (x),

p3 (−x) = p3 (x) and ω3 be symetric weight function. If Ψ1 ∈ L1
ω1

(Rn), Ψ2 ∈
L1
ω2

(Rn) and m ∈ BM (WL (p1, q1, r1,ω1; p2, q2, r2, ω2; p3 (.) , q3 (.) , r3, ω3)), then

Ψ̂1 (ξ)m (ξ, η) Ψ̂2 (η) ∈ BM (WL (p1, q1, r1,ω1; p2, q2, r2, ω2; p3 (.) , q3 (.) , r3, ω3)).

Proof. Assume that f, g, h ∈ C∞
c (Rn). From Theorem 2.10 in [9], [10], we know

that∣∣∣∣∣∣
∫
Rn

∫
Rn

f̂ (ξ) ĝ (η) ĥ (ξ + η)m (ξ, η) dξdη

∣∣∣∣∣∣ ≤
∫
Rn

∣∣∣∣h (y) ∼
Bm (f ∗Ψ1, g ∗Ψ2) (y)

∣∣∣∣ dy.
If we use the method in the inequalities (2.1), (2.5) and take the last inequality,
then there exists C > 0 such that∣∣∣∣∣∣

∫
Rn

∫
Rn

f̂ (ξ) ĝ (η) ĥ (ξ + η) Ψ̂1 (ξ)m (ξ, η) Ψ̂2 (η) dξdη

∣∣∣∣∣∣
≤ ∥h∥

W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

) ∥∥∥B̃m (f ∗Ψ1, g ∗Ψ2)
∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

≤ C ∥h∥
W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

) ∥Bm (f ∗Ψ1, g ∗Ψ2)∥W(Lp3(.),q3(.),L
r3
ω3)

≤ C ∥h∥
W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

) ∥Bm∥ ∥f ∗Ψ1∥W(Lp1,q1 ,L
r1
ω1)

∥g ∗Ψ2∥W(Lp2,q2 ,L
r2
ω2)

≤ C ∥Bm∥ ∥Ψ1∥1,ω1
∥Ψ2∥1,ω2

∥f∥W(Lp1,q1 ,L
r1
ω1)

∥g∥W(Lp2,q2 ,L
r2
ω2)

∥h∥
W

(
Lp′3(.),q′3(.),L

r′3
ω
−1
3

) .
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Finally, we conclude that
Ψ̂1 (ξ)m (ξ, η) Ψ̂2 (η) ∈ BM (WL (p1, q1, r1,ω1; p2, q2, r2, ω2; p3 (.) , q3 (.) , r3, ω3)) by
Theorem 2.1. □

Theorem 2.6. Suppose that m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)). If Q1, Q2 ⊂ Rn

are bounded sets, then

h (ξ, η) =
1

µ (Q1 ×Q2)

∫ ∫
Q1×Q2

m (ξ + u, η + v) dudv ∈ BM (WL (pi (.) , qi (.) , ri,ωi)) .

Proof. Take f, g ∈ C∞
c (Rn). The following equality is known by Theorem 2.9 in

[9], [10].

Bh (f, g) (x) =
1

µ (Q1 ×Q2)

∫ ∫
Q1×Q2

BT(−u,−v)m (f, g) (x) dudv

By Theorem 2.3, we achieve

∥Bh (f, g)∥W(Lp3(x),L
q3
ω3)

=

∥∥∥∥∥∥ 1

µ (Q1 ×Q2)

∫ ∫
Q1×Q2

BT(−u,−v)m (f, g) dudv

∥∥∥∥∥∥
W(Lp3(.),q3(.),L

r3
ω3)

≤ 1

µ (Q1 ×Q2)

∥∥∥∥∥∥
∫ ∫
Q1×Q2

∥∥BT(−u,−v)m (f, g)
∥∥
Lp3(.),q3(.)

∥∥∥∥∥∥
r3,ω3

dudv

≤ 1

µ (Q1 ×Q2)

∫ ∫
Q1×Q2

∥∥∥∥∥BT(−u,−v)m (f, g)
∥∥
Lp3(.),q3(.)

∥∥∥
r3,ω3

dudv

=
1

µ (Q1 ×Q2)

∫ ∫
Q1×Q2

∥∥BT(−u,−v)m
(f, g)

∥∥
W(Lp3(.),q3(.),L

r3
ω3)

dudv

≤ 1

µ (Q1 ×Q2)

∫ ∫
Q1×Q2

∥∥T(−u,−v)m
∥∥
WL(pi(.),qi(.),ri,ωi)

∥f∥W(Lp1(.),q1(.),L
r1
ω1)

∥g∥W(Lp2(x),L
q2
ω2)

dudv

= ∥m∥WL(pi(.),qi(.),ri,ωi)
∥f∥W(Lp1(.),q1(.),L

r1
ω1)

∥g∥W(Lp2(x),L
q2
ω2)

.

That means h (ξ, η) ∈ m ∈ BM (WL (pi (.) , qi (.) , ri,ωi)). □

The following theorem gives us inclusion relation between bilinear multipliers
spaces under some conditions.

Theorem 2.7. Let s (0) ≥ o (0), p (0) ≥ t (0), q (0) ≥ u (0), v (0) ≤ o (0) , k (0) ≤
t (0) , l (0) ≤ u (0) , v (0) ≥ r (0) , k (0) ≥ p (0) , l (0) ≥ m (0), s ≤ r, q ≤ m, p ≤ n,
ω3 ≤ υ3, υ2 ≤ ω2, υ1 ≤ ω1. Then

BM [WL (n (.) , k (.) , n, ω1;m (.) , l (.) ,m, ω2; s (.) , o (.) , s, ω3)]

⊂ BM [W (p (.) , t (.) , p, υ1; q (.) , u (.) , q, υ2; r (.) , v (.) , r, υ3)].

Proof. One takes anym ∈ BM [WL (n (.) , k (.) , n, ω1;m (.) , l (.) ,m, ω2; s (.) , o (.) , s, ω3)].
So, there exists C1 > 0 such that

(2.13) ∥Bm (f, g)∥W(Ls(.),o(.),Ls
ω3
) ≤ C1 ∥f∥W(Ln(.),k(.),Ln

ω1
) ∥g∥W(Lm(.),l(.),Lm

ω2)
.
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Moreover by the Theorem 3.5 in [11], we know thatW
(
Ls(.),o(.), Ls

ω3

)
⊂W

(
Lr(.),v(.), Lr

υ3

)
,

W
(
Lp(.),t(.), Lp

υ1

)
⊂W

(
Ln(.),k(.), Ln

ω1

)
andW

(
Lq(.),u(.), Lq

υ2

)
⊂W

(
Lm(.),l(.), Lm

ω2

)
.

Thus, there exist C2 > 0, C3 > 0 and C4 > 0 such that

(2.14) ∥Bm (f, g)∥W(Lr(.),v(.),Lr
υ3
) ≤ C2 ∥Bm (f, g)∥W(Ls(.),o(.),Ls

ω3
) ,

(2.15) ∥f∥W(Ln(.),k(.),Ln
ω1
) ≤ C3 ∥f∥W(Lp(.),t(.),Lp

υ1)
,

and

(2.16) ∥g∥W(Lm(.),l(.),Lm
ω2)

≤ C4 ∥g∥W(Lq(.),u(.),Lq
υ2)

.

If we combine (2.13), (2.14), (2.15) and (2.16), we have

∥Bm (f, g)∥W(Lr(.),v(.),Lr
υ3
) ≤ C1C2C3C4 ∥f∥W(Lp(.),t(.),Lp

υ1)
∥g∥W(Lq(.),u(.),Lq

υ2)
.

Finally we obtain thatm ∈ BM [W (p (.) , t (.) , p, υ1; q (.) , u (.) , q, υ2; r (.) , v (.) , r, υ3)]
and we conclude BM [WL (n (.) , k (.) , n, ω1;m (.) , l (.) ,m, ω2; s (.) , o (.) , s, ω3)] ⊂
BM [W (p (.) , t (.) , p, υ1; q (.) , u (.) , q, υ2; r (.) , v (.) , r, υ3)]. □

3. Conclusion

In the literature, bilinear multipliers theory is considered for Lebesgue spaces,
weighted Lebesgue spaces, variable Lebesgue spaces, weighted Wiener amalgam
spaces and variable exponent Wiener amalgam spaces etc. [2] [9], [10]. In these
spaces, some properties of the spaces of bilinear multipliers are investigated and
some examples of these bilinear multipliers are given. In this paper, we study
properties of bilinear multipliers for the weighted variable exponent Wiener amal-
gam space whose local compenent is variable exponent Lorentz space and we give
examples of these bilinear multipliers.
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ABSTRACT  
Goldbach's conjecture is one of the oldest problems in the Number theory field. This problem 
states that for any even number greater than 2, at least one prime binary can be found in which 
the sum of primes is equal to the initial even number. Here in this paper, a potential solution is 
proposed which employs the sieve method to eliminate unacceptable binaries. And as the result, 
it proves that for even numbers greater than 2810, at least one pair of primes remains in which the 
sum of prime numbers is equal to the initial even number. 
 
 
 

1. INTRODUCTION 
The Goldbach conjecture was first expressed by Christian Goldbach via a letter to 

Leonhard Euler in 1742 [1]. Since then, this problem has occupied the mind of many researchers 
in Number theory. This problem states that for every even number greater than 2, at least one pair 
of primary numbers can be found in which the sum of them is equal to the initial even number. 

 
From this theorem, another immediate theorem can be extracted that states every odd 

integer greater than 5 can be written as a sum of 3 prime numbers. A potential proof for the later 
problem is being proposed by Harald Helfgott in 2013 [2]–[4]. Also, the binary Goldbach 
Conjecture is computationally checked for numbers up to 4 × 1014 [5], however, this problem 
officially is being considered not proven.  

 
Here in this paper, a potential solution based on the sieve method for the binary Goldbach 

problem is proposed. the sieve strategy is being utilised to check all the potential pairs for a given 
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2. METHODOLOGY 

The Goldbach theorem states that for every even number such as 2A, there is at least one pair of numbers 
as p and q which p and q are both are prime numbers and 

2A=p+q 

Firstly,  it is aimed to calculate the numbers of pairs as (a, b) which a+b=2A. For this reason, the 
combination formula is being used: 

 

2𝐴𝐴 + 2 − 1
2 − 1

= 2𝐴𝐴 + 1 

2A+1 is the number of possible pairs that can be written for 2A. However, among these answers, there 
are two answers such as (0, 2A) and (2A, 0) which are not acceptable pairs. Hence the whole number is 
subtracted by 2 to eliminate these two unacceptable answers: 

 

2𝐴𝐴 + 1 − 2 = 2𝐴𝐴 − 1 

If the pair answers are being written sequentially they would sort out as: 

 

(1, 2𝐴𝐴 − 1), (2, 2𝐴𝐴 − 2), (3, 2𝐴𝐴 − 3), … . , (2𝐴𝐴 − 1, 1) 

 

Among these answers there are pairs as (a, b) and (b, a) which have been counted twice, however, in 
this problem, sortation is not important and to resolve this issue every twice counted answer should be 
eliminated. 

Before dividing the final number by 2, it should be considered that there is one answer as (A, A) which 
is already counted once. So, this answer should be separated the rest can be halved: 

 

2𝐴𝐴 − 1 → (2𝐴𝐴 − 2) + 1 → 

2𝐴𝐴 − 2
2

+ 1 = 𝐴𝐴 

Till here “A” number of the paired answers as (a, b) which “a” and “b” are not zero and also are not 
sorted, is isolated. It is possible to write these pairs as two (one ascending and one descending) 
sequences: 

1
+

2𝐴𝐴 − 1
,

2
+

2𝐴𝐴 − 2
,

3
+

2𝐴𝐴 − 3
, … ,

𝐴𝐴
+
𝐴𝐴
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These two sequences as can be observed are sorted with an equal arithmetic progression of 1. What is 
necessary next is to prove another theorem that is being used throughout the process: 

 

Theorem: In each D sequence of numbers with the arithmetic progression of d, if the greatest common 
divisor of GCD(d, p)=1, then there is at least one number in this sequence that is divisible by p. 

 

 

Proof: If the sequence is sorted, this series would be achieved: 

𝑐𝑐 + 𝑑𝑑, 𝑐𝑐 + 2𝑑𝑑, 𝑐𝑐 + 3𝑑𝑑, …         𝑐𝑐 + (𝑝𝑝 − 1)𝑑𝑑, 𝑐𝑐 + 𝑝𝑝𝑑𝑑 

The remaining division of these numbers by “p” has to be all a different amounts. This is a fact, because if there 
are at least two numbers with the same remainings after dividing by p (let's say “c+md” and “c+nd”), then: 

 

−

𝒄𝒄 + 𝒏𝒏𝒏𝒏 = 𝒑𝒑𝒑𝒑 + 𝒓𝒓
𝒄𝒄 + 𝒎𝒎𝒏𝒏 = 𝒑𝒑𝒑𝒑′ + 𝒓𝒓

(𝒏𝒏 −𝒎𝒎)𝒏𝒏 = 𝒑𝒑(𝒑𝒑 − 𝒑𝒑′)
 

 

In the resulting equation, p and d share no common factor, so it has to be this: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑝𝑝,𝑛𝑛 − 𝑚𝑚) ≠ 1 

But it is known that p is a prime, and (n-m)<p. So this equation can not be true as there is no factor of p on the 
left side of the equation. 

End of proof. 

 

So, until here binary pairs are being isolated and sequenced with the first pair of (1, 2A-1) and the last 
pair of (A, A). The first pair here is always unacceptable since it includes 1, and 1 is not a prime number. 
So this pair is eliminated and then so this sequence results into:  

 

(2, 2𝐴𝐴 − 2), (3, 2𝐴𝐴 − 3), (4, 2𝐴𝐴 − 4) … . , (𝐴𝐴,𝐴𝐴) 

 

In this sequence, the pairs that contain even numbers are not acceptable, as they have an element of 2 
and so they cannot be a prime number (except 2 itself, but it is clear that 2 is always paired with another 
even number as all even numbers are paired and also all odd numbers are paired as well. This fact is 
known because if an odd number pair with an even number such as: 

(2𝑘𝑘, 2𝑘𝑘′ + 1) 
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The sum will result in an odd number: 

2𝑘𝑘 +  2𝑘𝑘′ =  2(𝑘𝑘 + 𝑘𝑘′) + 1 

Which cannot be correct as the starting number was an even number.) 

 

Hence, the result is being divided by two to get the number of odd pairs: 

𝐴𝐴 − 1
2

 

It is possible for (A-1) to be an odd number and not be dividable by 2. This happens when A is an even 
number and sequencing pairs will result in an odd number of pairs. In this situation the number of the 
pairs would be calculated as: 

𝐴𝐴 − 2
2

=
𝐴𝐴
2
− 1 

 

But to have a consistent solution for both odd and even “A”s, the absolute of this division is calculated: 

�(𝐴𝐴 − 1) ×
1
2
� 

The remaining pairs are pairs with odd numbers and with an arithmetic progression of 2 (in fact,  the 
initial sequence here is being divided into two sequences of 2k+0 and 2k+1, in which the 2k+0 sequence 
is being eliminated). 

 

This action resulted in paired sequences with odd numbers and a progression space of 2. Based on the 
discussed theorem, for the ascending sequence (sequence of the first numbers in each pair), in every 3 
numbers 1 is dividable by 3, and in descending sequence (sequence of the second numbers in each pair), 
in every 3 sequential numbers 1 has a factor of 3. So for the total pairs, in every 3 pairs, the maximum 
of 2 pairs is not acceptable as they have a factor of 3 in at least one of the numbers (the term “maximum” 
is being used because there can be a situation where there is a sequence with both numbers in one pair 
are dividable by 3 and this happens when A has a factor of 3. In this situation, in every 3 pairs, one is 
unacceptable. However, since it is aimed to find the minimum number of answers, this extra elimination 
to simplify the solution does not falsify the general trend.) 

 

So the result is divided by 3: 

�(𝐴𝐴 − 1) ×
1
2
� ×

1
3

 

 

Utilising this operation, the current sequence of pairs is being divided into 2 sequences of: 
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3𝑘𝑘 + 𝑟𝑟 3𝑘𝑘 + 𝑟𝑟′ 3𝑘𝑘
+ + +

3𝑘𝑘′ 3𝑘𝑘′ + 𝑟𝑟 3𝑘𝑘′ + 𝑟𝑟
 

Which 2 sequences (that one of the numbers has a factor of 3) are being eliminated and one sequence 
(in which both parameters in each pair are odd) is being kept. 

As a potential result of this division, some remaining out of this operation can be produced. However, 
since the minimum number of answers is being aimed, again absolute of this result will be calculated. 

 

��(𝐴𝐴 − 1) ×
1
2
� ×

1
3
� 

 

Till here, pairs that are odd and are not dividable by 3 are being sifted. Now the numbers with the factor 
of 5 should be calculated and removed. 

As per proved theorem, in every 5 sequential arguments, one in the ascending and one in the descending 
sequences has a factor of 5 and is needed to be eliminated. Assuming that a maximum of 2 pairs are not 
acceptable and has to be eliminated, 3 pairs will be remaining in our sequences: 

 

��(𝐴𝐴 − 1) ×
1
2
� ×

1
3
� ×

3
5

 

 

Again, the minimum amount is intended, so the absolute of this argument is calculated: 

���(𝐴𝐴 − 1) ×
1
2
� ×

1
3
� ×

3
5
� 

 

Until this stage, 3 consecutively ordered sequences are being calculated that have an arithmetic 
progression of 30 (2x3x5). For these sequences, in each 7 pairs maximum of 2 has to be eliminated and 
a minimum of 5 would be acceptable (as a result of having the factor of 7): 

���(𝐴𝐴 − 1) ×
1
2
� ×

1
3
� ×

3
5
� ×

5
7

 

 

And the remaining can be ignored: 

 

����(𝐴𝐴 − 1) ×
1
2
� ×

1
3
� ×

3
5
� ×

5
7
� 
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If this elimination process is continued till the last prime number before √2𝐴𝐴, then the remaining pairs 
are the prime numbers that the sum results in 2A. This is a fact since all numbers with factors less than 
√2𝐴𝐴 are being eliminated, and if there is a compound number in between, it has to have a factor of a 
prime number that is greater than √2𝐴𝐴. If that prime number is labelled as “q”, then the minimum 
amount for compounded number would be “q2” which is bigger than 2A: 

𝑞𝑞 > √2𝐴𝐴 → 𝑞𝑞2 > 2𝐴𝐴 

Hence, if this elimination for all the prime numbers till the √2𝐴𝐴  is continued (here the last prime number 
is being labelled as “p”) the result is: 

�����(𝐴𝐴 − 1) ×
1
2
� ×

1
3
� ×

3
5
� ×

5
7
� × … ×

𝑝𝑝 − 2
𝑝𝑝

� 

Now it is needed to prove for this argument to be bigger or equal to 1. It means that if it is proven that 
this argument for a given number of (2A) is greater or equal to 1, then at least one pair of prime numbers 
with their sum of (2A)does exist: 

�����(𝐴𝐴 − 1) ×
1
2
� ×

1
3
� ×

3
5
� ×

5
7
� × … ×

𝑝𝑝 − 2
𝑝𝑝

� ≥ 1 

 

The brackets can be removed and instead, for each bracket, the amount is subtracted by 1 (this operation 
is legal as the minimum amount is aimed): 

���(𝐴𝐴 − 1) ×
1
2
− 1� ×

1
3
− 1� ×

3
5
− 1� ×

5
7
− 1 × … ×

𝑝𝑝 − 2
𝑝𝑝

− 1 ≥ 1 

 

The above unequal equation is expanded which results to: 

 

�𝐴𝐴 ×
1
2

×
1
3

×
3
5

× … ×
𝑝𝑝 − 2
𝑝𝑝

� − �
1
2

×
1
3

×
3
5

× … ×
𝑝𝑝 − 2
𝑝𝑝

� − �
1
3

×
3
5

× … ×
𝑝𝑝 − 2
𝑝𝑝

� − ⋯− �
𝑝𝑝 − 2
𝑝𝑝

� − 1 ≥ 1 

İt can be seen that in the above argument all the parentheses except the first parentheses are less than 1, 
as they are made up of multiplication of numbers less than 1. So again it is legal to assume them as 1 
and so it results to: 

 

�𝐴𝐴 ×
1
2

×
1
3

×
3
5

× … ×
𝑝𝑝 − 2
𝑝𝑝

� − 1 − 1 −⋯− 1 − 1 ≥ 1 

The number of these subtracted “ones” is the number of prime numbers before √2𝐴𝐴, and it is known 

that the amount is always less than √2𝐴𝐴
2

 (since the number of prime numbers is always less than the 
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number of odd numbers and √2𝐴𝐴
2

 gives us the number of odd numbers before √2𝐴𝐴). So this argument 
can be expressed instead: 

�𝐴𝐴 ×
1
2

×
1
3

×
3
5

× … ×
𝑝𝑝 − 2
𝑝𝑝

� −
√2𝐴𝐴

2
≥ 1 

Some small displacement in this unequal equation is implemented for simplification: 

𝐴𝐴
2

×
3
3

×
5
5

×
9
7

× … ×
𝑝𝑝 − 2
𝑝𝑝′

×
1
𝑝𝑝
≥ 1 +

√2𝐴𝐴
2

 

On the left side of the above equation all the fractions except the first and last fraction, are greater than 
1. And also, from the previous assumption, it is obvious that p is the latest prime before √2𝐴𝐴. Hence 
always 𝑝𝑝 < √2𝐴𝐴.  

The minimum amount is aimed and it is legal to replace 1
𝑝𝑝
 by 1

√2𝐴𝐴
: 

 

𝐴𝐴
2

×
3
3

×
5
5

×
9
7

× … ×
𝑝𝑝 − 2
𝑝𝑝′

×
1

√2𝐴𝐴
≥ 1 +

√2𝐴𝐴
2

→ 

�
3
3

×
5
5

×
9
7

× … ×
𝑝𝑝 − 2
𝑝𝑝′

� ×
2𝐴𝐴
4

×
1

√2𝐴𝐴
≥ 1 +

√2𝐴𝐴
2

→ 

�
3
3

×
5
5

×
9
7

× … ×
𝑝𝑝 − 2
𝑝𝑝′

� ×
√2𝐴𝐴

4
≥ 1 +

√2𝐴𝐴
2

→ 

�
3
3

×
5
5

×
9
7

× … ×
𝑝𝑝 − 2
𝑝𝑝′

� ≥
(1 + √2𝐴𝐴

2 )

√2𝐴𝐴
4

→ 

�
3
3

×
5
5

×
9
7

× … ×
𝑝𝑝 − 2
𝑝𝑝′

� ≥
4

√2𝐴𝐴
+

1
2
→ 

The left-hand side of the last equation is increasing, and the right-hand side is decreasing arguments 
with a maximum value of 2.5. At this point, the only remaining requirement is to find the smallest even 
number for which the left argument becomes greater than the right amount and after that number, all 
greater numbers will naturally meet this condition: 

 

𝑝𝑝(2810) =
3
3

×
5
5

×
9
7

×
11
11

×
15
13

×
17
17

×
21
19

×
27
23

×
29
29

×
35
31

×
39
37

×
41
41

×
45
43

×
51
47

≈ 2.6 > 2.5 

 

End of the solution. 

Here through the sieve method, we proved that for all even numbers greater than 2810, there is at least 
one pair of primes in which the sum of primes results in the initial even number. 
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ON SPHERICAL INVERSIONS IN THREE DIMENSIONAL DD - SPACE 

EMİNE ÇİÇEK and ZEYNEP CAN 

ABSTRACT  

In this paper, we introduce inversion with respect to a sphere in Disdyakis Dodecahedron space 

and we study on general properties and basic concepts of this transformation. Additionally we 

investigate some properties such as cross ratio and harmonic conjugates and inverses of lines, 

planes and Disdyakis Dodecahedron spheres in ℝ𝐷𝐷
3  under an inversion with respect to a 

Disdyakis Dodecahedron sphere.  

 

1. INTRODUCTION 

Inversion reveals difficult questions and many challenging problems thus it is one of the 

most interesting transformation in the plane. Also in geometry many problems become much 

manageable when an inversion is applied. Probably the first to reveal this transformation was 

Apollonious of Perga as it has been stated in [1]. He stated this transformation in his last book 

Plane Loci. Jakob Steiner investigated inversion systematically in 1820s. Inversion would be used 

to examine some problems and theorems in geometry as Pappus chain theorem, Feuerbach’s 

theorem, Ptolemy’s theorem, Steiner porism, the problem of Apollonius, etc. [2]. Inversion is 

classically determined with respect to a circle, but some authors studied on different inversion 

maps by using other objects, see [3, 4, 5, 6, 7, 8] and some authors defined new inversion maps by 

using different distance functions, see [9, 10, 11]. Furthermore inversion has been studied in 

higher dimensions in Euclidean and non-Euclidean spaces, see [12, 13, 14, 15, 16]. 

As it has stated in [17] Minkowski geometry is a non-Euclidean geometry in a finite number of 
dimensions and only because the distance is not uniform in all directions it is a non-Euclidean 
geometry. The unit ball of a Minkowski geometry is a general symmetric convex set. Metric 
geometry has been studied and improved by some mathematicians and throughout these studies 
and studies on polyhedra it has seen that unit balls of some Minkowski geometries are convex 
solids, some of these studies are [18, 19, 20, 21]. In [22, 23, 24, 25, 26, 27, 28, 29] some metrics are 
given which are induced by some convex polyhedra such that their unit spheres are 
corresponding convex solids. Since the only difference of a Minkowski geometry and the 
Euclidean geometry is the distance, it is interesting to study on the problems of the Euclidean  
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geometry that include the distance concept in different Minkowski geometries. By these 
motivations in this study first we define the inversion with respect to a sphere in Disdyakis 
Dodecahedron space. Then we investigate general properties and basic concepts of this new 
inversion. Furthermore we give some properties related with spherical inversion in Disdyakis 
dodecahedron space such as cross-ratio and harmonic conjugates. 
 

2. BASIC DEFINITIONS AND THEOREMS 

 

2.1 Some Basics of Disdyakis Dodecahedron Space 
 
Here we give some basic definitions of tetrakis disdyakis dodecahedron space, for more detail see 
[23]. Geometrical construction of Disdyakis Dodecahedron space ℝ𝐷𝐷

3   is similar to the well-
known Euclidean space ℝ3. Set of points and collection of lines are the same, the angles are 
measured by the same way. The only difference is the definition of the distance. Disdyakis 
Dodecahedron metric in ℝ3 is defined by using the distance function 

 

𝑑𝐷𝐷(𝑃1 , 𝑃2) = 𝑚𝑎𝑥{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|} + (√2 − 1)𝑚𝑖𝑛{|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|, |𝑥1 − 𝑥2| +

|𝑧1 − 𝑧2|, |𝑦1 − 𝑦2| + |𝑧1 − 𝑧2|} + (√3 − 2√2 + 1)𝑚𝑖𝑛{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|}             (1) 

or 

𝑑𝐷𝐷(𝑃1 , 𝑃2) =  𝑚𝑎𝑥{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|} + (√2 − 1)𝑚𝑖𝑑{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|}

+ (√3 − √2)𝑚𝑖𝑛{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|} 
 

where  𝑃1 = (𝑥1, 𝑦1, 𝑧1), 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ ℝ3. Thus the distance is sum of maximum, (√2 − 1) 

times of middle of {|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|} and (√3 − √2) times of minimum of {|𝑥1 −

𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|} . The unit ball in ℝ𝐷𝐷
3  is the set of all points (𝑥, 𝑦, 𝑧) satisfing the equation  

 

𝑚𝑎𝑥{|𝑥|, |𝑦|, |𝑧|} + (√2 − 1)min {|𝑥| + |𝑦|, |𝑥| + |𝑧|, |𝑦| + |𝑧|} + (√3 − 2√2 + 1)𝑚𝑖𝑛{|𝑥|, |𝑦|, |𝑧|} = 1 

 
which is a Disdyakis Dodecahedron. 
 

 
 
     FIGURE 1. Unit ball in ℝ𝐷𝐷

3   
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2.2 Preliminaries about Inversions in Disdyakis Dodecahedron Space 
 

The circle inversion is one of the most important and interesting transformations in the 
geometry. The inversion of a point P in a given circle 𝒟 is a point P’ taken from the ray 
OP such that OP · OP’ = 𝑟2, where r is the radius of 𝒟. 
 

Definition 2.4 Let 𝒟 be a 𝐷𝐷-sphere centered at the point 𝑂 with radius 𝑟 in ℝ𝐷𝐷
3 , and 𝑃∞ be the 

ideal point adjoined to the Disdyakis Dodecahedron space. In ℝ𝐷𝐷
3  the DD-spherical inversion 

with respect to 𝒟 is the transformation  

𝐼𝒟(𝑂,𝑟): ℝ𝐷𝐷
3 ∪ {𝑃∞} → ℝ𝐷𝐷

3 ∪ {𝑃∞} 

 

defined by 𝐼𝐷(𝑂,𝑟)(𝑂) = 𝑃∞, 𝐼𝐷(𝑂,𝑟)(𝑃∞) = 𝑂 ,  𝐼𝒟(𝑂,𝑟)(𝑃) = 𝑃′ for 𝑃 ≠ 0 and P' lies on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ and 

 
                                                                                𝑑𝐷𝐷(𝑂, 𝑃). 𝑑𝐷𝐷(𝑂, 𝑃′) = 𝑟2                                                                               

(2) 
 

𝐷 is called the sphere of the inversion, 𝑂 is called the center of inversion, the point 𝑃′ is called the 
inverse of the point 𝑃 with respect to the sphere 𝐷. 
 
In Euclidean space, an inversion shifts the points outside to the inside of the sphere and vice versa. 
Now the following theorem states that this property is valid in the Disdyakis Dodecahedron 
space. 
 

 

Lemma 2.5 Let 𝐷 be the 𝑇𝐻-sphere with center 𝑂 and the radius r. If  the point P is in the interior 
of 𝐷, the point 𝑃′  is exterior to 𝐷, and viceversa.  
 
Proof. Let us consider the inversion 𝐼𝐷(𝑂,𝑟) with respect to the sphere 𝐷 with center 𝑂 and the 

radius r and the point P which is in the interior of 𝐷. Thus, 𝑑𝐷𝐷(𝑂, 𝑃) < 𝑟 . Since 𝑃′ = 𝐼𝐷(𝑂,𝑟)(𝑃)  

and by Eq. (3), 𝑟2 = 𝑑𝐷𝐷(𝑂, 𝑃). 𝑑𝐷𝐷(𝑂, 𝑃′) < 𝑟. 𝑑𝐷𝐷(𝑂, 𝑃′)  then 𝑑𝐷𝐷(𝑂, 𝑃′) > 𝑟. So the point 𝑃′ is in 
the exterior of 𝐷. 
 

Corollary 2.6 Under a spherical inversion 𝐼𝐷(𝑂,𝑟) in ℝ𝐷𝐷
3 , 𝒯 itself is left pointwise fixed. 

 
Theorem 2.7 If 𝑃 and 𝑃′ is a pair of inverse points with respect to the tetrakis hexahedron spherical 
inversion 𝐼𝐷(𝑂,𝑟) with center 𝑂 = (0,0,0) and radius 𝑟 then 

𝑃′ = 𝜔𝑃                                                                                                  (3) 

where 𝜔 = 𝑟2/(𝑑𝐷𝐷(𝑂, 𝑃))
2
 

Corollary 2.6 Under a spherical inversion 𝐼𝐷(𝑂,𝑟) in ℝ𝐷𝐷
3 , 𝒯 itself is left pointwise fixed. 

 
Theorem 2.7 If 𝑃 and 𝑃′ is a pair of inverse points with respect to the tetrakis hexahedron spherical 
inversion 𝐼𝐷(𝑂,𝑟) with center 𝑂 = (0,0,0) and radius 𝑟 then 

𝑃′ = 𝜔𝑃                                                                                                  (3) 

where 𝜔 = 𝑟2/(𝑑𝐷𝐷(𝑂, 𝑃))
2
 

 
Proof. Let 𝑃 = (𝑥, 𝑦, 𝑧) and 𝑃′ = (𝑥′ , 𝑦′, 𝑧′) be inverse pair with respect to the disdyakis 
dodecahedron spherical inversion 𝐼𝐷(𝑂,𝑟) with center 𝑂 = (0,0,0) and radius 𝑟. Since the points 𝑃 

and 𝑃′ are on the ray emanating from 𝑂 
 

𝑂𝑃′⃗⃗⃗⃗⃗⃗  ⃗ = 𝜔𝑂𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  , 𝜔 ∈ ℝ+ 
 

Thus (𝑥′, 𝑦′, 𝑧′) = (𝜔𝑥,𝜔𝑦, 𝜔𝑧). By the equation (2) we get that 𝜔 = 𝑟2/(𝑑𝐷𝐷(𝑂, 𝑃))
2
 and by 

substituting the resulting value of 𝜔 the required result is obtained. 
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Note that since 𝑃 and 𝑃′ is a pair of inverse points with respect to the disdyakis dodecahedron 
spherical inversion 𝐼𝐷(𝑂,𝑟) with center 𝑂 = (0,0,0) and radius 𝑟, the coordinates of 𝑃 would be 

obtained by the coordinates of 𝑃′ by the same way in the Theorem 2.7. Thus 𝑃 = 𝜔𝑃′ where 𝜔 =

𝑟2/(𝑑𝐷𝐷(𝑂, 𝑃′))
2
 

 

Corollary 2.8 Let 𝑃 = (𝑥, 𝑦, 𝑧) and 𝑃′ = (𝑥′, 𝑦′, 𝑧′) is an inverse pair under the disdyakis 
dodecahedron spherical inversion 𝐼𝒟(𝑂,𝑟) with center 𝑂 = (𝑥0, 𝑦0, 𝑧0) and radius 𝑟 then 

𝑃′ − 𝑂 = 𝜔(𝑃 − 𝑂)                                                                                      (4) 

where 𝜔 = 𝑟2/(𝑑𝐷𝐷(𝑂, 𝑃))
2
. 

Proof. It is easy to see that translation preserves distances in ℝ𝐷𝐷
3 . Thus by translating (0,0,0) to 

(𝑥0, 𝑦0, 𝑧0) in ℝ𝐷𝐷
3  values of 𝑥′, 𝑦′, 𝑧′  would easily be obtained as required.  

 

Theorem 2.9  Let 𝑂, 𝑃 and 𝑄 be any three collinear distinct points in ℝ𝐷𝐷
3 . If 𝑃, 𝑃′ and 𝑄, 𝑄′ are 

inverse pairs with respect to the disdyakis dodecahedron spherical inversion 𝐼𝒟(𝑂,𝑟) then  

 

  𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2 .  𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃) . 𝑑𝐷𝐷(𝑂,𝑄)
                                                                               (5) 

 

Proof. Let 𝐼(𝑂,𝑟) be the spherical inversion with center 𝑂 and radius 𝑟 in ℝ𝐷𝐷
3 . If 𝑃, 𝑃′ and 𝑄, 𝑄′ are 

inverse pairs with respect to 𝐼𝒟(𝑂,𝑟) then by equation (1), 𝑑𝐷𝐷(𝑂, 𝑃). 𝑑𝐷𝐷(𝑂, 𝑃′) = 𝑟2 =

𝑑𝐷𝐷(𝑂,𝑄). 𝑑𝐷𝐷(𝑂, 𝑄′). Since 𝑂, 𝑃 and 𝑄 are collinear points and ratios of Euclidean and Disdyakis 
Dodecahedron distances along a line are the same, 
 
 

𝑑𝐷𝐷(𝑃′,𝑄′) = |𝑑𝐷𝐷(𝑂, 𝑃′) − 𝑑𝐷𝐷(𝑂,𝑄′)| 

                           = |
𝑟2

𝑑𝐷𝐷(𝑂,𝑃)
−

𝑟2

𝑑𝐷𝐷(𝑂,𝑄)
| 

   =
𝑟2 .  𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃) .  𝑑𝐷𝐷(𝑂,𝑄)
 

is obtained. 
 
Note that converse statement of the theorem above is not true. Also the theorem is not valid for 
any three non-collinear points in ℝ𝐷𝐷

3 . But under some other conditions the equation (5) holds.  
 
Now we give the following theorem that shows the equation (5) is satisfied under such 
conditions. 
 

Theorem 2.10 Let 𝑂, 𝑃 and 𝑄 be any three distinct points in ℝ𝐷𝐷
3 , 𝑃, 𝑃′ and 𝑄, 𝑄′ be inverse pairs 

with respect to the disdyakis dodecahedron spherical inversion 𝐼𝒯(𝑂,𝑟) with center 𝑂 and radius 

𝑟, and 𝑑 and 𝑑′ be direction vectors of the rays 𝑂𝑃⃗⃗⃗⃗  ⃗ and 𝑂𝑄⃗⃗⃗⃗⃗⃗ , respectively. If 𝑑 ∈ ∆𝑖 and 𝑑′ ∈ ∆𝑖 ∖
{𝑑}  where  
 
∆1= {(1,0,0), (0,1,0), (0,0,1), (−1,0,0), (0,−1,0), (0,0,−1)} 
∆2

= {(1,1,0), (1,0,1), (0,1,1), (1,0,−1), (1,−1,0), (0,1,−1), (0,−1,1), (0,−1,−1), (−1,1,0), (−1,0,1), (−1,0,−1), (−1,−1,0)} 
∆3= {(1,1,1), (1,1,−1), (1, −1,1), (−1,1,1), (1,−1,−1), (−1,1,−1), (−1,−1,1), (−1,−1,−1)} 

 
and  𝑖 = 1,2,3, then  

  𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2 . 𝑑𝐷𝐷(𝑃, 𝑄)

𝑑𝐷𝐷(𝑂, 𝑃) . 𝑑𝐷𝐷(𝑂, 𝑄)
 

Proof. Since all translations are elements of the group of isometries of Disdyakis Docedehedron 
space it is convenient to consider 𝑂 the center of inversion as origin. So let 𝐼(𝑂,𝑟) be the disdyakis 

docedehedron spherical inversion with center 𝑂 and radius 𝑟 in ℝ𝐷𝐷
3 . Suppose that 𝑑 ∈ ∆1 and 

𝑑′ ∈ ∆1 ∖ {𝑑}. Let us consider 𝑃 = (0, 𝑝, 0) and 𝑄 = (0,0,−𝑞) thus the inverses of 𝑃 and 𝑄 with 

respect to 𝐼𝐷(𝑂,𝑟) are 𝑃′ = (0,
𝑟2

𝑝
, 0) and 𝑄′ = (0,0,

−𝑟2

𝑞
), respectively. Thus we obtain that 
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𝑑𝐷𝐷(𝑃′, 𝑄′) = 𝑚𝑎𝑥 {|
𝑟2

𝑝
| , |

𝑟2

𝑞
| , 0} + (√2 − 1)𝑚𝑖𝑑 {|

𝑟2

𝑝
| , |

𝑟2

𝑞
| , 0} + (√3 − √2)𝑚𝑖𝑛{|

𝑟2

𝑝
| , |

𝑟2

𝑞
| , 0} 

Now there are two subcases; 
Case 1 :If |p|≥ |q|,then  

                                 𝑑𝐷𝐷(𝑃′,𝑄′) =
𝑟2(|𝑝|+(√2−1)|𝑞|)

|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑄)
 

Case 2: If |p|<|q|,then  

 

                                 𝑑𝐷𝐷(𝑃′,𝑄′) =
𝑟2(|𝑞|+(√2−1)|𝑝|)

|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑄)
 

 
Consider 𝑑 ∈ ∆2 and 𝑑′ ∈ ∆2 ∖ {𝑑}. Choose 𝑃 = (0, 𝑝, 𝑝) and 𝑄 = (𝑞, −𝑞, 0) ,so the inverses of 𝑃 and 

𝑄 with respect to 𝐼𝒟(𝑂,𝑟) are 𝑃′ = (0,
𝑟2

2𝑝
,
𝑟2

2𝑝
) and 𝑄′ = (

𝑟2

2𝑞
,
−𝑟2

2𝑞
, 0), respectively. Thus we get that 

 

𝑑𝐷𝐷(𝑃′, 𝑄′) = 𝑚𝑎𝑥 {|
𝑟2

2𝑞
| , |

𝑟2

2𝑝
+

𝑟2

2𝑞
| , |

𝑟2

2𝑝
|} + (√2 − 1)𝑚𝑖𝑑 {|

𝑟2

2𝑞
| , |

𝑟2

2𝑝
+

𝑟2

2𝑞
| , |

𝑟2

2𝑝
|} + (√3 −

√2)𝑚𝑖𝑛 {|
𝑟2

2𝑞
| , |

𝑟2

2𝑝
+

𝑟2

2𝑞
| , |

𝑟2

2𝑝
|}. Here there are six subcases; 

Case 1: If |𝑞| > |𝑝| > |𝑝 + 𝑞|, then  
 

𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2(|𝑞| + (√2 − 1)|𝑝| + (√3 − √2)|𝑝 + 𝑞|)

2|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂, 𝑃). 𝑑𝐷𝐷(𝑂,𝑄)
.  

Case 2: If  |𝑞| > |𝑝 + 𝑞| > |𝑝|, then   
 

                                 𝑑𝐷𝐷(𝑃′,𝑄′) =
𝑟2(|𝑞|+(√2−1)|𝑝+𝑞|+(√3−√2)|𝑝|)

2|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑄)
. 

Case 3: If |p|>|q|>|p+q| ,then  
 
                         

                                𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2(|𝑝|+(√2−1)|𝑞|+(√3−√2)|𝑝+𝑞|)

2|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑄)
 

 
Case 4: If |p|> |p+q| >|q| then  
 

𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2(|𝑝| + (√2 − 1)|𝑝 + 𝑞| + (√3 − √2)|𝑞|)

2|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂, 𝑃). 𝑑𝐷𝐷(𝑂,𝑄)
 

Case 5: If |p+q|> |p| >|q| then  
 

                                 𝑑𝐷𝐷(𝑃′,𝑄′) =
𝑟2(|𝑝+𝑞|+(√2−1)|𝑝|+(√3−√2)|𝑞|)

2|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑄)
  

 
Case 6: If |p+q|> |q| >|p| then  
 

𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2(|𝑝 + 𝑞| + (√2 − 1)|𝑞| + (√3 − √2)|𝑝|)

2|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂, 𝑃). 𝑑𝐷𝐷(𝑂,𝑄)
 

 
Suppose that 𝑑 ∈ ∆3 and 𝑑′ ∈ ∆3 ∖ {𝑑}. If 𝑃 = (𝑝, 𝑝, 𝑝) and 𝑄 = (𝑞,−𝑞, 𝑞) then the inverses of 𝑃 and 

𝑄 with respect to 𝐼𝒟(𝑂,𝑟) are 𝑃′ = (
𝑟2

3𝑝
,
𝑟2

3𝑝
,
𝑟2

3𝑝
) and 𝑄′ = (

𝑟2

3𝑞
,
−𝑟2

3𝑞
,
𝑟2

3𝑞
), respectively. Thus we obtain 

that 
 

𝑑𝑇𝐻(𝑃′, 𝑄′) = 𝑚𝑎𝑥 {|
𝑟2

3𝑝
−

𝑟2

3𝑞
| , |

𝑟2

3𝑝
+

𝑟2

3𝑞
| , |

𝑟2

3𝑝
−

𝑟2

3𝑞
|} + (√2 − 1)𝑚𝑖𝑑 {|

𝑟2

3𝑝
−

𝑟2

3𝑞
| , |

𝑟2

3𝑝
+

𝑟2

3𝑞
| , |

𝑟2

3𝑝
−

𝑟2

3𝑞
|} +

(√3 − √2)𝑚𝑖𝑛 {|
𝑟2

3𝑝
−

𝑟2

3𝑞
| , |

𝑟2

3𝑝
+

𝑟2

3𝑞
| , |

𝑟2

3𝑝
−

𝑟2

3𝑞
|}. Now there are two possible subcases; 

 

Case 1: If  |𝑝 − 𝑞| > |𝑝 + 𝑞|, then  𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2(√2|𝑝−𝑞|+(√3−√2)|𝑝+𝑞|)

3|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑄)
.  

Case 2: If  |𝑝 + 𝑞| > |𝑝 − 𝑞|, then  𝑑𝐷𝐷(𝑃′, 𝑄′) =
𝑟2(√2|𝑝+𝑞|+(√3−√2)|𝑝−𝑞|)

3|𝑝||𝑞|
=

𝑟2𝑑𝐷𝐷(𝑃,𝑄)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑄)
. 

 
For other possible choices of elements in ∆𝑖 , 𝑖 = 1,2,3, by similar calculations it is easy to see that 
equality is valid. 
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3. Results 
 
This section includes two subsections to investigate results and definitions obtained by spherical 
inversions in disdyakis dodecahedron space. We study on inverses of lines, planes and disdyakis 
dodecahedron spheres under an inversion 𝐼𝒟(𝑂,𝑟) as a comparison of inverses of lines and circles 

in Euclidean plane under a circular inversion. Also we investigate cross-ratio and harmonic 

conjugates in ℝ𝐷𝐷
3 . 

 

3.1. Spherical Inversions of Lines, Planes and Disdyakis Dodecahedron Spheres in ℝ𝐷𝐷
3  

 
In Euclidean version inverse of a line is a circle and inverse of a circle is a line, only the lines 
passing through the inversion center is invariant. In this section, disdyakis dodecahedron  
spherical inversions of lines, planes and disdyakis dodecahedron spheres are studied according 

to their positions in ℝ𝐷𝐷
3 .  

 
Theorem 3.11 Let 𝐼𝒟(𝑂,𝑟) be a disdyakis dodecahedron spherical inversion with center 𝑂 and radius 

𝑟. Any line and any plane containing 𝑂 is invariant under 𝐼𝒟(𝑂,𝑟). 

 
Proof.  Consider the disdyakis dodecahedron spherical inversion 𝐼𝒟(𝑂,𝑟) with center 𝑂 and radius 

𝑟. By equation (2) it is obvious that a line passing through 𝑂 is invariant under 𝐼𝒟(𝑂,𝑟). Let 𝐴𝑥 +

𝐵𝑦 + 𝐶𝑧 = 0 be a plane containing 𝑂. Under 𝐼𝒟(𝑂,𝑟) we get the equation of the plane as;  

 

𝐴
𝑟2𝑥′

(𝑑𝐷𝐷(𝑂,𝑃′))2
+ 𝐵

𝑟2𝑦′

(𝑑𝐷𝐷(𝑂,𝑃′))2
+ 𝐶

𝑟2𝑧′

(𝑑𝐷𝐷(𝑂,𝑃′))2
= 0. 

 
That is 𝐴𝑥′ + 𝐵𝑦′ + 𝐶𝑧′ = 0 which completes the proof. 
 
Theorem 3.12 Let 𝐼𝒟(𝑂,𝑟) be a tetrakis hexahedron spherical inversion with center 𝑂 and radius 𝑟. 

The inverse of a disdyakis dodecahedron sphere with center 𝑂 under 𝐼𝒟(𝑂,𝑟) is a disdyakis 

dodecahedron sphere with center 𝑂. 
 

Proof.  Since the translation preserves distance in ℝ𝐷𝐷
3  we would take center of inversion 𝐼𝒟(𝑂,𝑟) as 

𝑂 = (0,0,0), thus the disdyakis dodecahedron sphere 𝒟 with center 𝑂 and radius 𝑟 is  
𝒟 = {𝑃 = (𝑥, 𝑦, 𝑧): 𝑑𝐷𝐷(𝑂, 𝑃) = 𝑟} 

 
Let 𝒟1 be the disdyakis dodecahedron sphere with center 𝑂 and radius 𝑟1 , then 
 

𝒟1 = {𝑃 = (𝑥, 𝑦, 𝑧): 𝑑𝐷𝐷(𝑂, 𝑃) = 𝑟1} 
 

Thus the inverse of 𝒟1 under 𝐼𝒟(𝑂,𝑟) is  𝒟′1 = {𝑃′ = (𝑥′, 𝑦′, 𝑧′): 𝑑𝐷𝐷(𝑂, 𝑃′) =
𝑟2

𝑟1
} which is a 

disdyakis dodecahedron sphere. 

 
Theorem 3.13  Let 𝐼𝒟(𝑂,𝑟) be a disdyakis dodecahedron spherical inversion with center 𝑂 and 

radius 𝑟. The inverse of every edges, vertices and faces of  𝒟 is itself. 
 
Proof. By Corollary 2.6, 𝒟 is pointwise fixed under 𝐼𝒟(𝑂,𝑟). Thus every edges, vertices and faces of  

𝒟  is invariant under 𝐼𝒟(𝑂,𝑟). 

 

3.2. The Cross Ratio and Harmonic Conjugates in ℝ𝐷𝐷
3  

 
The distance is not invariant under disdyakis dodecahedron spherical inversion. Thus, the 
inversion in disdyakis dodecahedron space is not an isometry. However, the fact that the cross-
ratio is preserved under inversion reveals the necessity of focusing on the cross-ratio by means of 
the distance. Therefore, in this section, we investigate the cross ratio and harmonic conjugates in 

ℝ𝐷𝐷
3  under a spherical inversion.  

 
The following definition will be given in a similar sense of the definition given in [29]. 
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Definition 3.13 For any two points 𝑋 and 𝑌 on a directed line 𝑙, the directed disdyakis 
dodecahedron length of the line segment 𝑋𝑌̅̅ ̅̅  is denoted by 𝑑𝐷𝐷[𝑋, 𝑌]. If the line segment 𝑋𝑌̅̅ ̅̅  and 𝑙 
have the same direction, then 𝑑𝐷𝐷[𝑋, 𝑌] = 𝑑𝐷𝐷(𝑋, 𝑌) and if have the opposite direction, then 
𝑑𝐷𝐷[𝑋, 𝑌] = −𝑑𝐷𝐷(𝑋, 𝑌). 
 

Definition 3.14 Let  𝑃,𝑄, 𝑅 and 𝑆 are four distinct points on an oriented line in ℝ𝐷𝐷
3 . The disdyakis 

dodecahedron cross-ratio (𝑃𝑄, 𝑅𝑆)𝐷𝐷 is defined by 
 

(𝑃𝑄,𝑅𝑆)𝐷𝐷 =
𝑑𝐷𝐷[𝑃,𝑅]𝑑𝐷𝐷[𝑄,𝑆]

𝑑𝐷𝐷[𝑃,𝑆]𝑑𝐷𝐷[𝑄,𝑅]
                                                                                    (6) 

 

Corollary 3.15 Let  𝑃, 𝑄, 𝑅 and 𝑆 are four distinct points on an oriented line in ℝ𝐷𝐷
3 . The disdyakis 

dodecahedron cross-ratio (𝑃𝑄, 𝑅𝑆)𝐷𝐷 is positive if both 𝑅 and 𝑆 are between 𝑃 and 𝑄 or if neither 
𝑅 nor 𝑆 are between 𝑃 and 𝑄. 
 
Proof. Let both 𝑅 and 𝑆 points be between 𝑃 and 𝑄 points. For the directed line 𝑃𝑄 the tetrakis 
hexahedron cross-ratio is  

(𝑃𝑄, 𝑅𝑆)𝐷𝐷 =
𝑑𝐷𝐷[𝑃𝑅]𝑑𝐷𝐷[𝑄𝑆]

𝑑𝐷𝐷[𝑃𝑆]𝑑𝐷𝐷[𝑄𝑅]

=
𝑑𝐷𝐷(𝑃, 𝑅). (−𝑑𝑇𝐻(𝑄, 𝑆))

𝑑𝐷𝐷(𝑃, 𝑆). (−𝑑𝐷𝐷(𝑄, 𝑅))
=

𝑑𝐷𝐷(𝑃, 𝑅). 𝑑𝐷𝐷(𝑄, 𝑆)

𝑑𝐷𝐷(𝑃, 𝑆). 𝑑𝐷𝐷(𝑄, 𝑅)

 

and thus (𝑃𝑄,𝑅𝑆)𝐷𝐷 is positive. 
If neither 𝑅 nor 𝑆 are between 𝑃 and 𝑄, then there are six arrays for 𝑅 and 𝑆. Since it is similar to 
prove for all possible combinations we give the proof for the orientation 𝑅 − 𝑃 − 𝑄 − 𝑆. Thus the 
disdyakis dodecahedron cross-ratio is  

(𝑃𝑄, 𝑅𝑆)𝐷𝐷 =
𝑑𝐷𝐷[𝑃𝑅]𝑑𝐷𝐷[𝑄𝑆]

𝑑𝐷𝐷[𝑃𝑆]𝑑𝐷𝐷[𝑄𝑅]

=
(−𝑑𝐷𝐷(𝑃, 𝑅)). 𝑑𝐷𝐷(𝑄, 𝑆)

𝑑𝐷𝐷(𝑃, 𝑆). (−𝑑𝐷𝐷(𝑄, 𝑅))
=

𝑑𝐷𝐷(𝑃, 𝑅). 𝑑𝐷𝐷(𝑄, 𝑆)

𝑑𝐷𝐷(𝑃, 𝑆). 𝑑𝐷𝐷(𝑄, 𝑅)

 

and thus (𝑃𝑄,𝑅𝑆)𝐷𝐷 is positive. 
 

Corollary 3.16 Let  𝑃, 𝑄, 𝑅 and 𝑆 are four distinct points on an oriented line in ℝ𝐷𝐷
3 . If the pairs 

{𝑃,𝑄} and {𝑅, 𝑆} seperate each other, then the disdyakis dodecahedron cross-ratio (𝑃𝑄,𝑅𝑆)𝐷𝐷 is 
negative. 
 
Proof. If the pairs {𝑃, 𝑄} and {𝑅, 𝑆} seperate each other, then there are four arrays for 𝑅 and 𝑆. For 
the orientation 𝑅 − 𝑃 − 𝑆 − 𝑄 the disdyakis dodecahedron cross-ratio is  

(𝑃𝑄, 𝑅𝑆)𝐷𝐷 =
𝑑𝐷𝐷[𝑃𝑅]𝑑𝐷𝐷[𝑄𝑆]

𝑑𝐷𝐷[𝑃𝑆]𝑑𝐷𝐷[𝑄𝑅]

=
(−𝑑𝐷𝐷(𝑃, 𝑅)). (−𝑑𝐷𝐷(𝑄, 𝑆))

𝑑𝐷𝐷(𝑃, 𝑆). (−𝑑𝐷𝐷(𝑄, 𝑅))
= −

𝑑𝐷𝐷(𝑃, 𝑅). 𝑑𝐷𝐷(𝑄, 𝑆)

𝑑𝐷𝐷(𝑃, 𝑆). 𝑑𝐷𝐷(𝑄, 𝑅)

 

and since for other possible arrays, by similar calculations, same results are obtained, thus 
(𝑃𝑄,𝑅𝑆)𝐷𝐷 is negative. 
Theorem 3.17 The disdyakis dodecahedron cross-ratio is invariant under disdyakis 

dodecahedron spherical inversion in ℝ𝐷𝐷
3 . 

 
Proof. Let 𝐼𝒟(𝑂,𝑟) be a disdyakis dodecahedron spherical inversion with center 𝑂 and radius 𝑟, and 

𝑃,𝑄, 𝑅 and 𝑆 be four points on an oriented line 𝑙 passing through 𝑂. Let 𝑃′, 𝑄′, 𝑅′ and 𝑆′ be inverse 
points of 𝑃,𝑄, 𝑅 and 𝑆 respectively under 𝐼𝒟(𝑂,𝑟). Observe that the disdyakis dodecahedron 

spherical inversion preserves the seperation or non-seperation of the pairs {𝑃,𝑄} and {𝑅, 𝑆} and 
also it reverses the disdyakis dodecahedron - directed distance from the point 𝑃 to the point 𝑄 
along a line 𝑙 to disdyakis dodecahedron -directed distance from the point 𝑄′ to the point 𝑃′. The 
required result follows from Theorem 2.9; 

(𝑃′𝑄′, 𝑅′𝑆′)𝐷𝐷 =
𝑑𝐷𝐷(𝑃′, 𝑅′). 𝑑𝐷𝐷(𝑄′𝑆′)

𝑑𝐷𝐷(𝑃′𝑆′). 𝑑𝐷𝐷(𝑄′𝑅′)
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           =

𝑟2.𝑑𝐷𝐷(𝑃,𝑅)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑅)
.

𝑟2.𝑑𝐷𝐷(𝑄,𝑆)

𝑑𝐷𝐷(𝑂,𝑄).𝑑𝐷𝐷(𝑂,𝑆)

𝑟2.𝑑𝐷𝐷(𝑃,𝑆)

𝑑𝐷𝐷(𝑂,𝑃).𝑑𝐷𝐷(𝑂,𝑆)
.

𝑟2.𝑑𝐷𝐷(𝑄,𝑅)

𝑑𝐷𝐷(𝑂,𝑄).𝑑𝐷𝐷(𝑂,𝑅)

 

                

                                                                 =
𝑑𝐷𝐷(𝑃,𝑅)𝑑𝐷𝐷(𝑄,𝑆)

𝑑𝐷𝐷(𝑃,𝑆).𝑑𝐷𝐷(𝑄,𝑅)
 

 
                                                            = (𝑃𝑄, 𝑅𝑆)𝐷𝐷 
 

Definition 3.18 Let 𝑙 be a line in ℝ𝐷𝐷
3 . Suppose that 𝑃,𝑄, 𝑅 and 𝑆 are four points on 𝑙. It is called 

that 𝑃,𝑄, 𝑅 and 𝑆 form a harmonic set if (𝑃𝑄,𝑅𝑆)𝐷𝐷 = −1 and it is denoted by 𝐻(𝑃𝑄,𝑅𝑆)𝐷𝐷. That 
is, any pair 𝑅 and 𝑆 on 𝑙 for which  
 

𝑑𝐷𝐷[𝑃,𝑅]𝑑𝐷𝐷[𝑄,𝑆]

𝑑𝐷𝐷[𝑃,𝑆]𝑑𝐷𝐷[𝑄,𝑅]
= −1                                                                                  (7) 

 
is said to divide 𝑃 and 𝑄 harmonically. The points 𝑅 and 𝑆 are called disdyakis dodecahedron 
harmonic conjugates with respect to 𝑃 and 𝑄. 
 
Theorem 3.19 Let 𝑇 be a disdyakis dodecahedron sphere with center 𝑂, and line segment [𝑃𝑄] 

be a diameter of 𝑇 in ℝ𝐷𝐷
3 . Let 𝑅 and 𝑆 be distinct points of the ray 𝑂𝑃⃗⃗⃗⃗  ⃗, which divide the segment 

[𝑃𝑄] internally and externally. Then 𝑅 and 𝑆 are disdyakis dodecahedron harmonic conjugates 
with respect to 𝑃 and 𝑄 if and only if 𝑅 and 𝑆 are inverse points with respect to the disdyakis 
dodecahedron spherical inversion 𝐼𝒟(𝑂,𝑟). 

Proof. Let 𝑅 and 𝑆 are disdyakis dodecahedron harmonic conjugates with respect to 𝑃 and 𝑄. 
Then  
 

(𝑃𝑄, 𝑅𝑆)𝐷𝐷 = −1 ⇒
𝑑𝐷𝐷[𝑃, 𝑅].𝑑𝐷𝐷[𝑄, 𝑆]

𝑑𝐷𝐷[𝑃, 𝑆]. 𝑑𝐷𝐷[𝑄, 𝑅]
= −1 

 

Since 𝑅 divides the line segment [𝑃𝑄] internally and 𝑅 is on the ray 𝑂𝑄⃗⃗⃗⃗⃗⃗ , 
 

𝑑𝐷𝐷(𝑅, 𝑄) = 𝑟 − 𝑑𝐷𝐷(𝑂, 𝑅)  and  𝑑𝐷𝐷(𝑃, 𝑅) = 𝑟 + 𝑑𝐷𝐷(𝑂, 𝑅). 
 

Since 𝑆 divides the line segment [𝑃𝑄] externally and 𝑆 is on the ray 𝑂𝑄⃗⃗⃗⃗⃗⃗ , 
 

𝑑𝐷𝐷(𝑃, 𝑆) = 𝑟 + 𝑑𝐷𝐷(𝑂, 𝑆) and 𝑑𝐷𝐷(𝑄, 𝑆) = 𝑑𝐷𝐷(𝑂, 𝑆) − 𝑟. 
Thus  
 
(𝑟 + 𝑑𝐷𝐷(𝑂, 𝑅)). (𝑑𝐷𝐷(𝑂, 𝑆) − 𝑟)

(𝑟 + 𝑑𝐷𝐷(𝑂, 𝑆)). (𝑟 − 𝑑𝐷𝐷(𝑂, 𝑅))
= −1 

 

⟹ (𝑟 + 𝑑𝐷𝐷(𝑂, 𝑅)). (𝑑𝐷𝐷(𝑂, 𝑆) − 𝑟) = (𝑟 + 𝑑𝐷𝐷(𝑂, 𝑆)). (𝑑𝐷𝐷(𝑂, 𝑅) − 𝑟). 

 
Simplifying the last equality 𝑑𝐷𝐷(𝑂, 𝑅). 𝑑𝐷𝐷(𝑂, 𝑆) = 𝑟2 is obtained. So 𝑅 and 𝑆 are disdyakis 
dodecahedron spherical inverse points with respect to the disdyakis dodecahedron spherical 

inversion 𝐼𝒟(𝑂,𝑟). For the other condition (𝑆 and 𝑅 are on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ ) by similar calculations the 

same conclusion is obtained. 
Conversely, if 𝑅 and 𝑆 are disdyakis dodecahedron spherical inverse points with respect to the 
disdyakis dodecahedron spherical inversion 𝐼𝒟(𝑂,𝑟) the proof is similar. 

 
4. Discussion and Conclusion 
 
Inversion theory is of interest to geometers today, as it used to be, since it suggests challenging 
problems and when it is applied many problems in geometry became much manageable. 
Classical inversion is defined with respect to a circle but there are many different definitions of 
inversion in the literature by using other objects or using different distance functions or 
expanding dimension. In this study inversion is defined in a three dimensional non-Euclidean 
geometry and by using obtained results in this space some properties of this inversion is 
investigated. We hope that this topic would provoke further researches by interested readers or 
their students. 
 
 
 



 

 

 104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date: June 16, 2022 
2000 Mathematics Subject Classification. 51F99; 51K05; 51K99; 51M15; 51M20; 51N20; 51P99. 
Key words and phrases. Disdyakis Dodecahedron Space, Spherical Inversion, Disdyakis Dodecahedron Sphere, Cross Ratio, 

Harmonic Conjugates. 
 

REFERENCES  

[1] B.C. Patterson, The origins of the Geometric Principle of Inversion, Isis, 19(1), 154 – 180, (1933).  
[2] J.L. Ramirez, G.N. Rubiano, B. Jurcic-Zlobec, Generating Fractal Patterns by Using p-circle Inversion,  

Fractals, 23(4), 1-13, (2015). 
[3] N. Childress, Inversion with respect to the central conics, Math. Mag., 38(3), 147-149, (1964). 

[4] J. A. Nickel, A Budget of inversion, Math. Comput. Modelling, 21, 87-93, (1995). 
[5] J.L Ramirez, Inversions in an ellipse, Forum Geom., 14, 107-115, (2014). 
[6] K. Gdawiec, Star-shaped Set Inversion Fractals, Fractals, 22(4), 1-7, (2014). 

[7] J.l. Ramirez, G.N. Rubiano, A Geometrical Construction of Inverse Points with Respect to an Ellipse,  
International Journal of Mathematical Education in Science and Technology, 45(8), 1254-1259, (2014) 

[8] J.l. Ramirez, G.N. Rubiano, Elliptic Inversion of Two Dimensional Objects, International Journal of     
Geometry, 3(1), 12-27, (2014). 
[9] A. Pekzorlu, On Inversions in Non-Euclidean Geometries, Phd. Thesis, Eskişehir Osmangazi University,  

106p, (2019), Eskişehir. 
[10] A. Bayar, S. Ekmekçi, S.,  On circular inversions in taxicab plane, Journal of Advanced Research in Pure  

Mathematics., 6(4), 33-39, (2014). 
[11]  Ö. Gelişgen, T. Ermiş, Some Properties of Inversions in Alpha Plane, Forum Geometricorum, 19, 1-9, (2019). 

[12] J.L. Ramirez, G.N. Rubiano, A Generalization of the Spherical Inversion, International Journal of Mathematical 
Education in Science and Technology, 48(1), 132-149, (2016). 
[13] A. Pekzorlu, A. Bayar, On the Chinese Checkers Spherical Inversions in Three Dimensional Chinese Checkers Space, 

Com. Fac. of Sci. Univ. of Ank. Ser. A1 Math. and Stat., 69(2), 1498-1507, (2020). 
[14]  A. Pekzorlu,  A. Bayar, Taxicab Spherical Inversions in Taxicab Space, Journal of Mahani Math. Research Center, 

9(1), 45-54, (2020). 
[15] Z. Can, On Spherical Inversions in Three Dimensional Tetrakis Hexahedron Space, Erciyes Üniversitesi Fen 

Bilimleri Enstitüsü Dergisi, 38(1), 100 – 108, (2022). 
[16] Y. Cırık, S. EKMEKÇİ, On The Maximum Spherical Inversions (Maksimum Küresel İnversiyonlar Üzerine), 
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(1), 360–371, (2022). 

[17] A. C. Thompson, Minkowski Geometry, Cambridge University Press, 346p, (1996). 
[18] P. R. Cromwell, Polyhedra, Cambridge University Press, 443p, (1997). 

[19] T. Ermiş, On The Relations Between The Metric Geometries and Regular Polyhedra, Phd.Thesis, Eskisehir 
Osmangazi University, 93p, Eskişehir, (2014). 

[20] Ö. Gelişgen, R. Kaya, The Taxicab Space Group, Acta Mathematica Hungarica, 122(1-2), 187– 200, (2019). 
[21] Ö. Gelişgen, R. Kaya, The Isometry Group of Chinese Checker Space, International Electronic Journal of 
Geometry, 8(2), 82–96, (2015). 

[22] Z. Can, Ö. Gelişgen, R. Kaya, On the Metrics Induced by Icosidodecahedron and Rhombic Triacontahedron, 
Scientific and Professional Journal of the Croatian Society for Geometry and Graphics (KoG), 19, 17-23, (2015). 

[23]  Z. Can, Z. Çolak, Ö. Gelişgen, Ö., A Note On The Metrics Induced By Triakis Icosahedron And Disdyakis 
Triacontahedron, Eurasian Academy of Sciences Eurasian Life Sciences Journal, 1, 1- 11, (2015). 
[24]  Z. Çolak, Ö. Gelişgen, New Metrics For Deltoidal Hexacontahedron and Pentakis Dodecahedron, Sakarya 

Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(3), 353-360, (2015). 
[25]  Ö. Gelişgen, Z. Çolak, A Family of Metrics for Some Polyhedra, Automation Computers Applied Mathematics 

Scientific Journal, 24(1), 3–15, (2015). 
[26]  Ö. Gelişgen, Z. Can,  On The Family of Metrics for Some Platonic and Archimedean Polyhedra, Konuralp Journal of 

Mathematics, 4, 25-33, (2016). 
[27] Ö. Gelişgen, T. Ermiş, İ. Günaltılı, A Note About The Metrics Induced by Truncated Dodecahedron And Truncated 
Icosahedron, International Journal Of Geometry, 2(6), 5 – 16, (2017). 

[28] T. Ermiş, Ü. Z. Savcı., Ö. Gelişgen, A Note About Truncated Rhombicuboctahedron and Truncated 
Rhombicicosidodecahedron Space, Scientific Studies and Research Series Mathematics and Informatics, 29(1), 73–88, 

(2019). 
[29] Ü. Z. Savcı, Truncated Truncated Dodecahedron and Truncated Truncated Icosahedron Spaces, Cumhuriyet 

Science Journal (CSJ), 40-(2), 457-470, (2019). 
[30] D. Blair, Inversion Theory and Conformal Mapping, Student Mathematical Library, American Mathematical 
Society, 118p. (2000). 

[31] M. Özcan, R. Kaya, On the ratio of directed lengths in the Taxicab plane and related properties, Missouri J. of Math. 
Sci., 14, 107-117, (2002). 

 

 

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND LETTERS, AKSARAY, TÜRKİYE 

E-mail address: cicekemine51@gmail.com 

 

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AND LETTERS, AKSARAY, TÜRKİYE 

E-mail address:  zeynepcan@aksaray.edu.tr 

 

 

 

 



 

 105 

IFSCOM2022 
8TH IFS AND CONTEMPORARY MATHEMATICS CONFERENCE 
JUNE, 16-19, 2022, TURKEY 
ISBN: 978-605-68670-7-1 
pp: 105-116 
 

ON FIXED POINTS OF bd −D CYCLICAL CONTRACTIONS 

  NİLAY DEĞİRMEN 

0000-0001-8192-8473 
ABSTRACT 
In the current study, we give some new fixed point results by using different types of cyclic contractions 
in the setting of hyperbolic valued b −metric space. Also, we establish several illustrative examples to 
verify accuracy of our findings. 

1. INTRODUCTION AND PRELIMINARIES 
Fixed point theory is an important and popular topic in applications to various problems in nonlinear 

analysis, differential equations, approximation theory and control systems etc. Obtaining fixed points 
of different type contraction mappings has been the main goal of researchers. Many researchers have 
published various articles on fixed point theorems to extend the famous Banach contraction principle 
[1] with new and different contractive and expansive conditions in metric spaces or generalizations of 
metric spaces. 

Cyclic contractive conditions has recently been the focus of many authors. Kirk et al. [2] furnished 
some fixed point results with cyclical contractive conditions in 2003. Hereupon, Karapınar and Erhan 
[3] obtained some proximity points by utilizing various types of cyclic contractions.  

In 1989, Bakhtin [4] initiated a generalization of metric spaces called b −metric spaces and stated 
some fixed point results in b −metric spaces that are generalizations of the Banach’s fixed point theorem 
(see also Czerwik [5]). Several authors have reported some fixed point theorems for cyclic contractions 
in b −metric spaces (see, e.g., [6,7,8]). 

In [9], we define the notion of a hyperbolic valued b −metric space as a generalization of a 
hyperbolic valued metric space introduced by Kumar and Saini [10] in 2016 and give Zamfirescu type 
fixed point results.  

In this study, we transform some known fixed point results and contractions such as Banach’s in [1], 
Kannan’s in [11], Chatterjea’s in [12], Zamfirescu’s in [13], Reich’s in [14] and Ćirić’s in [15] for classical 
metric spaces to the cyclic case in hyperbolic valued b −metric spaces by supporting the obtained 
theorems by some concrete examples. 

Before starting our main results, we recall some known facts which will be used in next sections. 

A bicomplex number is defined as 1 2z z jz= +  where 2 1,j ij ji= − = , 1z  and 2z  are complex 

numbers, and i  and j  are independent imaginary units. The set of bicomplex numbers is denoted by 

BC  and the set forms a Banach space with the operations ,+ ⋅  and the norm .  

( ) ( ) ( ) ( )
( )
1 2 1 2 1 1 2 2

1 2 1 2

2 2
1 2

,

. . ,

. : ,

z w z jz w jw z w j z w

z z jz z j z

R z z z z

λ λ λ λ

+ = + + + = + + +

= + = +

→ → = +BC

 

for all  1 2 1 2,z z jz w w jw= + = + ∈BC  and for all .Rλ∈  Also,

{ }: , ,a kb k ij a b R= + = ∈ ⊂D BC  is the set of hyperbolic numbers.   

Three types of conjugates and moduli of 1 2z z jz= + ∈BC  are as follows: 
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1

2

3

†
1 2

†
1 2

†
1 2

,  
,

,

z z j z
z z jz

z z j z

= +

= −

= −

 

( ) ( )( )
( ) ( )( )

2

1

3

2 † 2 2
1 2

2 2 2†
1 2 1 2

2 2 2†
1 2 1 2

,

2Re . ,

Im . .

i

j

k

z zz z z C

z zz z z j z z

z zz z z k z z

= = + ∈

= = − +

= = + + − ∈D

 

The set 1 2
1 1,

2 2
ij ije e+ − = = 

 
 is idempotent basis of the set of bicomplex numbers and so 

idempotent representation of  1 2z z jz= +  is uniquely written as 1 1 2 2z e eβ β= +  where  

1 1 2 ,z izβ = −  2 1 2z iz Cβ = + ∈  [16]. 

Let x kyα = + ∈D . Then, ( ) ( )1 1 2 2 1 2e e e x y e x yα α α= + = + + −  is the idempotent 

representation of α . Also, { }1 1 2 2 1 2: 0, 0e eα α α α α+ = = + ≥ ≥D  is the set of positive hyperbolic 

numbers. 

For ,α β ∈D , if β α +− ∈D   (or  { }0 ),β α +− ∈ −D   then we write  α β


  (or 
~

α β
/
 ). and also 

we have that 

1 1 2 2

1 1 2 2~

1 1 2 2

 if and only if  and ,
 if and only if ,  and ,

 if and only if  and 

α β α β α β
α β α β α β α β

α β α β α β
/

≤ ≤
≠ ≤ ≤

< <





  
for 1 1 2 2 ,e eα α α= + 1 1 2 2e eβ β β= + ∈D  where 1 2 1 2, , , Rα α β β ∈ . 

The followings hold for any , , ,α β γ δ ∈D  and , :θ ρ ∈BC  

(i)  
k k k

θ ρ θ ρ+ +


, 
k k k

θρ θ ρ=  and k

k k

θθ
ρ ρ

=  where  ρ   is invertible. 

(ii) If  ,α +∈D  then 
k

α α=  and 
k k

αθ α θ= .  

(iii)  1 1 2 2k
e eθ β β= +  for 1 1 2 2e eθ β β= + . 

(iv) If  α β


  and  ,γ δ


  then .α γ β δ+ +


  

(v) If  α β


  and  0 ,γ


 then .αγ βγ


  

(vi) If  , ,α β +∈D   then α β


 implies that α β≤ . 

(vii) If  α β


 and ,β γ


  then  α γ


 [17]. 

(viii) If  α +∈D , 1α ≠  and 1 α−  is invertible, then  
1

2 11 ...
1

n
n αα α α

α

+−
+ + + + =

−
  

for all  n N∈ .  

(ix) If  α +∈D   and  1,α    then  0 1nα 


  for all  n N∈   and  0nα →  [18]. 
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Definition 1.1. [9] Let  X ≠ ∅ , 1s 


 be a given hyperbolic number and :bd X X +× →D D  be a 

function such that the following properties hold: 
  (i)  ( ), 0bd x y =D  iff  ,x y=   

  (ii)  ( ) ( ), , ,b bd x y d y x=D D   

  (iii)  ( ) ( ) ( ), , ,b b bd x z s d x y d y z + 


D D D   

for any  , ,x y z X∈ . Then, bdD  is called a hyperbolic valued b −metric on X  and ( ), bX dD  is called 

a hyperbolic valued b −metric space. 
 

Definition 1.2. [9] Let ( ), bX dD  be a hyperbolic valued b −metric space,  ( )nx X⊂  and  .x X∈   If 

for every  0 ε ∈ D   there exists  ( )0n Nε ∈   such that   ( ),b
nd x x εD  for all 0n n≥  then we say 

that  ( )nx  is bd −D convergent, and denoted by 

bd

nx x→
D

 as  .n →∞   

If for every 0 ε ∈ D   there exists  ( )0n Nε ∈   such that ( ),b
n md x x εD  for all  0,n m n≥  then we 

say that  ( )nx  is a bd −D Cauchy sequence.  

If every bd −D Cauchy sequence bd −D converges to a point in ( ), ,bX dD  then we say that  ( ), bX dD   is 

a complete hyperbolic valued b −metric space. 
 
All the way through this paper, we will use the abbreviations “hvbms” and “chvbms” for “hyperbolic 
valued b −metric spaces” and “complete hyperbolic valued b −metric space” when needed. 
 

Proposition 1.3. [9] Let ( ), bX dD  be a hvbms, ( )nx X⊂  and  x X∈ . Then, 

(i) 

bd

nx x→
D

 as  n →∞  iff ( ), 0b
nd x x →D  as n →∞ . 

(ii) ( )nx  is a bd −D Cauchy sequence iff for all m N∈ , ( ), 0b
n n md x x + →D  as .n →∞  

(iii) x  is unique. 

(iv) ( )nx  is a bd −D Cauchy sequence. 

(v) All subsequences of ( )nx  are bd −D convergent to x . 

 
In the closing of this part, we recall the following concepts that form the basis of this article given by 
Kirk et al. [2].  
 
Definition 1.4. Let A  and B  be nonempty subsets of a metric space ( ),X d . A mapping 

:f A B A B∪ → ∪  is said to be cyclic if ( )f A B⊂  and ( )f B A⊂ . 

 
Definition 1.5. Let A  and B  be nonempty subsets of a metric space ( ),X d . A mapping 

:f A B A B∪ → ∪  is called a cyclic contraction if there exists [ )0,1k∈  such that 

( ) ( ), ,d fx fy kd x y≤  
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for all x A∈  and y B∈ . 
2. MAIN RESULTS 

In this part, we define some new types of cyclic contractions defined on a hvbms and we achieve 
several fixed point results for them. 

 
Definition 2.1. Let ( ), bX dD  be a hvbms, ,E F X⊂ , E ≠ ∅ , F ≠ ∅  and :T E F E F∪ → ∪  be a 

mapping. If ( )T E F⊂  and ( )T F E⊂ , then T  is called a bd −D cyclic map. 

Definition 2.2. Let ( ), bX dD  be a hvbms and  E X⊂ . If ( )nx E⊂  and 

bd

nx x→
D

 imply  ,x E∈  the 

subset E  is called a bd −D closed set in X . 

 
Our first definition in the cyclic case is a new version of Banach’s contraction [1] and Corollary 3.7 

in [9], as follows: 
 

Definiton 2.3. Let ( ), bX dD  be a hvbms with 1s 


, ,E F X⊂ , E ≠ ∅ , F ≠ ∅  and 

:T E F E F∪ → ∪  be a bd −D cyclic map. If there exists 10
s

α   such that 1 sα−  is invertible and 

( ) ( ), ,b bd Tx Ty d x yα


D D  

for all x E∈  and y F∈ , then we say that T  is a Banach type bd −D cyclic contraction.  

 
Our first result is the analogue of the celebrated Banach contraction principle [1] for cyclic 

contraction in hyperbolic valued b −metric spaces, as follows: 
 

Theorem 2.4. Let ( ), bX dD  be a chvbms with 1s 


, ,E F X⊂  be bd −D closed subsets, E ≠ ∅ , F ≠ ∅  

and :T E F E F∪ → ∪  be a Banach type bd −D cyclic contraction. Then T  has a unique fixed point in 

E F∩ . 

Proof. Let x E∈ . Then we write ( ) ( )2 , ,b bd T x Tx d Tx xα


D D , and repeating this process, we obtain 

( ) ( )1 , ,b n n n bd T x T x d Tx xα+ 


D D  for any n N∈ . Letting n →∞ , we get ( )1 , 0.b n nd T x T x+ →D  

Considering that ( )nT x  is a bd −D Cauchy sequence, there exists u E F∈ ∪  such that .
bd

nT x u→
D

 Since 

,x E∈  ( )2nT x  is a sequence in E  and ( )2 1nT x−  is a sequence in F . These sequences converge to the 

same limit u . Because of the bd −D closedness of the sets E  and F , we obtain that u E F∈ ∩ , so 

E F∩ ≠∅ . 

We assert that u  is a fixed point of T . Indeed, for any n N∈  we have 

( ) ( ) ( ) ( )2 2 1, lim , lim , , 0b b n b n b

n n
d Tu u d Tu T x d u T x d u uα α−

→∞ →∞
= = =


D D D D  

which purports that .Tu u=  

For uniqueness, let v E F∈ ∪  be another fixed point of T . Since T  is a bd −D cyclic map, we get 

v E F∈ ∩ . Then it follows from Definition 2.3 that 

( ) ( ) ( ), , , ,b b bd u v d Tu Tv d u vα= 


D D D  
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so ( ) ( )1 , 0bd u vα− =D . Therefore, we derive that u v=  and so u  is a unique fixed point of T . 

 
Remark 2.5. 1) Note that Theorem 2.4 corresponds to Corollary 3.7 in [9] for .E F X= =  

        2) We emphasize that Theorem 2.4 is a generalization of Theorem 3.1 in [18] for E F X= =  
and 1s = . 
 

Example 2.6. Consider the chvbms [ ]( )0,1 , bdD  where the function  [ ] [ ]: 0,1 0,1bd +× →D D   is defined 

as 

( ) 2 2
1 2

1 2, .
3 3

bd x y x y e x y e= − + −D  

given in [9] with 2s = . Let 10,
2

E  =   
 and 10,

3
F  =   

. Define a self-mapping 

1 1: 0, 0,
2 2

ET F    ∪ = →      
 as 

2

2 4
x xTx = −  for all [ ]0,1x∈ . It can be simply obtained that 

( )T E F⊂  and ( )T F E⊂ . Also, we get  

( )

( )

2 22 2 2 2

1 2

2 2 2 2

1 2

2 2
1 2 1 2 1 2

1 2,
3 2 4 2 4 3 2 4 2 4

1 21 1
3 2 2 3 2 2

1 1 1 2 1 1 ,
4 4 3 3 4 4

b

b

x x y y x x y yd Tx Ty e e

x y x y x y x ye e

e e x y e x y e e e d x y

       
= − − − + − − −       

       

− − − −
= − + −

     + − + − = +         


D

D

 

If we choose 1 2
1 1
4 4

e eα = + , all requirements of Theorem 2.4 are satisfied to get a unique fixed point 

10 0,
3

E F  ∈ ∩ =   
 of T . 

 
We continue this section with a new definition generalizes the Kannan’s contraction [11] and 

Corollary 3.9 in [9]. 
 

Definiton 2.7. Let ( ), bX dD  be a hvbms with 1s 


, ,E F X⊂ , E ≠ ∅ , F ≠ ∅  and 

:T E F E F∪ → ∪  be a bd −D cyclic map. If there exists 10
2

β   such that 1 β−  is invertible and 

( ) ( ) ( ), , ,b b bd Tx Ty d x Tx d y T yβ  + 


D D D  

for all x E∈  and y F∈ , then we say that T  is a Kannan type bd −D cyclic contraction.  

 
Inspired of the idea of the Kannan’s fixed point theorem [11] in classical metric spaces we state the 

following theorem in hyperbolic valued b −metric spaces. 
 

Theorem 2.8. Let ( ), bX dD  be a chvbms with 1s 


, ,E F X⊂  be bd −D closed subsets, E ≠ ∅ , F ≠ ∅  

and :T E F E F∪ → ∪  be a Kannan type bd −D cyclic contraction. Then T  has a unique fixed point 
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in E F∩ . 

Proof. Let x E∈ . Then we write ( ) ( ) ( )2 2, , ,b b bd T x Tx d T x Tx d Tx xβ  + 


D D D  and so 

( ) ( )2 , ,
1

b bd T x Tx d Tx xβ
β−




D D  where 0 1
1
β
β−

   Repeating this process, we derive 

( ) ( )1 , ,
1

n
b n n bd T x T x d Tx xβ

β
+  

 − 



D D  for any n N∈ . Take n →∞ , we get ( )1 , 0.b n nd T x T x+ →D  

This guarantees that ( )nT x  is a bd −D Cauchy sequence. Therefore there is an element u E F∈ ∪  such 

that .
bd

nT x u→
D

 Since ,x E∈  ( )2nT x  is a sequence in E  and ( )2 1nT x−  is a sequence in F . Both 

sequences are convergent to u  and because of the bd −D closedness of the sets E  and F , we conclude 

that u E F∈ ∩  and E F∩ ≠∅ . 

Now, we indicate that u  is a fixed point of T . Again, for any n N∈  we have 

( ) ( ) ( ) ( ) ( )2 2 2 1, lim , lim , , ,b b n b n n b b

n n
d Tu u d Tu T x d T x T x d Tu u d Tu uβ β−

→∞ →∞
 = +  

 
D D D D D  

and so ( ) ( )1 , 0bd Tu uβ− =D . Since 10
2

β  , we get ( ), 0bd Tu u =D  which implies that .Tu u=  

For uniqueness, let ,v E F u v∈ ∪ ≠  and Tv v= . Since T  is a bd −D cyclic map, we get v E F∈ ∩ . 

Then it follows from Definiton 2.7 that 

( ) ( ) ( ) ( ), , , , 0.b b b bd u v d Tu Tv d Tu u d Tv vβ  = + = 


D D D D  

Therefore, we conclude that u v=  and so u  is a unique fixed point of T . 
 
Remark 2.9. We draw attention to the fact that Theorem 2.8 is equivalent to Corollary 3.9 in [9] for 
E F X= = . 
 

Example 2.10. Consider the chvbms [ )( )0, , bd∞ D  where the function  [ ) [ ): 0, 0,bd +∞ × ∞ →D D   is 

defined as 

( ) 2 2
1 2

1 3, .
4 4

bd x y x y e x y e= − + −D  

given in [9]. Suppose that [ ]0,1E F= = . Define a self-mapping [ ] [ ]: 0,1 0,1T E F∪ = →  as 

[ )

1 , 1
4
1 , 0,1
2

x
Tx

x

 == 
 ∈


 for all [ ]0,1x∈ . It can be easily seen that ( )T E F⊂  and ( )T F E⊂ .  

Let 1a c= = . Then, we have 

( )

( ) ( )

( ) ( )

2 2

1 2

2 2

1 2

1 1, , 0,
4 4

1 1 3 3 3, , 1, ,
4 4 4 4 4

1 3 3 3, , .
2 4 2 4

b b

b b b

b b

d Ta Tc d

d a Ta d c Tc d e e

d a Ta d c Tc e e

 = = 
 

     = = = +     
     

   + = +   
   

D D

D D D

D D
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This implies that ( ) ( ) ( ), , ,b b bd Ta Tc d a Ta d c Tcβ  + 


D D D  for all .β +∈D  

Let [ ), 0,1a c∈ . Then, we have 

( )

( )

( )

( ) ( )

2 2

1 2

2 2

1 2

2 2 2 2

1 2

1 1, , 0,
2 2

1 1 1 3 1, , ,
2 4 2 4 2

1 1 1 3 1, , ,
2 4 2 4 2

1 1 1 3 1 1, , .
4 2 2 4 2 2

b b

b b

b b

b b

d Ta Tc d

d a Ta d a a e a e

d c Tc d c c e c e

d a Ta d c Tc a c e a c e

 = = 
 

 == = − + − 
 

 = = − + − 
 

   
+ = − + − + − + −   

      

D D

D D

D D

D D

 

This implies that ( ) ( ) ( ), , ,b b bd Ta Tc d a Ta d c Tcβ  + 


D D D  for all .β +∈D  

Let 1a =  and [ )0,1c∈ . Then, we have 

( )

( )

( )

( ) ( )

2 2

1 2

2 2

1 2

2 2

1 2

2 2 2

1

1 1 1 1 3 1, , ,
4 2 4 4 4 4

1 1 3 3 3, 1, ,
4 4 4 4 4

1 1 1 3 1, , ,
2 4 2 4 2

1 3 1 3 3, ,
4 4 2 4 4

b b

b b

b b

b b

d Ta Tc d e e

d a Ta d e e

d c Tc d c c e c e

d a Ta d c Tc c e

     = = +     
     

     = = +     
     

 = = − + − 
 

    + = + − + +    
     

D D

D D

D D

D D

2

2
1 .
2

c e
 

− 
  

 

If we choose 1 2
1 1
9 9

e eβ = +  we obtain ( ) ( ) ( ), , ,b b bd Ta Tc d a Ta d c Tcβ  + 


D D D .  

The case 1c =  and [ )0,1a∈  is seen similarly. Thus, all conditions of Theorem 2.8 hold. This means 

that [ ]0 0,1E F∈ ∩ =  is fixed point of T  and is unique. 

 
Next, we give the following definition as a generalized version of Chatterjea’s contractive condition 

[12] and Corollary 3.10 in [9]. 
 

Definiton 2.11. Let ( ), bX dD  be a hvbms with 1s 


, ,E F X⊂ , E ≠ ∅ , F ≠ ∅  and 

:T E F E F∪ → ∪  be a bd −D cyclic map. If there exists 10
2s

γ   such that 1 sγ−  is invertible and 

( ) ( ) ( ), , ,b b bd Tx Ty d Tx y d Ty xγ  + 


D D D  

for all x E∈  and y F∈ , then we say that T  is a Chatterjea type bd −D cyclic contraction.  

 
We now transform Chatterjea’s fixed point result and contraction [12] for classical metric spaces to 

the cyclic case in hyperbolic valued b −metric spaces. 
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Theorem 2.12. Let ( ), bX dD  be a chvbms with 1s 


, ,E F X⊂  be bd −D closed subsets, E ≠ ∅ , 

F ≠ ∅  and :T E F E F∪ → ∪  be a Chatterjea type bd −D cyclic contraction. Then T  has a unique 

fixed point in E F∩ . 
Proof. Let x E∈ . Then it follows that  

( ) ( ) ( )

( )
( ) ( )

2 2

2

2

, , ,

,

, ,

b b b

b

b b

d T x Tx d T x x d Tx Tx

d T x x

s d T x Tx d Tx x

γ

γ

γ

 + 

=

 + 







D D D

D

D D

 

and so ( ) ( )2 , ,
1

b bsd T x Tx d Tx x
s

γ
γ−




D D  where 0 1
1

s
s

γ
γ−

  . Repeating this process, we obtain 

( ) ( )1 , ,
1

n
b n n bsd T x T x d Tx x

s
γ
γ

+  
 − 




D D  for any n N∈ . Taking the limit as n →∞ , we get 

( )1 , 0.b n nd T x T x+ →D  This implies that ( )nT x  is a bd −D Cauchy sequence. Hence there exists 

u E F∈ ∪  such that .
bd

nT x u→
D

 Since ,x E∈  we have ( )2nT x E⊂  and ( )2 1nT x F− ⊂ . These 

sequences converge to the same limit u . Because of the bd −D closedness of the sets E  and F , we 

conclude that E F∩ ≠∅ . 

On the other hand, for any n N∈  we have 

( ) ( ) ( ) ( ) ( )2 2 1 2, lim , lim , , ,b b n b n b n b

n n
d Tu u d Tu T x d Tu T x d T x u d Tu uγ γ−

→∞ →∞
 = +  

 
D D D D D  

and so ( ) ( )1 , 0bd Tu uγ− =D . Since 10
2s

γ  , we get ( ), 0bd Tu u =D  which implies that .Tu u=  

Now we choose another fixed point v E F∈ ∪  of T . Since T  is bd −D cyclic map we get v E F∈ ∩ . 

Then taking Definiton 2.11 into account we obtain 

( ) ( ) ( ) ( ) ( ), , , , 2 , .b b b b bd u v d Tu Tv d Tu v d Tv u d u vγ γ = + = 


D D D D D  

which is equivalent to ( ) ( )1 2 , 0bd u vγ− =D  and hence u v= . So, u  is a unique fixed point of T . 

 
Remark 2.13. We notice that Theorem 2.12 is analogous to Corollary 3.10 in [9] for .E F X= =  
 

Example 2.14. Consider the chvbms [ )( )0, , bd∞ D  where the function  [ ) [ ): 0, 0,bd +∞ × ∞ →D D   is 

defined as 

( ) 2 2
1 2

1 3, .
4 4

bd x y x y e x y e= − + −D  

given in [9] with 2s = . Suppose that [ ]0,1E F= = . Define a self-mapping 

[ ] [ ]: 0,1 0,1T E F∪ = →  as 

( ]

1 , 0
4
1 , 0,1
2

x
Tx

x

 == 
 ∈


 for all [ ]0,1x∈ . It can be easily observed that 

( )T E F⊂  and ( )T F E⊂ .  
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Let 0a c= = . Then, we have 

( )

( ) ( )

( ) ( )

2 2

1 2

2 2

1 2

1 1, , 0,
4 4

1 1 1 3 1, , 0, ,
4 4 4 4 4

1 3 3 3, , .
2 4 2 4

b b

b b b

b b

d Ta Tc d

d a Tc d c Ta d e e

d a Tc d c Ta e e

 = = 
 

     = = = +     
     

   + = +   
   

D D

D D D

D D

 

This implies that ( ) ( ) ( ), , ,b b bd Ta Tc d a Tc d c Taγ  + 


D D D  for all .γ +∈D  

Let ( ], 0,1a c∈ . Then, we have 

( )

( )

( )

( ) ( )

2 2

1 2

2 2

1 2

2 2 2 2

1 2

1 1, , 0,
2 2

1 1 1 3 1, , ,
2 4 2 4 2

1 1 1 3 1, , ,
2 4 2 4 2

1 1 1 3 1 1, , .
4 2 2 4 2 2

b b

b b

b b

b b

d Ta Tc d

d a Tc d a a e a e

d c Ta d c c e c e

d a Tc d c Ta a c e a c e

 = = 
 

 == = − + − 
 

 = = − + − 
 

   
+ = − + − + − + −   

      

D D

D D

D D

D D

 

This implies that ( ) ( ) ( ), , ,b b bd Ta Tc d a Tc d c Taγ  + 


D D D  for all .γ +∈D  

Let 0a =  and ( ]0,1c∈ . Then, we have 

( )

( )

( )

( ) ( )

2 2

1 2

2 2

1 2

2 2

1 2

2 2 2

1

1 1 1 1 3 1, , ,
4 2 4 4 4 4

1 1 1 3 1, 1, ,
2 4 2 4 2

1 1 1 3 1, , ,
4 4 4 4 4

1 1 1 3 1, ,
4 2 4 4 2

b b

b b

b b

b b

d Ta Tc d e e

d a Tc d e e

d c Ta d c c e c e

d a Ta d c Tc c e

     = = +     
     

     = = +     
     

 = = − + − 
 

    + = + − + +    
     

D D

D D

D D

D D

2

2
1 .
4

c e
 

− 
  

 

If we choose 1 2
1 1
4 4

e eγ = +  we obtain ( ) ( ) ( ), , ,b b bd Ta Tc d a Tc d c Taγ  + 


D D D .  

The case 0c =  and ( ]0,1a∈  is seen similarly. Thus, all conditions of Theorem 2.12 hold. This means 

that [ ]0 0,1E F∈ ∩ =  is fixed point of T  and is unique. 

Now, we present a new bd −D cyclic contraction in the following way: 

 
Definiton 2.15. Let ( ), bX dD  be a hvbms with 1s 


, ,E F X⊂ , E ≠ ∅ , F ≠ ∅  and 

:T E F E F∪ → ∪  be a bd −D cyclic map. If there exists 10
3

δ   such that 1 δ−  is invertible and 
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( ) ( ) ( ) ( ), , , ,b b b bd Tx Ty d x y d Tx x d Ty yδ  + + 


D D D D  

for all x E∈  and y F∈ , then we say that T  is a Reich type bd −D cyclic contraction.  

 
As a new version of Reich’s fixed point result [14], we give the following main theorem which 

implies that a fixed point is exist and unique on hyperbolic valued b −metric spaces. 
 

Theorem 2.16. Let ( ), bX dD  be a chvbms with 1s 


, ,E F X⊂  be bd −D closed subsets, E ≠ ∅  and 

F ≠ ∅  and :T E F E F∪ → ∪  be a Reich type bd −D cyclic contraction. Then T  has a unique fixed 

point in E F∩ . 
Proof. Let x E∈ . Then we write  

( ) ( ) ( ) ( )2 2, , , ,b b bd T x Tx d x Tx d T x Tx d Tx xδ  + + 


D D D  

and so ( ) ( )2 2, ,
1

b bd T x Tx d Tx xδ
δ−




D D  where 20 1
1
δ
δ−

  . Continuing this process, we get 

( ) ( )1 2, ,
1

n
b n n bd T x T x d Tx xδ

δ
+  

 − 



D D  for any n N∈ . Take n →∞ , we get ( )1 , 0b n nd T x T x+ →D . 

This implies that ( )nT x  is a bd −D Cauchy sequence and there is an element u E F∈ ∪  such that 

.
bd

nT x u→
D

 Since ,x E∈  ( )2nT x E⊂  and ( )2 1nT x F− ⊂  in a way that both sequences converge to the 

same limit .u  Also we know the sets E  and F  are bd −D closed, we obtain that u E F∈ ∩  and 

E F∩ ≠∅ . 

Now, we prove that u  is a fixed point of T . For any n N∈  we have 

( ) ( )
( ) ( ) ( )

( )

2

2 1 2 2 1

, lim ,

lim , , ,

,

b b n

n

b n b n n b

n
b

d Tu u d Tu T x

d u T x d T x T x d Tu u

d Tu u

δ

δ

→∞

− −

→∞

=

 + + 




D D

D D D

D

 

and so ( ) ( )1 , 0bd Tu uδ− =D . Since 10
3

δ  , we get ( ), 0bd Tu u =D  and so .Tu u=  

To show the uniqueness of fixed point, let v E F∈ ∪  be another fixed point of T . Since T  is bd −D

cyclic map we get v E F∈ ∩ . Then it follows from Definition 2.15 that 

( ) ( ) ( ) ( ) ( ), , , , ,b b b b bd u v d Tu Tv d u v d Tu u d Tv vδ  = + + 


D D D D D  

which is equivalent to ( ) ( )1 , 0bd u vδ− =D  and hence u v= . Therefore, so u  is a unique fixed point 

of T . 
 

The next definition can be regarded as a generalization of Ćirić’s contraction [15]. 
 

Definiton 2.17. Let ( ), bX dD  be a hvbms with 1s 


, ,E F X⊂ , E ≠ ∅ , F ≠ ∅  and 

:T E F E F∪ → ∪   be a bd −D cyclic map. If there exists 0 1η   such that 

( ),bd Tx Ty Uη


D  
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where ( ) ( ) ( ){ }, , , , ,b b bU d x y d Tx x d Ty y∈ D D D  for all x E∈  and y F∈ , then we say that T  is a Ćirić 

type bd −D cyclic contraction.  

 
The following result is a new version of Ćirić’s fixed point theorem [15] for classical metric spaces 

in hyperbolic valued b −metric spaces, as follows:  
 

Theorem 2.18. Let ( ), bX dD  be a chvbms with 1s 


, ,E F X⊂  be bd −D closed subsets, E ≠ ∅  and 

F ≠ ∅  and :T E F E F∪ → ∪  be a Ćirić type bd −D cyclic contraction. Then T  has a unique fixed 

point in E F∩ . 

Proof. Let x E∈ . Then we write ( ),bd Tx Ty Uη


D . If ( ),bU d x y= D , the desired result is seen from 

Theorem 2.4.  

If ( ),bU d Tx x= D , then we obtain that ( ) ( )2 , ,b bd T x Tx d Tx xη


D D  for y Tx F= ∈ . If we continue in 

the same manner, we get ( ) ( )1 , ,b n n n bd T x T x d Tx xη+ 


D D . This implies that ( )nT x  is a bd −D Cauchy 

sequence and there is an element u E F∈ ∪  such that .
bd

nT x u→
D

 Since ,x E∈  ( )2nT x  is a sequence 

in E  and ( )2 1nT x−  is a sequence in F  in a way that both sequences converge to u . Regarding bd −D

closedness of the sets E  and F , we obtain that u E F∈ ∩  and E F∩ ≠∅ . 
Now, we show that Tu u= . We have 

( ) ( ) ( )2, lim , lim ,b b n b

n n
d Tu u d Tu T x U d Tu uη η

→∞ →∞
= =


D D D  

for all n N∈  and so ( ) ( )1 , 0bd Tu uη− =D . Since 0 1η  , we get ( ), 0bd Tu u =D  which means that 

.Tu u=  

To evidence the uniqueness of fixed point, let ,v E F u v∈ ∪ ≠  and Tv v= . Since T  is bd −D cyclic 

map we get v E F∈ ∩ . Then it follows from Definiton 2.17 that 

( ) ( ) ( ), , , 0,b b bd u v d Tu Tv U d Tu uη η= = =


D D D  

and hence u v= . Therefore, so u  is a unique fixed point of T . 

If ( ),bU d Ty y= D , then we obtain that ( ) ( )2 2, ,b bd T x Tx d T x Txη


D D  for y Tx F= ∈ . Since 

0 1η  , this is a contradiction.  
 
On the other hand, we can state the following theorem as a new generalization of Zamfirescu’s theorem 
[13] which are combination the contractive conditions of Banach [1], Kannan [11] and Chatterjea [12] in 
hyperbolic valued b −metric spaces.  
 
Theorem 2.19. Let ( ), bX dD  be a chvbms with 1s 


,  ,E F X⊂  be bd −D closed subsets, E ≠ ∅  and 

F ≠ ∅ , , ,α β γ +∈D  such that 
1 10 , 0

2s
α β     and 

10
2s

γ   where 1 , 1 , 1s sα β β− − −  

and 1 sγ−  are invertible, and :T E F E F∪ → ∪ . If T  satisfies at least one of the conditions 
 ( ) ( ), ,b bd Tu Tv d u vα


D D  (3.1) 
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 ( ) ( ) ( ), , ,b b bd Tu Tv d u Tu d v Tvβ  + 


D D D  (3.2) 

 ( ) ( ) ( ), , ,b b bd Tu Tv d u Tv d v Tuγ  + 


D D D  (3.3) 

for all  u E∈  and v F∈ , u v≠ , then T  has a unique fixed point in E F∩ . 
Remark 2.20. We notice that this theorem is analogous to Theorem 3.6 given in hyperbolic valued b −
metric spaces in [9] for cyclic contractions. But since the techniques are the same as others, we avoid 
proving the theorem. Also, Theorem 2.19 combines Theorem 2.4, Theorem 2.8 and Theorem 2.12. 

3. CONCLUSION 
In present work, we discuss the existence and uniqueness conditions for fixed points of self-

mappings satisfying different types of cyclic contractive conditions on hyperbolic valued b −metric 
spaces by giving some numerical examples showing how our results can be used. We hope that our 
results will be attracted considerable interest from many authors for future works and applications to 
other related areas.  
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ON FIXED CIRCLES IN HYPERBOLIC VALUED METRIC SPACES 
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ABSTRACT 
In this work, we give a concept of a fixed circle on a hyperbolic valued metric space. We also investigate 
some fixed circle theorems for self-mappings in different ways by supporting our newly obtained 
results with some numerical examples. 

1. INTRODUCTION 
Fixed point theory is a significant and popular topic in applications to various problems in nonlinear 

analysis, differential equations, approximation theory and control systems etc. Obtaining fixed points 
of different type contraction mappings has been the main goal of researchers. Many researchers have 
published various articles on fixed point theorems to extend the famous Banach contraction principle 
[1] with new and different contractive and expansive conditions in metric spaces or generalizations of 
metric spaces. 

As a geometric approach to the fixed-point theory, fixed-circle problem in metric spaces raised by 
Özgür and Taş [2] has been developed very fast in recent times due to theoretical mathematical studies 
and some applications in various fields such as neural networks. New solutions of fixed-circle problem 
was investigated with various aspects and new contractive conditions on both metric spaces and some 
generalized metric spaces. 

In 2021, Sager and Sağır [3] gave some existence and uniqueness theorems in hyperbolic valued 
metric spaces [presented by Kumar and Saini [4]] by defining hyperbolic contraction mapping. Other 
studies in this topic are [5], [6] and [7]. 

In the most existing literature, we observed that fixed circles have not been investigated in hyperbolic 
valued metric spaces. This motivates us to study fixed-circle problem in such spaces with geometric 
interpretation. So, in this work, we consider the fixed-circle problem on hyperbolic valued metric spaces 
and analyze its solutions for self-mappings on such spaces by defining some contractive conditions by 
means of some known techniques. Also, we discuss some nontrivial concrete examples to validate our 
hypotheses and to show the usability of our theoretical results.  

Before starting our main theorems, we recall some known facts which will be needed in this 
discussion. 

A bicomplex number is defined as 1 2z z jz= +  where 2 1,j ij ji= − = , 1z  and 2z  are complex 

numbers, and i  and j  are independent imaginary units. The set of bicomplex numbers is denoted by 

BC  and the set forms a Banach space with the operations ,+ ⋅  and the norm .  

( ) ( ) ( ) ( )
( )
1 2 1 2 1 1 2 2

1 2 1 2

2 2
1 2

,

. . ,

. : ,

z w z jz w jw z w j z w

z z jz z j z

R z z z z

λ λ λ λ

+ = + + + = + + +

= + = +

→ → = +BC

 

for all  1 2 1 2,z z jz w w jw= + = + ∈BC  and for all .Rλ∈  Also,

{ }: , ,a kb k ij a b R= + = ∈ ⊂D BC  is the set of hyperbolic numbers.   

Three types of conjugates and moduli of 1 2z z jz= + ∈BC  are as follows: 
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1

2

3

†
1 2

†
1 2

†
1 2

,  
,

,

z z j z
z z jz

z z j z

= +

= −

= −

 

( ) ( )( )
( ) ( )( )

2

1

3

2 † 2 2
1 2

2 2 2†
1 2 1 2

2 2 2†
1 2 1 2

,

2Re . ,

Im . .

i

j

k

z zz z z C

z zz z z j z z

z zz z z k z z

= = + ∈

= = − +

= = + + − ∈D

 

The set 1 2
1 1,

2 2
ij ije e+ − = = 

 
 is idempotent basis of the set of bicomplex numbers and so 

idempotent representation of  1 2z z jz= +  is uniquely written as 1 1 2 2z e eβ β= +  where  

1 1 2 ,z izβ = −  2 1 2z iz Cβ = + ∈  [8]. 

Let x kyα = + ∈D . Then, ( ) ( )1 1 2 2 1 2e e e x y e x yα α α= + = + + −  is the idempotent 

representation of α . Also, { }1 1 2 2 1 2: 0, 0e eα α α α α+ = = + ≥ ≥D  is the set of positive hyperbolic 

numbers. 

For ,α β ∈D , if β α +− ∈D   (or  { }0 ),β α +− ∈ −D   then we write  α β


  (or 
~

α β
/
 ). and also 

we have that 

1 1 2 2

1 1 2 2~

1 1 2 2

 if and only if  and ,
 if and only if ,  and ,

 if and only if  and 

α β α β α β
α β α β α β α β

α β α β α β
/

≤ ≤
≠ ≤ ≤

< <







 

for 1 1 2 2 ,e eα α α= + 1 1 2 2e eβ β β= + ∈D  where 1 2 1 2, , , Rα α β β ∈ . 

The followings hold for any , , ,α β γ δ ∈D : 

(i) If  α β


  and  ,γ δ


  then .α γ β δ+ +


  

(ii) If  α β


  and  0 ,γ


 then .αγ βγ


  

(iii) If  , ,α β +∈D   then α β


 implies that α β≤ . 

(iv) If  α β


 and ,β γ


  then  α γ


 [9]. 

 
Definition 1.1. [4] Let X  be a nonempty set and let :d X X× →D D   be a function such that the 

following properties hold: 

  (i)  ( )0 ,d x y


D ,  and  ( ), 0d x y =D   if and only if  .x y=   

  (ii)  ( ) ( ), , .d x y d y x=D D   

  (iii)  ( ) ( ) ( ), , ,d x z d x y d y z+


D D D   

for any  , ,x y z X∈ . Then, dD  is said to be a −D  valued or hyperbolic valued metric on X  and the 

pair ( ),X dD  is said to be a hyperbolic valued or −D valued metric space. 

2. MAIN RESULTS 

Definition 2.1. Let  ( ),X dD   be a hyperbolic valued metric space,  0x X∈   and  .r +∈D   Then, the 
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circle with the centered 0x  and the radius r  is defined by ( ){ }
0 , 0: , .x rC x X d x x r= ∈ =D

D  

 

Definition 2.2. Let  ( ),X dD   be a hyperbolic valued metric space,  
0 ,x rCD   be a circle on  X   and  

:T X X→   be a self-mapping. The circle  
0 ,x rCD   is called as the fixed circle of  ,T  if  Tx x=   for all  

0 , .x rx C∈ D   

 
2.1. The existence of fixed circles 

In this part, we investigate the existence conditions of fixed-circles for self-mappings defining some 
contractive conditions in hyperbolic valued metric spaces. 
 

Theorem 2.1.1. Let  
0 ,x rCD   be any circle on a hyperbolic valued metric space ( ),X dD .  Define the 

mapping  : Xφ +→D   as 
 ( ) ( )0, ,x d x xφ = D  (1) 

for all  .x X∈   If  :T X X→  satisfies the conditions 
 ( ) ( ) ( ), 2d x Tx x Tx rφ φ+ −


D  (2) 

and 
 ( )0, ,d Tx x r


D  (3) 

for all  
0 , ,x rx C∈ D   then 

0 ,x rCD   is a fixed circle of  .T   

Proof. Let  x   be arbitrary point in 
0 , .x rCD   Then, regarding (2), (1), the fact that 

0 , ,x rx C∈ D  (3) and the 

definition of the relation  ,


  we obtain  

( ) ( ) ( )
( ) ( )
( )

0 0

0

, 2

, , 2

,
0

d x Tx x Tx r

d x x d Tx x r

d Tx x r
r r

φ φ+ −

= + −

= −

− =







D

D D

D

 

and hence  ( ), 0d x Tx =D  and .Tx x=   Consequently, we observe that  
0 ,x rCD   is a fixed circle of  .T   

 

Remark 2.1.2. The inequality (2) says that  Tx   is not in the interior of 
0 ,x rCD   for any  

0 , .x rx C∈ D   On the 

other hand, the inequality (3) implies that  Tx   is not in the exterior of
0 ,x rCD   for any 

0 , .x rx C∈ D   It follows 

that  ( )0 0, ,x r x rT C C⊂D D   regarding the conditions (2) and (3). 

 

Example 2.1.3. Let ( ),X dD  be a hyperbolic valued metric space and 0 ,x Xα ∈  such that 

( )0 ,d x rα D . Consider the circle  
0 ,x rCD . Let us define :T X X→   as 

0

0

,

,

,
.

,
x r

x r

x x C
Tx

x Cα

 ∈= 
∉

D

D  

Then, a simple calculation yields that T   satisfies the inequalities (2) and (3). This implies that 
0 ,x rCD   is 

a fixed circle of  .T   
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Theorem 2.1.4. Let  ( ),X dD   be a hyperbolic valued metric space, the mapping  φ   be as in (1) and  

0 ,x rCD   be any circle on  .X   If  T   is a self-mapping defined on  X   satisfying the conditions 

 ( ) ( ) ( ),d x Tx x Txφ φ−


D  (4) 

and 
 ( )0,d Tx x r


D  (5) 

for all  
0 , ,x rx C∈ D   then 

0 ,x rCD   is a fixed circle of  .T   

Proof. Let  x   be any element in  
0 , .x rCD  Taking (4), (1), the fact that 

0 , ,x rx C∈ D  (5) and the definition of 

the relation  


 into account we write  

( ) ( ) ( ) ( ) ( ) ( )0 0 0, , , , 0d x Tx x Tx d x x d Tx x r d Tx x r rφ φ− = − = − − = 
 

D D D D  

and so  ( ), 0.d x Tx =D   This yields the equality .Tx x=   Therefore, we get that  
0 ,x rCD   is a fixed circle 

of .T   
 

Remark 2.1.5. The condition (4) indicates that  Tx   is not in the exterior of 
0 ,x rCD   for any  

0 , .x rx C∈ D   In 

the same way, the inequality (5) shows that  Tx   is not in the interior of
0 ,x rCD  for any 

0 , .x rx C∈ D   As a 

result, these results say that  ( )0 0, ,x r x rT C C⊂D D   due to the inequalities (4) and (5). 

 

Example 2.1.6. Let ( ),X dD  be a hyperbolic valued metric space and 0 ,x Xα ∈  such that 

( )0 ,d x rα D . Consider the circle  
0 ,x rCD . Let us define :T X X→   as 

0

0

,

,

,
.

,
x r

x r

x x C
Tx

x Cα

 ∈= 
∉

D

D  

Then, with a direct computation it can be seen that T   satisfies (4) and (5). That is to say that 
0 ,x rCD   is a 

fixed circle of  .T   
 

Theorem 2.1.7. Let  ( ),X dD   be a hyperbolic  valued metric space, the mapping  φ   be as in  (1)  and  

0 ,x rCD   be any circle on  .X   If  T   is a self-mapping defined on  X   satisfying the conditions 

 ( ) ( ) ( ),d x Tx x Txφ φ−


D  (6) 

and 
 ( ) ( )0, ,d x Tx d Tx x rλ + 


D D  (7) 

for all  
0 ,x rx C∈ D   and some  λ +∈D   with  1,λ    then the circle  

0 ,x rCD   is a fixed circle of  .T   

Proof. Assume that 
0 ,x rx C∈ D  and .x Tx≠  Then, we get  

( ) ( ) ( ) ( ) ( )
( )
( ) ( ) ( )
( )

0 0

0

0 0

, , ,

,

, , ,

,

d x Tx x Tx d x x d Tx x

r d Tx x

d x Tx d Tx x d Tx x

d x Tx

φ φ

λ

λ

− = −

= −

+ −

=







D D D

D

D D D

D
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using the (6), (1) and (5), and so ( ), 0d x Tx =D .  Thus, it should be x Tx=   for all  
0 ,x rx C∈ D   and so 

this yields that  
0 ,x rCD   is a fixed circle of  .T   

 

Remark 2.1.8. The condition (6) shows that  Tx   is not in the exterior of the circle  
0 ,x rCD   for each  

0 , .x rx C∈ D   In the same manner, the condition (7) guarantees that  Tx   is not in the interior of the circle  

0 ,x rCD   for each  
0 , .x rx C∈ D   Then, it is apparent that  ( )0 0, ,x r x rT C C⊂D D   taking the conditions (6) and (7) 

into account. 
 

Example 2.1.9. Define a function  [ ) [ ): 0, 0,d +∞ × ∞ →D D   as 

( ) 1 2, 2 .d x y x y e x y e= − + −D  

One can simply see that [ )( )0, , d∞ D  is a hyperbolic valued metric space. Consider the  

[ ) ( ){ }
[ ){ }
[ ){ }

{ }

1 20, 2 1 2

1 2 1 2

0, : ,0 2

0, : 2 2

0, : 1

1 .

e eC x d x e e

x x e x e e e

x x

+ = ∈ ∞ = +

= ∈ ∞ + = +

= ∈ ∞ =

=

D
D

 

Take a self-mapping T  on [ )0,∞  as  

1 2

1 2

0, 2

1 2 0, 2

1 ,
.

2 ,
e e

e e

x C
Tx

e e x C
+

+

 ∈= 
+ ∉

D

D  

Then, we get that  T   satisfies the conditions (6) and (7) with  1 2
3 1 1

10 7
e eλ = +   , and we observe 

that the circle  
1 20, 2e eC +

D  is a fixed circle of  T . 

 

Theorem 2.1.10. Let  ( ),X dD   be a hyperbolic valued metric space, the mapping  φ   be as in (1) and 

0 ,x rCD  be any circle on  .X    T   is a self-mapping defined on  X   satisfying the conditions 

 ( ) ( ),d x Tx x rφ −


D  (8) 

or 
 ( ) ( ),d x Tx Tx rφ −


D , (9) 

and 
 ( ) ( )0, , ,d Tx x r d x Txλ+


D D  (10) 

for all  
0 ,x rx C∈ D   and some  λ +∈D   with  1,λ    then the circle  

0 ,x rCD   is a fixed circle of  .T   

Proof. Assume that 
0 ,x rx C∈ D . Then, if the condition (8) holds, we obtain 

( ) ( ) ( )0, , 0d x Tx x r d x x r r rφ − = − = − =


D D  

and so  ( ), 0.d x Tx =D  This implies that  .Tx x=   

Also, if the condition (9) holds, we establish by (10) 
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( ) ( ) ( )
( )

( )

0, ,

,

,

d x Tx Tx r d Tx x r

r d x Tx r

d x Tx

φ

λ

λ

− = −

+ −

=






D D

D

D

 

and so ( ), 0d x Tx =D . Thus, we derive that  x Tx=   for all  
0 ,x rx C∈ D   and more precisely,  

0 ,x rCD   is a 

fixed circle of  .T   

Remark 2.1.11. The inequalities (8) and (9) guarantees that  Tx   is not in the interior of 
0 ,x rCD   for any 

0 , .x rx C∈ D   In the same way, taking the inequality (10) into account, Tx  is not in the exterior of 
0 ,x rCD   

for any 
0 , .x rx C∈ D   We obtain that  ( )0 0, ,x r x rT C C⊂D D   under the conditions (8) or (9) and (10). 

 

Example 2.1.12. Define a function  :d R R +× →D D   as 

( ) 1 2, 2 .d x y x y e x y e= − + −D  

We can easily show that ( ),R dD  is a hyperbolic valued metric space. Consider the  

( ){ }
{ }
{ }
{ }

1 20, 2 1 2

1 2 1 2

: ,0 2

: 2 2

: 1

1, 1 .

e eC x R d x e e

x R x e x e e e

x R x

+ = ∈ = +

= ∈ + = +

= ∈ =

= − +

D
D

 

Take a self-mapping T  on R  as  

1 21 2 0, 2

1, 1
1, 1 .

2 , e e

x
Tx x

e e x C +

 =


= − = −
 + ∉

D

 

Then, we get that  T   satisfies the conditions (8), (9) and (10) with  1 2
1 1 1
3 2

e eλ = +   , and we observe 

that the circle  
1 20, 2e eC +

D  is a fixed circle of  T . 

 

Let XI  be the identity map defined as  ( )XI x x=   for all  .x X∈   We notice that the identity map 

satisfies the conditions in Theorem 2.1.1, Theorem 2.1.4, Theorem 2.1.7 and Theorem 2.1.10 for any circle. 
Now we find a new condition which excludes  XI   in these theorems as follows: 

 

Theorem 2.1.13. Let  ( ),X dD   be a hyperbolic valued metric space, the mapping  φ   be as in (1) and  

0 ,x rCD   be any circle on  .X  Then, T   is a self-mapping defined on  X   satisfying the condition 

 ( ) ( ) ( ),d x Tx x Txλ φ φ−


D  (11) 

for all  x X∈   where  λ +∈D   is an invertible element and  1 1λ−    if and only if  T   fixes the circle  

0 ,x rCD   and  .XT I=   

Proof. Assume that  :T X X→  satisfies the condition (11). Let  x X∈ . We imply that  .x Tx=   
Suppose, contrarily that  .x Tx≠   Then, utilizing the (11), (1) and (iii) given in Definition 1.1, we get  
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( ) ( ) ( )
( ) ( )
( ) ( ) ( )

( )

0 0

0 0

,

, ,

, , ,

,

d x Tx x Tx

d x x d Tx x

d x Tx d Tx x d Tx x

d x Tx

λ φ φ−

= −

+ −

=







D

D D

D D D

D

 

and so 

( ) ( )1, , .d x Tx d x Txλ−


D D  

But it is not possible. So, our assertion is held, that is,  x Tx=   for all  x X∈   and  .XT I=   

On the contrary, suppose that  T   fixes 
0 ,x rCD   and  .XT I=   Since  Tx x=   for all  ,x X∈   the inequality 

(11) holds for any invertible element λ +∈D  with 1 1λ−  . The proof is completed. 
 
Remark 2.1.14. Theorem 2.1.13 indicates that if a self-mapping fixes a circle by satisfying the conditions 
(2) and (3) (or the conditions (4) and (5), or the conditions (6) and (7), or the conditions [(8) or (9)] and 
(10), but does not satisfy the condition (11), then the self-mapping cannot be identity map. 
 

2.2. The uniqueness of fixed circles 
In this part, we discuss the uniqueness of fixed circles in the existence theorems in Subsection 2.1.  
Also, the following example emphasizes that fixed circles of a self-mapping may not be unique. 
 

Example 2.2.1. Define a function  [ ] [ ]: 0,1 0,1d +× →D D   as 

( ) 1 2, 2 .d x y x y e x y e= − + −D  

Then, it can be simply obtained that [ ]( )0,1 , dD  is a hyperbolic valued metric space. Consider the 

circles 
1 2

1 20,
3 3

e e
C

+

D  and 
1 2

1 21,
3 3

e e
C

+

D  as follows: 

[ ] ( )

[ ]

[ ]

1 2
1 2 1 20,
3 3

1 2 1 2

1 20,1 : ,0
3 3

1 20,1 : 2
3 3

10,1 :
3

1 ,
3

e e
C x d x e e

x x e x e e e

x x

+

 = ∈ = + 
 

 = ∈ + = + 
 
 = ∈ = 
 
 =  
 

D
D

 

[ ] ( )

[ ]

[ ]

1 2
1 2 1 21,
3 3

1 2 1 2

1 20,1 : ,1
3 3

1 20,1 : 1 2 1
3 3

10,1 : 1
3

2 .
3

e e
C x d x e e

x x e x e e e

x x

+

 = ∈ = + 
 

 = ∈ − + − = + 
 
 = ∈ − = 
 
 =  
 

D
D

 



 

 124 

Take a self-mapping T  on [ ]0,1  as  

2 2 1 2, ,
9 3 3

.
1 20 , ,
3 3

x x
Tx

x

  + ∈   = 
  ∉   

 

Then, we get that T  fixes the circles  
1 2

1 20,
3 3

e e
C

+

D   and  
1 2

1 21,
3 3

e e
C

+

D . This shows that the fixed circles of  T   

is not unique. 
 
Firstly, we focus on the uniqueness of fixed circles in Theorem 2.1.1 using Theorem 3.1 in [3] which are 
modified versions of Banach's fixed-point theorem [1] in the following theorem. 
 

Theorem 2.2.2. Let 
0 ,x rCD  be any circle on a hyperbolic valued metric space ( ),X dD . Suppose that 

:T X X→  satisfies the conditions (2) and (3) given in Theorem 2.1.1. If 
 ( ) ( ), , ,d Tx Ty d x yλ


D D  (12) 

for all  
0 ,x rx C∈ D   ,  

0 ,x ry X C∈ − D   and some  λ +∈D   with  1,λ    then 
0 ,x rCD   is unique fixed circle of  

.T   

Proof. Suppose that  
1 , ,xC δ

D   is another fixed circle of  .T   Let  x   and  y   be any points in the circles  

0 ,x rCD   and  
1 , ,xC δ

D   respectively. Then, considering the condition (12) we get 

( ) ( ) ( ), , , .d x y d Tx Ty d x yλ= 


D D D  

So, ( ), 0d x y =D  and x y= . Hence, the self-mapping  T  fixes only 
0 , .x rCD   

 
Now, we assign the uniqueness condition for the fixed circles in Theorem 2.1.4 which is an extension of 
Kannan's fixed-point condition [10]. 
 

Theorem 2.2.3. Let  ( ),X dD   be hyperbolic valued metric space,  
0 ,x rCD   be any circle on  X   and the  

T   be a self-mapping providing the conditions (4) and (5) given in Theorem 2.1.4. If  T   satisfies the 
contraction condition 

 ( ) ( ) ( ), , ,d Tx Ty d Tx x d Ty yλ +  


D D D  (13) 

for all  
0 ,x rx C∈ D , 

0 ,x ry X C∈ − D   and some  λ +∈D   with  
1 ,
2

λ    then the circle  
0 ,x rCD   is unique 

fixed circle of  .T   

Proof. Assume that 
1 ,xC δ

D  is another fixed circle of  .T   Let  x   and  y   be arbitrary points in  
0 ,x rCD   and  

1 , ,xC δ
D   respectively. Thus, we get by (13) 

( ) ( ) ( ) ( ), , , , 0d x y d Tx Ty d Tx x d Ty yλ= + =  


D D D D  

which implies .x y=   This guarantees that T  fixes only 
0 , .x rCD   

 
In what follows, we find the uniqueness condition for the fixed circles in Theorem 2.1.7 which is a new 
version of Chatterjea's contractive condition [11]. 
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Theorem 2.2.4. Let 
0 ,x rCD  be any circle on a hyperbolic valued metric space ( ),X dD . Assume that 

:T X X→  satisfies the conditions (6) and (7) given in Theorem 2.1.7. If 
 ( ) ( ) ( ), , ,d Tx Ty d Tx y d Ty xλ +  


D D D  (14) 

for all  
0 ,x rx C∈ D   ,  

0 ,x ry X C∈ − D   and some  λ +∈D   with  
1 ,
2

λ    then the circle  
0 ,x rCD   is unique 

fixed circle of  .T   

Proof. Assume that  
1 ,xC δ

D   is another fixed circle of  .T   Let  
0 ,x rx C∈ D   and  

1 ,xy C δ∈ D . So we have by 

(14) 

( ) ( ) ( ) ( ) ( ), , , , 2 , .d x y d Tx Ty d Tx y d Ty x d x yλ λ= + =  


D D D D D  

This causes ( ), 0d x y =D  which means that  .x y=   Observe that the self-mapping  T   fixes only circle  

0 , .x rCD   

 
Now, we give our last three uniqueness theorems for the fixed circles in Theorem 2.1.1, Theorem 2.1.10 
and Theorem 2.1.4 by modifying Ćirić's fixed point theorem [12] and Reich's fixed point theorem [13]. 

Theorem 2.2.5. Let 
0 ,x rCD  be any circle on a hyperbolic valued metric space ( ),X dD . Assume that 

:T X X→  satisfies the conditions (2) and (3) given in Theorem 2.1.1. If there exists  

( ) ( ) ( ) ( ) ( ){ }, , , , , , , , ,U d x y d Tx x d Ty y d Ty x d Tx y∈ D D D D D  

such that 
 ( ), ,d Tx Ty Uλ


D  (15) 

for all  
0 ,x rx C∈ D   ,  

0 ,x ry X C∈ − D   and some  λ +∈D   with  1,λ   then the circle  
0 ,x rCD  is unique 

fixed circle of  .T   

Proof. Assume that  
1 ,xC δ

D   is another fixed circle of  .T   Let  x   and  y   be arbitrary elements in  
0 ,x rCD   

and  
1 , ,xC δ

D   respectively. Thus, we get  

( ) ( ), ,d x y d Tx Ty Uλ= 


D D  

from the condition (15). This implies that ( ) ( ), ,d x y d x yλ


D D  or ( ), 0d x y 


D . So ( ), 0d x y =D  

and .x y=  This means that the self-mapping  T   fixes only one circle. 
 

Theorem 2.2.6. Let  
0 ,x rCD  be any circle on a hyperbolic valued metric space ( ),X dD . Assume that 

:T X X→  satisfies the conditions (8) or (9) and (10) given in Theorem 2.1.10. If there exists  

( ) ( ) ( ) ( ){ }, , , , , , ,V d Tx x d Ty y d Ty x d Tx y∈ D D D D  

such that 
 ( ) ( ), , ,d Tx Ty d x y Vλ µ+


D D  (16) 

for all  
0 ,x rx C∈ D   ,  

0 ,x ry X C∈ − D   some  ,λ µ +∈D   with  
1
2

λ   and 
1
2

µ   then the circle  
0 ,x rCD   is 

unique fixed circle of  .T   

Proof. Let  
0 ,x rx C∈ D   and  

1 ,xy C δ∈ D  assuming that 
1 ,xC δ

D   is another fixed circle of .T   Then, we get by 

(16) 
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( ) ( ) ( ), , , .d x y d Tx Ty d x y Vλ µ= +


D D D  

This implies that ( ) ( ), ,d x y d x yλ


D D  or ( ) ( ) ( ), ,d x y d x yλ µ+


D D . Since 
1
2

λ   and 

1λ µ+  , we have ( ), 0d x y =D . As a result it apparent that x y= , so T  fixes only circle  
0 , .x rCD   

Theorem 2.2.7. Let  ( ),X dD   be a hyperbolic valued metric space,  
0 ,x rCD   be any circle on  X   and T   

be a self-mapping satisfying the conditions (4) and (5) given in Theorem 2.1.4. If  T   satisfies the 
contraction condition such that 

 ( ) ( ) ( ) ( ), , , + , ,d Tx Ty d x y d Tx x d Ty yλ µ ν+


D D D D  (17) 

for all  
0 ,x rx C∈ D   ,  

0 ,x ry X C∈ − D   and some  , ,λ µ ν +∈D   with  
1
3

λ  , 
1
3

µ   and 
1
3

ν   then the 

circle  
0 ,x rCD   is unique fixed circle of  .T   

Proof. Suppose that  
1 ,xC δ

D   is another fixed circle of  .T   Let  x   and  y   be any points in  
0 ,x rCD   and  

1 , ,xC δ
D   respectively. Therefore, we get by (17) 

( ) ( ) ( ) ( ) ( ) ( )1, , , , + , , ,
3

d x y d Tx Ty d x y d Tx x d Ty y d x yλ µ ν= + 


D D D D D D  

which implies ( ), 0d x y =D  and .x y=  This gives that T   fixes only circle  
0 , .x rCD   

Remark 2.2.8. The uniqueness theorems obtained in this subsection for hyperbolic valued metric spaces 
are analogues of Theorem 3.1, Theorem 3.2 and Theorem 3.3 in [2] for metric spaces. The uniqueness 
theorems given in subsection 2.2 can be also rewritten using the contraction conditions in other 
uniqueness theorems given in the same subsection. But since the techniques are the same as another, 
we avoid listing all possible corollaries. 
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