
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IFSCOM 2021 

www.ifscom.com 

 
i 

 

PREFACE 

 

 

 

We are very pleased to introduce the abstracts of the 7th International IFS and Contemporary 

Mathematics Conference (IFSCOM2021). 

As previous conferences, the theme was the link between the Mathematics by many valued logics 

and its applications. 

 

In this context, there is a need to discuss the relationships and interactions between many valued 

logics and contemporary mathematics. 

 

Finally,in the previous conference, it made suceessful activities to communicate with scientists 

working in similar fields and relations between the different disciplines. 

 

This conference has papers in different areas; multi-valued logic, geometry, algebra, applied 

mathematics, theory of fuzzy sets, intuitionistic fuzzy set theory, mathematical physics, 

mathematics applications, etc. 

 

Thank you to all paticipants scientists offering the most significant contribution to this 

conference. 

 

Thank you to Scientific Committee Members, Referee Committee Members, Local Committee 

Members and MAJOR TEAM supporting this conference. 

 

 

 

 

 

 

  

 Assoc. Prof. GÖKHAN ÇUVALCIOĞLU  

 EDITOR 

 

  



IFSCOM 2021 

www.ifscom.com 

 
ii 

Honorary Chairmen  
 
Ioannis P. Stavroulakis (GR) 

 
 
 
Chairmen 
 

Gökhan Çuvalcıoğlu (TR)  

Mehmet Küçükarslan (TR) 
 

  



IFSCOM 2021 

www.ifscom.com 

 
iii 

 
 

INVITED SPEAKERS 

 

 

Krassimir T. Atanassov (BG) 

Mahdumangal Pal (IN) 

Poonam Kumar Sharma (IN) 

Oscar Castillo (MX) 

Sebahattin Balcı (TR) 

 

 

 

 

  



IFSCOM 2021 

www.ifscom.com 

 
iv 

 

SCIENTIFIC COMMITTEE 

 

 

 

Bijan Davvaz (IR),  

Evadokia Sotirova (BG),  

Fatih Kutlu (TR)  

Hamza Menken (TR)  

Janusz Kacprzyk (PL),  

Krassimir Atanassov(BG),  

Lois Aime Fono (CM),  

Madhumangal Pal  (IN),  

Mehmet Çitil (TR)  

Mehmet Küçükaslan (TR)   

Naime Demirtaş (TR)  

Orkun Coşkuntuncel (TR)  

Oscar Castillo (MX),  

Özgür Mızrak (TR)  

Panagiotis Chountas (UK),  

Piotr Nowak (PL),  

Paramajit Kumar (IN),  

Said Melliani (MA),  

Sertaç Göktaş (TR)  

Sotir Sotirov (BG),  

Şemsi Eken Meriç  (TR)  

Şükran Konca (TR)  

Taekyun Kim (KR),  

Ugur Değer (TR)  

Ümit Deniz  (TR)  

Vassia Atanassova (BG) 

 

 

 

 

 

  



IFSCOM 2021 

www.ifscom.com 

 
v 

 

REFEREE COMMITTEE 

 

 

Krassimir T. Atanassov ,  

Oscar Castillo,  

Gökhan Çuvalcıoğlu,  

Ekrem Kadıoğlu,  

Mehmet Küçükaslan,  

Said Melliani,  

Madhumangal Pal,  

Hanlar Reşidoğlu,  

Sotir Sotirov,  

Hüseyin Yıldırım. 

  



IFSCOM 2021 

www.ifscom.com 

 
vi 

 

LOCAL ORGANIZING COMMITTEE 

 

 

Feride Tuğrul  

 
  



IFSCOM 2021 

www.ifscom.com 

 
vii 

 

CONTENTS 

 

PREFACE i 

 

INVITED SPEAKERS ii 

 

SCIENTIFIC COMMITTEE iii 

 

REFEREE COMMITTEE iv 

 

LOCAL ORGANIZING COMMITTEE v 

 

𝔹-Convexity And 𝔹-Concavity Preserving Property Of Two-Dimensional Bernstein Operators.                                 1 

M. Uzun And T. Tunç 

 

Global Nonexistence Of Solutions For A System Of Viscoelastic Plate Equations                                                     8 
Fatma Ekinci And Erhan Pişkin 

 

Growth Of Solutions For A System Of Kirchhoff-Type Equations With Degenerate Damping Terms                                 20 
Fatma Ekinci And Erhan Pişkin                                                                          

 

Global Existence Of Solutions To Equation With Degenerate Damping                                                                                28 
Fatma Ekinci And Erhan Pişkin 

 

Bivariate Max-Product Bernstein Chlodowsky Operators                                                                                                       31 
Sevilay Kırcı Serenbay 

 

 

Some Results on the Whitehead Asphericity Problem                                                                                                             36 

Elton Pasku 

 

A Wagner-Preston Representation Theorem for Clifford Semigroups                                                                                    53  

Elton Pasku 

 

Independence Versus Uncorrelatedness:From Early Studies to Current Researches                                                              59 

Sofiya Ostrovska 

 

Blow-Up of the Phenomenon for Semilinear Parabolic Problems With Variable Sources                                                   66 

E. Akkoyunlu and R.Ayazoglu(Mashiyev) 

 

Notes On Rank Properties Of Blups In Lmm And Its Transformed Model                                                                           74 

M.Eriş Büyükkaya, M.Yiğit and N.Güler 

 

Γ-Semigroups Regarded As Semigroups Under Γ                                                                                                                     82 

Anjeza Krakulli 

 

Categorical Aspects of Γ -Semigroups                                                                                                                                       89 

Anjeza Krakulli 



IFSCOM 2021 

www.ifscom.com 

 
viii 

Blow-Up Of Solutions To A Parabolic System With Variable Sources                                                                                   95  

R. Ayazoğlu(Mashiyev) And E.Akkoyunlu 

 

A Multi-Strain Seir Outbreak Model with General Incidence Rates:Application of the New Coronavirus Disease              103 

C. Akbaş 

 

A Study on Picture Fuzzy Sets                                                                                                                                                  125  

S. Memiş 

 

On Midpoint Type Inequalities for Co-Ordinated Convex Functions via Generalized Fractional Integrals                          133 

H. Kara,H.Budak and F.Hezenci 

 

On New Inequalities Of Hermite-Hadamard Type For Fractional Integrals                                                                           149 

F.Hezenci, H.Budak and H. Kara 

 

The Spherical Images Of A Curve According To Type-2 Bishop Frame In Weyl Space                                                          160 

N.Kofoğlu  

 

A Contribution To The Fixed-Disc Results On S-Metric Spaces                                                                                               172 

N.Taş 

 

A Numerical Solution Of Mhd Jeffery-Hamel Model Arising In Fluid Mechanics                                                                 177 

Ömür Kıvanç Kürkçü 

 

Numerical Experiments With An Infeasible Primal-Dual Algorithm For Solving The Semidefinite  

Least Squares Problems                                                                                                                                                               184 

 

 

Some Characterizations Of Ruled Surfaces Generated By S- Curves                                                                                         191 

Gülden Altay Suroğlu and Münevver Tuz 

 

Tourism Management Application In Pythagorean Fuzzy Sets With Copras Method                                                              197 

Ali Köseoğlu 

 

On Partial Derivatives Of Split Triplet Functions                                                                                                                     209 

A.Atasoy 

 

 

On Split Triplet And Gradient                                                                                                                                                    213 

A.Atasoy 

 

 

Papers, Publishing as abstract       217 

 

Papers, sending Journal of Universal Mathematics       218 

 

Papers, sending Springer Book       219 



IFSCOM2021
7th Ifs And Contemporary Mathematics Conference

May, 25-29, 2021, Turkey

ISBN: 978-605-68670-4-0
pp: 1-7

B-CONVEXITY AND B-CONCAVITY PRESERVING PROPERTY

OF TWO-DIMENSIONAL BERNSTEIN OPERATORS

M. UZUN AND T. TUNC

0000-0003-3727-9116, 0000-0002-3061-7197

Abstract. In this study, we present some properties regarding B-convex and
B-concave functions. Also, it has been determined whether the convexity prop-

erties of these functions are preserved by Bernstein operators of two variables.

Consequently, we give some examples of which Bernstein polynomials of two
variables do not preserve convexity properties of these functions. In addition,

of these convexities, results are given regarding conditions it will be preserved.

1. Introduction

Let f : [0, 1]→ R and n ∈ N. The n. Bernstein polynomial related to f is defined
by

Bn(f)(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
.

For f ∈ C[0, 1], the sequence {Bn(f)}∞n=1 uniformly converges to f [5]. Also, vari-
ous convexities which functions have are provided by Bernstein polynomials. Some
of them can be found in [4]. In addition, the Bernstein polynomials do not pre-
serve B-convexity but preserve the property B-concavity of functions [6]. Similarly,
in this work we study same argument regarding B-convexity and B-concavity for
Bernstein poylnomials of two variables.

For n,m ∈ N and f : [0, 1] × [0, 1] → R, two-dimensional generalization of the
Bernstein polynomial of degree (n,m) related to f is defined by

Bn,mf(x, y) =

n∑
k=0

m∑
i=0

pn,k(x)pm,i(y)f

(
k

n
,
i

m

)
where pn,k(t) =

(
n
k

)
tk(1− t)n−k [2].

Date: May 25, 2021.
Key words and phrases. Bernstein operators, B-convex function, B-concave function, Shape

preserving approximation.
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2 M. UZUN AND T. TUNC

2. Preliminaries

We use the notations Rn+ := {(x1, ..., xn) : xi ≥ 0, i = 1, ..., n} and for x =
(x1, ..., xn), y = (y1, ..., yn) ∈ Rn+,

x ∨ y := (max{x1, y1},max{x2, y2}, ...,max{xn, yn}).
Definition 2.1. [3] A function f : [0, 1] → R is called a starshaped function if
f(λx) ≤ λf(x) for all x ∈ [0, 1] and λ ∈ [0, 1].

Definition 2.2. [7] Let U ⊂ Rn+. U is B-convex iff λx∨ y ∈ U for all x, y ∈ U and
λ ∈ [0, 1].

Definition 2.3. [1] A function, f : U ⊂ Rn+ → R+ is said to be a B-convex function
iff U is B-convex and the inequality f(λx∨ y) ≤ λf(x)∨ f(y) holds for all x, y ∈ U
and λ ∈ [0, 1].
If U is B-convex and the inequality f(λx ∨ y) ≥ λf(x) ∨ f(y) holds for all x, y ∈ U
and λ ∈ [0, 1] then f is called a B-concave function.

Lemma 2.4. [6] If f : [0, 1] → R+ is a starshaped function, then f is a B-convex
function.

Theorem 2.5. [6] Let f : [0, 1] → R+. Then f is a B-concave function iff f is
increasing and f(λx) ≥ λf(x) for all x ∈ [0, 1] and λ ∈ [0, 1].

Definition 2.6. [4] Let f : [0, 1] × [0, 1] → R. Then partial derivatives of Bn,mf
are given by

∂Bn,mf(x, y)

∂x
= n

n−1∑
k=0

m∑
i=0

pn−1,k(x)pm,i(y)

[
f

(
k + 1

n
,
i

m

)
− f

(
k

n
,
i

m

)]
,

∂Bn,mf(x, y)

∂y
= m

n∑
k=0

m−1∑
i=0

pn,k(x)pm−1,i(y)

[
f

(
k

n
,
i+ 1

m

)
− f

(
k

n
,
i

m

)]
where pn,k(t) =

(
n
k

)
tk(1− t)n−k and n,m ∈ N.

3. Main Results

In this section, we consider the set U ⊂ R2
+ as any B-convex set and V ⊂ R2

+ as
B-convex set such that (0, 0) ∈ V .

Theorem 3.1. Let f : [0, 1]→ R+ be a B-concave function. Then f is continuous
on [0, 1] iff f is right continuous at 0.

Proof. If f is continuous on [0, 1] then it is right continuous at 0. Conversely,
suppose that f is discontinuous at a ∈ (0, 1]. Since f is increasing on [0, 1] (Teorem
2.5), then f has jump discontinuity at a. Therefore, following situations are valid:

If a ∈ (0, 1) then f(a+) 6= f(a−) and f(a−) ≤ f(a) ≤ f(a+).

(i) Let f(a−) < f(a) ≤ f(a+). Then for λ = (f(a) + f(a−))/2f(a) < 1, we
have λa < a and f(λa) ≤ f(a) < λf(a) < f(a).

(ii) Let f(a−) = f(a). Then for λ = (f(a+)+f(a−))/2f(a+) < 1 and c ∈ (a, 1)
such that λc = a, we have

f(λc) = f(a) <
(f(a+) + f(a−)

2f(a+)
f(a+) ≤ (f(a+) + f(a−)

2f(a+)
f(c) = λf(c).
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If a = 1, then f(1−) < f(1). For λ = (f(1) + f(1−))/2f(1) < 1, we have f(λ) <
f(1) and f(λ) < λf(1). Since, in each case λ ∈ [0, 1] can be found such that
f(λx) < λf(x), this contradicts with B-concavity of f . �

Using the term of strictly increasing instead of increasing, we correct the Lemma
2.3. in [6] as following:

Lemma 3.2. Let f : [0, 1] → R+ be a strictly increasing function. Then f is a
B-convex function iff f is a starshaped function.

Proof. If f is a B-convex function then we have the inequality f(λx∨ y) ≤ λf(x)∨
f(y) for all x, y ∈ [0, 1] and λ ∈ [0, 1]. Firstly, for λ 6= 0, x 6= 0, let us take y = 0.
Then

f(λx ∨ 0) = f(λx) ≤ λf(x) ∨ f(0).

Also, considering f(λx) > f(0), we get the inequality f(λx) ≤ λf(x) for all x, λ ∈
(0, 1]. Finally, let (λn) be a sequence in (0, 1] such that limn→∞ λn = 0. Since
f(λnx) ≤ λnf(x) for all n ∈ N and x ∈ (0, 1] then we have

lim
n→∞

f(λnx) = f(0) ≤ 0.

This inequality shows that f(0) = 0 because of f(x) ≥ 0. Consequently f(λx) ≤
λf(x) holds for all x ∈ [0, 1] and λ ∈ [0, 1].
Conversely, if f is a starshaped function then f is a B-convex function from Lemma
2.4. �

Lemma 3.3. If f : U → R+ is decreasing with respect to x and y, then f is a
B-convex function.

Proof. Let (x1, y1), (x2, y2) ∈ U and λ ∈ [0, 1]. Then we have following inequalities:

(i) If λ(x1, y1) ∨ (x2, y2) = (λx1, λy1), then

f(λx1, λy1) ≤ f(x2, y2) ≤ λf(x1, y1) ∨ f(x2, y2)

(ii) If λ(x1, y1) ∨ (x2, y2) = (λx1, y2), then

f(λx1, y2) ≤ f(x2, y2) ≤ λf(x1, y1) ∨ f(x2, y2)

(iii) If λ(x1, y1) ∨ (x2, y2) = (x2, λy1), then

f(x2, λy1) ≤ f(x2, y2) ≤ λf(x1, y1) ∨ f(x2, y2)

(iv) If λ(x1, y1) ∨ (x2, y2) = (x2, y2), then

f(x2, y2) ≤ λf(x1, y1) ∨ f(x2, y2).

Consequently, from above four cases, the inequality f(λ(x1, y1)∨(x2, y2)) ≤ λf(x1, y1)∨
f(x2, y2) is provided for all (x1, y1), (x2, y2) ∈ U and λ ∈ [0, 1]. �

Theorem 3.4. If f : [0, 1]× [0, 1]→ R+ is decreasing with respect to x and y, then
Bn,mf(x, y) is B-convex for all n,m ∈ N.

Proof. From Definition 2.6 it is clear that if f : [0, 1] × [0, 1] → R+ is decreasing
with respect to x and y, then for all (x, y) ∈ [0, 1]× [0, 1]

∂Bn,mf(x, y)

∂x
≤ 0

∂Bn,mf(x, y)

∂y
≤ 0.
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Since the Bernstein polynomials of functions which are decreasing with respect to
x, y are also decreasing with respect to x, y, now the proof is clear from Lemma
3.3. �

Remark 3.5. The Bernstein operatorsBn,m do not preserve the property B-convexity
of functions.

Example
Let f : [0, 1] × [0, 1] → R+ be defined by f(x) = (x− y)2/(1 + y). This function
provides the inequality f(λ(x1, y1)∨(x2, y2)) ≤ λf(x1, y1)∨f(x2, y2) for all (x1, y1),
(x2, y2) ∈ U and λ ∈ [0, 1]. But B1,1f do not provide the inequality. For example,
if we take (x1, y1) = (1, 1), (x2, y2) = (0, 0) and λ = 1/2 then

B1,1f(x, y) =

1∑
k=0

1∑
i=0

xk(1− x)1−kyi(1− y)1−if(k, i) =
y + 2x− 3xy

2
,

B1,1f(λ(x1, y1)) = B1,1f

(
1

2
,

1

2

)
=

3

8
,

B1,1f(x2, y2) = B1,1f(0, 0) = 0,

λB1,1f(x1, y1) =
1

2
B1,1f(1, 1) = 0.

From above equalities we get following inequality

B1,1f(λ(x1, y1)∨ (x2, y2)) = B1,1f

(
1

2
,

1

2

)
=

3

8
> 0 = λB1,1f(x1, y1)∨B1,1(x2, y2).

Consequently, for n = 1, m = 1, Bernstein polynomial B1,1f related to the function
f is not B-convex.

Theorem 3.6. Let f : V → R+. Then f is a B-concave function iff it has the
following properties:

(i) f is increasing with respect to x and y,
(ii) the inequality f(λx, λy) ≥ λf(x, y) is provided for all (x, y) ∈ V and λ ∈

[0, 1].

Proof. Let f be a B-concave function. So, the inequality f(λ(x1, y1), (x2, y2)) ≥
λf(x1, y1) ∨ f(x2, y2) holds for all (x1, y1), (x2, y2) ∈ V and λ ∈ [0, 1]. if we take
λ = 1, then for all h ≥ 0 providing (x + h, y), (x, y) ∈ V and k ≥ 0 providing
(x, y + k), (x, y) ∈ V , we have

f((x+ h, y) ∨ (x, y)) = f(x+ h, y) ≥ f(x+ h, y) ∨ f(x, y) ≥ f(x, y)

f((x, y + k) ∨ (x, y)) = f(x, y + k) ≥ f(x, y + k) ∨ f(x, y) ≥ f(x, y).

From these inequalities we get (i) . Also for all (x, y) ∈ V and λ ∈ [0, 1], we have
(ii), from the following inequality:

f(λ(x, y) ∨ (0, 0)) = f(λx, λy) ≥ λf(x, y) ∨ f(0, 0) ≥ f(0, 0)

For second part of proof, let f holds (i) and (ii). Let (x1, y1), (x2, y2) ∈ V and
λ ∈ [0, 1];
If λ(x1, y1) ∨ (x2, y2) = (λx1, λy1), then we get f(λx1, λy1) ≥ λf(x1, y1) from (ii)
and f(λx1, λy1) ≥ f(x2, y2) from (i). Therefore, the following inequality is true:

f(λx1, λy1) ≥ λf(x1, y1) ∨ f(x2, y2).
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If λ(x1, y1) ∨ (x2, y2) = (λx1, y2), then we get f(λx1, y2) ≥ f(x2, y2) from (i) and
f(λx1, y2) ≥ f(λx1, λy1) ≥ λf(x1, y1) from (i),(ii). Then, we have

f(λx1, y2) ≥ λf(x1, y1) ∨ f(x2, y2).

If λ(x1, y1) ∨ (x2, y2) = (x2, λy1), then we get f(x2, λy1) ≥ f(x2, y2) from (i) and
f(x2, λy1) ≥ f(λx1, λy1) ≥ λf(x1, y1) from (i),(ii). Then, we have

f(x2, λy1) ≥ λf(x1, y1) ∨ f(x2, y2).

If λ(x1, y1) ∨ (x2, y2) = (x2, y2), then we get f(x2, y2) ≥ f(λx1, λy1) ≥ λf(x1, y1)
from (i),(ii). Then, we have

f(x2, y2) ≥ λf(x1, y1) ∨ f(x2, y2).

Consequently, these inequalities show that f is B-concave on V .
�

Proposition 1. The finite sum of nonnegative B-concave functions defined on
V ⊂ R+ is also B-concave function.

Proof. Let n > 1 be an integer and f1, ...fn are nonnegative B-concave functions
defined on V. Thus, for all i = 1, ..., n, fi is increasing and satisfies the inequality
fi(λx, λy) ≥ λfi(x, y) where x, y ∈ V , λ ∈ [0, 1]. It is clear that the function
f : V → R+ defined by f(x, y) = f1(x, y) + ... + fn(x, y) is also increasing and
satisfies the inequality f(λx, λy) ≥ λf(x, y) for all x, y ∈ V , λ ∈ [0, 1]. �

Remark 3.7. The Bernstein operatorsBn,m do not preserve the property B-concavity
of functions.

Example
Let f : [0, 1]× [0, 1]→ R+ be defined by

f(x, y) =

{
xy
x+y , (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

From Theorem 3.6, this function is B-concave. For n = 1 and m = 1, we have

B1,1f(x, y) =

1∑
k=0

1∑
i=0

xk(1− x)1−kyi(1− y)1−if(k, i) =
xy

2
.

In this case for all x, y, λ ∈ (0, 1), the inequality

B1,1f(λx, λy) =
λ2xy

2
<
λxy

2
= λB1,1f(x, y)

holds. Therefore, the condition (ii) in Theorem 3.6 fails for B1,1f . Consequently,
B1,1f do not provide the property of B-concavity of function f .

We are to use the following lemmas to give B-concave function examples pre-
served by Bernstein polynomials of two variables.

Lemma 3.8. Let g : [0, 1]→ R+ be any nonnegative function and f : [0, 1]×[0, 1]→
R+ be defined by f(x, y) = g(x). If fx ≥ 0 and xfx(x, y) − f(x, y) ≤ 0 for all
(x, y) ∈ [0, 1]× [0, 1] then f is a B-concave function.
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Proof. Because of fx(x, y) ≥ 0 and fy(x, y) = 0, f is increasing with respect to x
and y. Also, from the following inequality(

f(x, y)

x

)
x

= xfx(x, y)− f(x, y) ≤ 0,

f(x, y)/x is decreasing. For this reason, we have

f(λx, λy)

λx
=
f(λx, y)

λx
≥ f(x, y)

x
.

This shows that f(λx, λy) ≥ λf(x, y). Therefore, f is B-concave from Teorem
3.6. �

Lemma 3.9. Let h : [0, 1]→ R+ be any nonnegative function and f : [0, 1]×[0, 1]→
R+ be defined by f(x, y) = h(y). If fy ≥ 0 and yfy(x, y) − f(x, y) ≤ 0 for all
(x, y) ∈ [0, 1]× [0, 1], then f is a B-concave function..

Proof. The proof is similar to the proof of Lemma 3.8. �

Theorem 3.10. Let f : [0, 1] × [0, 1] → R+ be given by f(x, y) = g(x). If f is a
B-concave function then the Bernstein polynomial Bn,mf is also B-concave for all
n,m ∈ N.

Proof. Let n,m ∈ N and Tn,m := (Bn,mf(x, y))x − (Bn,mf(x, y)/x). Due to B-
concavity of f , f is increasing and satisfies the inequality f(λx, λy) = f(λx, y) ≥
λf(x, y) for all (x, y) ∈ [0, 1]× [0, 1] and λ ∈ [0, 1]. Therefore,

∂Bn,mf(x, y)

∂x
= n

n−1∑
k=0

m∑
i=0

pn−1,k(x)pm,i(y)

[
f

(
k + 1

n
,
i

m

)
− f

(
k

n
,
i

m

)]
≥ 0

and considering the following equality:

1

x

n∑
k=1

m∑
i=0

pn,k(x)pm,i(y)f

(
k

n
,
i

m

)
=

n

k + 1

n−1∑
k=0

m∑
i=0

pn−1,k(x)pm,i(y)f

(
k + 1

n
,
i

m

)
,

then we get

Tn,m = n

n−1∑
k=0

m∑
i=0

pn−1,k(x)pm,i(y)

[
f

(
k + 1

n
,
i

m

)
− f

(
k

n
,
i

m

)]

− x−1
n∑
k=0

m∑
i=0

pn,k(x)pm,i(y)f

(
k

n
,
i

m

)

≤ n

n−1∑
k=0

m∑
i=0

pn−1,k(x)pm,i(y)

[
f

(
k + 1

n
,
i

m

)
− f

(
k

n
,
i

m

)]

− x−1
n∑
k=1

m∑
i=0

pn,k(x)pm,i(y)f

(
k

n
,
i

m

)

= n

n−1∑
k=0

m∑
i=0

pn−1,k(x)pm,i(y)

[
k

k + 1
f

(
k + 1

n
,
i

m

)
− f

(
k

n
,
i

m

)]
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From the last equality, we have

k

k + 1
f

(
k + 1

n
,
i

m

)
− f

(
k

n
,
i

m

)
≤ f

(
k

k + 1

k + 1

n
,
i

m

)
− f

(
k

n
,
i

m

)
= 0

and considering pn,k(t) ≥ 0, we get the following inequality:(
Bn,mf(x, y)

)
x
− Bn,mf(x, y)

x
≤ 0.

Thus, the conditions in Lemma 3.8 are provided. �

Theorem 3.11. Let f : [0, 1] × [0, 1] → R+ given by f(x, y) = h(y). If f is a
B-concave function then the Bernstein polynomial Bn,mf is also B-concave for all
n,m ∈ N.

Proof. The proof is similar to the proof of Theorem 3.10. �
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GLOBAL NONEXISTENCE OF SOLUTIONS FOR A SYSTEM OF

VISCOELASTIC PLATE EQUATIONS
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Abstract. We study a system of viscoelastic plate equations with degenerate

damping and source terms under Dirichlet boundary condition. We obtain the
blow up of solutions.

1. Introduction

In this work, we consider the following system of viscoelastic plate equations
with degenerate damping terms:

(1.1)



utt + ∆2u−
∫ t

0
λ1(t− s)∆2u(s)ds+ (|u|p + |v|q) |ut|d−1

ut
= f1 (u, v) , (x, t) ∈ Ω× (0, T ) ,

vtt + ∆2v −
∫ t

0
λ2(t− s)∆2v(s)ds+

(
|v|l + |u|υ

)
|vt|r−1

vt

= f2 (u, v) , (x, t) ∈ Ω× (0, T ) ,
u (x, t) = v (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,

where Ω is a bounded domain with a sufficiently smooth boundary inRn (n ≥ 1) , d, r ≥
1, p, q, l, υ ≥ 0; λi(.) : R+ → R+ (i = 1, 2) are positive relaxation functions.

For the last several decades, the mathematical analysis of plate equations has
attracted a lot of attention. For example, Lagnese [1], Rivera et al. [2] and Alabau-
Boussouira et al. [3] investigated plate equation. Messaoudi [4] considered the
following problem

utt + ∆2u+ |ut|d−1
ut = |u|p−2

u.

He obtained an existence result and studied global solution in case d ≥ p. Then,
blow-up of solutions with nonpositive initial energy and d < p was obtained.

The evolution equations with degenerate damping are of much interest in ma-
terial science and physics. Now, we state some present results in the literature:

Date: May 25, 2021.
Key words and phrases. general decay, parabolic equation.
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Rammaha and Sakuntasathien [5] firstly study system with degenerate damping
terms and they considered the following system

(1.2)

{
utt −4u+ (|u|p + |v|q) |ut|d−1

ut = f1 (u, v) ,

vtt −4v +
(
|v|l + |u|υ

)
|vt|r−1

vt = f2 (u, v) .

They considered the global well posedness of the solution under some restriction
on the parameters. In [6, 7], authors studied the same problem treated in [5], and
they investigated the growth and blow up properties. In addition, some authors
studied the system with degenerate damping terms [8, 9, 10, 11, 12].

The outline of the paper is as follows: In Section 2, as preliminaries, we give
necessary assumptions, lemma that will be used later and Local existence theorem.
The blow up of solution is presented in last section.

2. Preliminaries

In this section, we will present some assumptions, notations, and lemma that will
be used later for our main results. Throughout this paper, we denote the standart
L2 (Ω) norm by ‖.‖ = ‖.‖L2(Ω) and Lp (Ω) norm ‖.‖p = ‖.‖Lp(Ω) .

To state and prove our result, we need some assumptions:
(A1) Regarding λi : R+ → R+, (i = 1, 2) are C1− nonincreasing functions

satisfying

λi(α) > 0, λ′i(α) ≤ 0, 1−
∫ ∞

0

λi(α)dα = µi > 0, α ≥ 0.

(A2) For the nonlinearity, we assume that{
1 ≤ d, r if n = 1, 2,
1 ≤ d, r ≤ n+2

n−2 if n ≥ 3.

We take fi (u, v) (i = 1, 2) function such that

f1 (u, v) = a |u+ v|2(α+1)
(u+ v) + b |u|α u |v|α+2

,

f2 (u, v) = a |u+ v|2(α+1)
(u+ v) + b |v|α v |u|α+2

,

where a > 0, b > 0 and

(2.1)

{
−1 < α if n = 1, 2,
−1 < α ≤ 3−n

n−2 if n ≥ 3.

It is easy to show that

(2.2) uf1 (u, v) + vf2 (u, v) = 2 (α+ 2)F (u, v) , ∀ (u, v) ∈ R2,

where

(2.3) F (u, v) =
1

2 (α+ 2)

[
a |u+ v|2(α+2)

+ 2b |uv|α+2
]
.

In addition, we will use the following notation:

(λi �∆ϑ)(t) =

∫ t

0

λi(t− s) ‖∆ϑ(s)−∆ϑ(t)‖2 ds.
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Lemma 2.1. [13]. Assume that

s ≤ 2
n− 1

n− 2
, n ≥ 3

holds. Then, there exists a positive constant C > 1 depending on Ω only such that

‖u‖αs ≤ C
(
‖∇u‖2 + ‖u‖ss

)
for any u ∈ H1

0 (Ω) , 2 ≤ α ≤ s.

We define the energy function as follows

E (t) =
1

2

(
‖ut‖22 + ‖vt‖22

)
+

1

2
[(λ1 �∆u)(t) + (λ2 �∆v)(t)]

+
1

2

[
(1−

∫ t

0

λ1(s)ds) ‖∆u(t)‖2 + (1−
∫ t

0

λ2(s)ds) ‖∆v(t)‖2
]
−
∫

Ω

F (u, v) dx.(2.4)

By computation, we get

d

dt
E (t) ≤ 1

2
[(λ′1 �∆u)(t) + (λ′2 �∆v)(t)]− 1

2

(
λ1(t) ‖∆u‖2 + λ2(t) ‖∆v‖2

)
−
∫

Ω

(|u|p + |v|q) |ut|d+1
dx−

∫
Ω

(
|v|l + |u|υ

)
|vt|r+1

dx

≤ 0.(2.5)

Now, we complete this section by giving a local existence results of (1.1), which can
be established by combinining arguments of [4, 5, 14].

Theorem 2.2. (Local existence). Assume assumptions (A1), (A2), (A3) and (2.1)-
(2.3) hold if u0, v0 ∈ H2

0 (Ω) and u1, v1 ∈ L2 (Ω) .Then, for some T > 0 problem
(1.1) has a unique local solution (u, v) which satisfies

u, v ∈ C
(
[0, T );H2

0 (Ω)
)
,

ut ∈ C [0, T ) ;L2 (Ω) ∩ Ld+1 (Ω× [0, T ))),

vt ∈ C
(
[0, T ) ;L2 (Ω) ∩ Lr+1 (Ω× [0, T ))

)
.

3. Blow up

In this part, we shall state and obtain the blow up result.

Theorem 3.1. Suppose that the initial energy E(0) < 0 and

2 (α+ 2) > max

{
p+ d+ 1, q + d+ 1, l + r + 1, υ + r + 1,

µ1

1− µ1
,

µ2

1− µ2

}
.

Then, the solution of problem (1.1) blows up in finite time T ∗, and

T ∗ ≤ 1− ρ
ξρG

ρ
1−ρ (0)

where G(t) and ρ are given in (3.2) and (3.3), respectively.
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Proof. We assume that the solution exists for all time and we arrive to a contra-
diction. We get

(3.1) ‖ut‖2 +‖vt‖2 +H (t)+‖∆u‖2 +‖∆v‖2 +‖u‖2(α+2)
2(α+2) +‖v‖2(α+2)

2(α+2) ≤ C, ∀t ≥ 0.

We define

H(t) = −E(t),

then since E(0) < 0, and (2.5) gives H(t) ≥ H(0) > 0. Set

(3.2) G(t) = H1−ρ(t) + ε

(∫
Ω

utudx+

∫
Ω

vtvdx

)
where ε > 0 small to chosen later and

0 < ρ ≤ min

{
α+ 1

2(α+ 2)
,

2α+ 3− (p+ d)

2d (α+ 2)
,

2α+ 3− (q + d)

2d (α+ 2)
,

2α+ 3− (υ + r)

2r (α+ 2)
,

2α+ 3− (l + r)

2r (α+ 2)

}
.(3.3)

Differentiating (3.2) and using Eq.(1.1), we haveλ

G′ (t) = (1− ρ)H−ρ (t)H ′ (t) + ε

(∫
Ω

|ut|2 dx+

∫
Ω

|vt|2 dx
)

+ε

(∫
Ω

uttudx+

∫
Ω

vttvdx

)
= (1− ρ)H−ρ (t)H ′ (t) + ε

(
‖ut‖2 + ‖vt‖2

)
− ε

(
‖∆u‖2 + ‖∆v‖2

)
+2ε(α+ 2)

∫
Ω

F (u, v)dx

+ε

∫
Ω

∫ t

0

λ1(t− s)∆u(s)∆u(t)dsdx+ ε

∫
Ω

∫ t

0

λ2(t− s)∆v(s)∆v(t)dsdx

−ε
(∫

Ω

u (|u|p + |v|q)ut |ut|d−1
dx+

∫
Ω

v
(
|v|l + |u|υ

)
vt |vt|r−1

dx

)
.(3.4)

Now, the ninth term in the right hand side of (3.4) can be estimated, as follows
(see [15]): ∫

Ω

∆u(t)

∫ t

0

λ1(t− s)∆u(s)dsdx

≤ 1

2
‖∆u‖2 +

1

2

∫
Ω

(∫ t

0

λ1(t− s) (|∆u(s)−∆u(t)|+ |∆u(t)|) ds
)2

dx.(3.5)

By using Young’s inequality and since∫ t

0

λ1(s)ds ≤
∫ ∞

0

λ1(s)ds ≤ 1− µ1
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we have, for any η1 > 0,

∫
Ω

∆u(t)

∫ t

0

λ1(t− s)∆u(s)dsdx ≤ 1

2
‖∆u‖2 +

1

2
(1 + η1)

∫
Ω

(∫ t

0

λ1(t− s)∆u(s)ds

)2

dx

+
1

2

(
1 +

1

η1

)∫
Ω

(∫ t

0

λ1(t− s) |∆u(s)−∆u(t)| ds
)2

dx

≤ 1 + (1 + η1)(1− µ1)2

2
‖∆u‖2

+
(1 + 1

η1
)(1− µ1)

2
(λ1 �∆u)(t).(3.6)

Similar calculations also yield, for any η2 > 0,

∫
Ω

∆v(t)

∫ t

0

λ2(t− s)∆v(s)dsdx ≤ 1 + (1 + η2)(1− µ2)2

2
‖∆v‖2

+
(1 + 1

η2
)(1− µ2)

2
(λ2 �∆v)(t).(3.7)

A substitution of (3.5)-(3.7) into (3.4) leads to

G′ (t) ≤ (1− ρ)H−ρ (t)H ′ (t) + ε
(
‖ut‖2 + ‖vt‖2

)
+ 2ε(α+ 2)

∫
Ω

F (u, v)dx

+ε

(
(1 + η1)(1− µ1)2 − 1

2

)
‖∆u‖2 + ε

(1 + 1
η1

)(1− µ1)

2
(λ1 �∆u)(t)

+ε

(
(1 + η2)(1− µ2)2 − 1

2

)
‖∆v‖2 + ε

(1 + 1
η2

)(1− µ2)

2
(λ2 �∆u)(t)

−ε
(∫

Ω

u (|u|p + |v|q)ut |ut|d−1
dx+

∫
Ω

v
(
|v|l + |u|υ

)
vt |vt|r−1

dx

)
(3.8)

From the definition of H (t) , as follows

∫
Ω

F (u, v)dx

= H (t) +
1

2

(
‖ut‖2 + ‖vt‖2

)
+

1

2
[(λ1 �∆u)(t) + (λ2 �∆v)(t)]

+
1

2

[
(1−

∫ t

0

λ1(s)ds) ‖∆u(t)‖2 + (1−
∫ t

0

λ2(s)ds) ‖∆v(t)‖2
]
.(3.9)
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Inserting (3.9) into (3.8), we have

G′ (t) = (1− ρ)H−ρ (t)H ′ (t) + ε (α+ 3)
(
‖ut‖2 + ‖vt‖2

)
+ 2ε(α+ 2)H (t)

+ε

[
(α+ 2)(1− µ1) +

(1 + η1)(1− µ1)2 − 1

2

]
‖∆u‖2

+ε

[
(α+ 2)(1− µ2) +

(1 + η2)(1− µ2)2 − 1

2

]
‖∆v‖2

+ε

[
(α+ 2) +

(1 + 1
η1

)(1− µ1)

2

]
(λ1 �∆u)(t)

+ε

[
(α+ 2) +

(1 + 1
η2

)(1− µ2)

2

]
(λ2 �∆u)(t)

−ε
(∫

Ω

u (|u|p + |v|q)ut |ut|d−1
dx+

∫
Ω

v
(
|v|l + |u|υ

)
vt |vt|r−1

dx

)
.(3.10)

In order to estimate the last two terms in the right hand side of (3.10), we use the
next Young inequality

(3.11) KL ≤ δxKx

x
+
δ−yKy

y
,

in which K,L ≥ 0, δ > 0, x, y ∈ R+ like that 1
x + 1

y = 1. Thus, we get

∫
Ω

uut |ut|d−1
dx ≤ δd+1

1

d+ 1
‖u‖d+1

d+1 +
dδ
− d+1

d
1

d+ 1
‖ut‖d+1

d+1 ,

and then∫
Ω

u (|u|p + |v|q)ut |ut|d−1
dx ≤ δd+1

1

d+ 1

∫
Ω

(|u|p + |v|q) |u|d+1
dx

+
dδ
− d+1

d
1

d+ 1

∫
Ω

(|u|p + |v|q) |ut|d+1
dx.

Similarly, we obtain

∫
Ω

vvt |vt|r−1
dx ≤ δr+1

2

r + 1
‖v‖r+1

r+1 +
rδ
− r+1

r
2

r + 1
‖vt‖r+1

r+1 ,

and ∫
Ω

v
(
|v|l + |u|υ

)
vt |vt|r−1

dx ≤ δr+1
2

r + 1

∫
Ω

(
|v|l + |u|υ

)
|v|r+1

dx

+
rδ
− r+1

r
2

r + 1

∫
Ω

(
|v|l + |u|υ

)
|vt|r+1

dx,
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where δ1, δ2 are constants depending on the time t and specified later. Then (3.10),
becomes

G′ (t) ≥ (1− ρ)H−ρ (t)H ′ (t) + 2ε (α+ 2)H (t)

+ε (α+ 3)
(
‖ut‖2 + ‖vt‖2

)
+ε

[
(α+ 2)(1− µ1) +

(1 + η1)(1− µ1)2 − 1

2

]
‖∆u‖2

+ε

[
(α+ 2)(1− µ2) +

(1 + η2)(1− µ2)2 − 1

2

]
‖∆v‖2

+ε

[
(α+ 2) +

(1 + 1
η1

)(1− µ1)

2

]
(λ1 �∆u)(t)

+ε

[
(α+ 2) +

(1 + 1
η2

)(1− µ2)

2

]
(λ2 �∆v)(t)

−ε δ
d+1
1

d+ 1

∫
Ω

(|u|p + |v|q) |u|d+1
dx− εdδ

− d+1
d

1

d+ 1

∫
Ω

(|u|p + |v|q) |ut|d+1
dx

−ε δ
r+1
2

r + 1

∫
Ω

(
|v|l + |u|υ

)
|v|r+1

dx− εrδ
− r+1

s
2

r + 1

∫
Ω

(
|v|l + |u|υ

)
|vt|r+1

dx.(3.12)

Therefore by taking δ1 and δ2 so that δ
− d+1

d
1 = k1H

−σ (t) , δ
− r+1

r
2 = k2H

−σ (t)
where k1, k2 > 0 are specified later, we get

G′ (t) ≥ ((1− ρ)−Kε)H−ρ (t)H ′ (t) + 2ε (α+ 2)H (t)

+ε (α+ 3)
(
‖ut‖2 + ‖vt‖2

)
+ε

[
(α+ 2)(1− µ1) +

(1 + η1)(1− µ1)2 − 1

2

]
‖∆u‖2

+ε

[
(α+ 2)(1− µ2) +

(1 + η2)(1− µ2)2 − 1

2

]
‖∆v‖2

+ε

[
(α+ 2) +

(1 + 1
η1

)(1− µ1)

2

]
(λ1 �∆u)(t)

+ε

[
(α+ 2) +

(1 + 1
η2

)(1− µ2)

2

]
(λ2 �∆v)(t)

−εk
−d
1 Hρd (t)

m+ 1

∫
Ω

(|u|p + |v|q) |u|d+1
dx

−εk
−r
2 Hρr (t)

r + 1

∫
Ω

(
|v|l + |u|υ

)
|v|r+1

dx(3.13)

where K = k1d
d+1 + k2r

r+1 .
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Applying the Young inequality, we obtain∫
Ω

(|u|p + |v|q) |u|d+1
dx ≤

∫
Ω

|u|p+d+1
dx+

∫
Ω

|v|q |u|d+1
dx

≤
∫

Ω

|u|p+d+1
dx+

l

q + d+ 1
δ
q+d+1
q

1

∫
Ω

|v|q+d+1
dx

+
d+ 1

q + d+ 1
δ
− q+d+1

d+1

1

∫
Ω

|u|q+d+1
dx

= ‖u‖p+d+1
p+d+1 +

q

q + d+ 1
δ
q+d+1
q

1 ‖v‖q+d+1
q+d+1

+
d+ 1

q + d+ 1
δ
− q+d+1

d+1

1 ‖u‖q+d+1
q+d+1 .(3.14)

Similarly, we obtain∫
Ω

(
|v|l + |u|υ

)
|v|r+1

dx ≤ ‖v‖l+r+1
l+r+1 +

υ

υ + r + 1
δ
υ+r+1
υ

2 ‖u‖υ+r+1
υ+r+1

+
r + 1

υ + r + 1
δ
− υ+r+1

r+1

2 ‖v‖υ+r+1
υ+r+1 .(3.15)

Inserting (3.14) and (3.15) into (3.13), we have

G′ (t) ≥ ((1− ρ)−Kε)H−ρ (t)H ′ (t) + 2ε (α+ 2)H (t)

+ε (α+ 3)
(
‖ut‖2 + ‖vt‖2

)
+ε

[
(α+ 2)(1− µ1) +

(1 + η1)(1− µ1)2 − 1

2

]
‖∆u‖2

+ε

[
(α+ 2)(1− µ2) +

(1 + η2)(1− µ2)2 − 1

2

]
‖∆v‖2

+ε

[
(α+ 2) +

(1 + 1
η1

)(1− µ1)

2

]
(λ1 �∆u)(t)

+ε

[
(α+ 2) +

(1 + 1
η2

)(1− µ2)

2

]
(λ2 �∆v)(t)

−εk
−d
1 Hρd (t)

d+ 1

(
‖u‖p+d+1

p+d+1 +
q

q + d+ 1
δ
q+d+1
q

1 ‖v‖q+d+1
q+d+1

)
−εk

−d
1 Hρd (t)

d+ 1

d+ 1

q + d+ 1
δ
− q+d+1

d+1

1 ‖u‖q+d+1
q+d+1

−εk
−r
2 Hρr (t)

r + 1

(
‖v‖l+r+1

l+r+1 +
υ

υ + r + 1
δ
υ+r+1
υ

2 ‖u‖υ+r+1
υ+r+1

)
−εk

−r
2 Hρr (t)

r + 1

r + 1

υ + r + 1
δ
− υ+r+1

r+1

2 ‖v‖υ+r+1
υ+r+1 .(3.16)

Since 2 (α+ 2) > max {p+ d+ 1, q + d+ 1, l + r + 1, υ + r + 1} , we have

(3.17) Hρd (t) ‖u‖p+d+1
p+d+1 ≤ C

(
‖u‖2ρd(α+2)+p+d+1

2(α+2) + ‖v‖2ρd(α+2)
2(α+2) ‖u‖p+d+1

p+d+1

)
,

(3.18) Hρr (t) ‖v‖l+r+1
l+r+1 ≤ C

(
‖v‖2ρr(α+2)+l+r+1

2(α+2) + ‖u‖2ρr(α+2)
2(α+2) ‖v‖l+r+1

l+r+1

)
,



16 FATMA EKINCI AND ERHAN PIŞKIN

and

q

q + d+ 1
δ
q+d+1
q

1 Hρd (t) ‖v‖q+d+1
q+d+1

≤ C
q

q + d+ 1
δ
q+d+1
q

1

(
‖v‖2ρd(α+2)+q+d+1

2(α+2) + ‖u‖2ρd(α+2)
2(α+2) ‖v‖q+d+1

q+d+1

)
(3.19)

υ

υ + r + 1
δ
υ+r+1
υ

2 Hρr (t) ‖u‖υ+r+1
υ+r+1

≤ C
υ

υ + r + 1
δ
υ+r+1
υ

2

(
‖u‖2ρr(α+2)+υ+r+1

2(α+2) + ‖v‖2ρr(α+2)
2(α+2) ‖u‖υ+r+1

υ+r+1

)
.(3.20)

By (3.3) and using the following algebraic inequality

(3.21) x% ≤ x+ 1 ≤
(

1 +
1

β

)
(x+ β) , ∀x ≥ 0, 0 < % ≤ 1, β ≥ 0,

for all t ≥ 0,

‖u‖2ρd(α+2)+p+d+1
2(α+2) ≤ m

(
‖u‖2(α+2)

2(α+2) +H (0)
)

≤ m
(
‖u‖2(α+2)

2(α+2) +H (t)
)
,(3.22)

(3.23) ‖v‖2ρr(α+2)+l+r+1
2(α+2) ≤ m

(
‖v‖2(α+2)

2(α+2) +H (t)
)

where m = 1 + 1
H(0) . Likewise

(3.24) ‖u‖2ρr(α+2)+υ+r+1
2(α+2) ≤ m

(
‖u‖2(α+2)

2(α+2) +H (t)
)
,

(3.25) ‖v‖2ρd(α+2)+q+d+1
2(α+2) ≤ m

(
‖v‖2(α+2)

2(α+2) +H (t)
)
.

Next, using Young inequality, (3.3) and (3.21) and the inequality (x+ y)
α ≤

C (xα + yα) , x, y > 0, we obtain

‖v‖2ρd(α+2)
2(α+2) ‖u‖p+d+1

p+d+1 ≤ |Ω|
2(α+2)−(p+d+1)

2(α+2) (‖v‖2ρd(α+2)
2(α+2) ‖u‖p+d+1

2(α+2))

= |Ω|
2(α+2)−(p+d+1)

2(α+2)

(
‖v‖ρd2(α+2) ‖u‖

p+d+1
p+d+1

)
≤ |Ω|

2(α+2)−(p+d+1)
2(α+2) (c′ ‖v‖

2ρd(α+2)+p+d+1
2(α+2)

2(α+2) + c′′ ‖u‖
2ρd(α+2)+p+d+1

2(α+2)

2(α+2) )

≤ C
(
‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2)

)
.(3.26)

Similarly, we obtain

(3.27) ‖u‖2ρr(α+2)
2(α+2) ‖v‖l+r+1

l+r+1 ≤ C
(
‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2)

)
,

(3.28) ‖u‖2ρd(α+2)
2(α+2) ‖v‖q+d+1

q+d+1 ≤ C
(
‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2)

)
,

and

(3.29) ‖v‖2ρr(α+2)
2(α+2) ‖u‖υ+r+1

υ+r+1 ≤ C
(
‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2)

)
.
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Combining (3.17)-(3.20) and (3.22)-(3.29) into (3.16), we get

G′ (t) ≥ ((1− ρ)−Kε)H−ρ (t)H ′ (t) + 2ε (α+ 2)H (t)

+ε (α+ 3)
(
‖ut‖2 + ‖vt‖2

)
+εC1(λ1 �∆u)(t) + εC2(λ2 �∆v)(t)

+εC3 ‖∆u‖2 + εC4 ‖∆v‖2

+ε

[
2 (α+ 2)− Ck−d1

(
1 +

q

q + d+ 1
δ
q+d+1
q

1 +
d+ 1

q + d+ 1
δ
− q+d+1

d+1

1

)
−Ck−r2

(
1 +

υ

υ + r + 1
δ
υ+r+1
υ

2 +
r + 1

υ + r + 1
δ
− υ+r+1

r+1

2

)]
H (t)

+ε

[
Ck−d1

(
1 +

q

q + d+ 1
δ
q+m+1

q

1 +
d+ 1

q + d+ 1
δ
− q+d+1

d+1

1

)
−Ck−r2

(
1 +

υ

υ + r + 1
δ
υ+r+1
υ

2 +
r + 1

υ + r + 1
δ
− υ+r+1

r+1

2

)](
‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2)

)
,(3.30)

where

C1 = (α+ 2) +
(1 + 1

η1
)(1− µ1)

2
,

C2 = (α+ 2) +
(1 + 1

η2
)(1− µ2)

2
,

C3 = (α+ 2)(1− µ1) +
(1 + η1)(1− µ1)2 − 1

2
,

C4 = (α+ 2)(1− µ2) +
(1 + η2)(1− µ2)2 − 1

2
.

At this point, choosing η1 = µ1

1−µ1
, η2 = µ2

1−µ2
and picking µ1 and µ2 small enough

such that

(α+ 2)(1− µ1) ≥ µ1

2
and (α+ 2)(1− µ2) ≥ µ2

2
.

Ci, i = 1, 2, 3, 4 are positive constants and for large values of k1 and k2, we can
reach K1 > 0 and K2 > 0 such that (3.30) reduce

G′ (t) ≥ [(1− ρ)−Kε]H−ρ (t)H ′ (t) + ε (α+ 3)
(
‖ut‖2 + ‖vt‖2

)
+εC1(λ1 �∆u)(t) + εC2(λ2 �∆v)(t) + εC3 ‖∆u‖22 + εC4 ‖∆v‖22
+εK1H (t) + εK2

(
‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2)

)
≥ β

(
‖ut‖2 + ‖vt‖2 +H (t) + ‖∆u‖2 + ‖∆v‖2 + ‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2)

)
(3.31)

where

β = min { εC1, εC2, εC3, εC4, εK1, εK2, ε (α+ 3)}

and choosing ε small enough so that (1− ρ)−Kε ≥ 0. As a result, we arrive at

(3.32) G (t) ≥ G (0) > 0, ∀t ≥ 0.
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In order to estimate G (t)
1

1−ρ , we use Hölder inequality and Young inequality, we
have∣∣∣∣∫

Ω

utudx+

∫
Ω

vtvdx

∣∣∣∣ 1
1−ρ

≤ ‖ut‖
1

1−ρ ‖u‖
1

1−ρ + ‖vt‖
1

1−ρ ‖v‖
1

1−ρ

≤ C(‖ut‖
µ

1−ρ + ‖u‖
θ

1−ρ
2(α+2) + ‖vt‖

µ
1−ρ + ‖v‖

θ
1−ρ
2(α+2)),

where 1
µ + 1

θ = 1. Noting (3.3), since µ = 2(1 − ρ), then θ = 2(1−ρ)
1−2ρ and using

Lemma 1, we have∣∣∣∣∫
Ω

utudx+

∫
Ω

vtvdx

∣∣∣∣ 1
1−ρ

≤ C(‖ut‖2+‖u‖2(α+2)
2(α+2)+‖vt‖

2
+‖v‖2(α+2)

2(α+2)+‖∆u‖
2
+‖∆v‖2)

Thus,

G
1

1−ρ (t) =

[
H1−ρ (t) + ε

(∫
Ω

utudx+

∫
Ω

vtvdx

)] 1
1−ρ

≤ C
(
‖ut‖2 + ‖vt‖2 +H (t) + ‖u‖2(α+2)

2(α+2) + ‖v‖2(α+2)
2(α+2) + ‖∆u‖2 + ‖∆v‖2

)
.(3.33)

From (3.31) and (3.33), we arrive at

(3.34) G′ (t) ≥ ξG
1

1−ρ (t) ,

where ξ is a positive constant. A simple integration of (3.34) over (0, t) yields

G
ρ

1−ρ (t) ≥ 1

G
− ρ

1−ρ (0)− ξρt
1−ρ

, which implies that the solution blows up in a finite time

T ∗, with

T ∗ ≤ 1− σ
ξσΨ

σ
1−σ (0)

.

�
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0000-0002-9409-3054 and 0000-0001-6587-4479

Abstract. In this study, we considered a coupled Kirchhoff-type equations

with degenerate damping terms. We prove exponential growth of solutions.

1. Introduction

We considere the following initial-boundary value problem on domain (x, t) ∈
Ω× (0, T ) ,

(1.1)



|ut|s utt −M
(
‖∇u‖2 + ‖∇v‖2

)
∆u+

(
|u|w + |v|b

)
|ut|α−1

ut

= g1 (u, v) ,

|vt|s vtt −M
(
‖∇u‖2 + ‖∇v‖2

)
∆v +

(
|v|c + |u|d

)
|vt|β−1

vt

= g2 (u, v) ,
u (x, t) = v (x, t) = 0, (x, t) ∈ ∂Ω× (0, T ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,

where Ω is a bounded domain with smooth boundary ∂Ω in Rn (n ≥ 1) ; α, β ≥
1, s, w, b, c, d ≥ 0; gi (. , .) : R2 −→ R are given functions to be specified later.
M(s) is a nonnegative C1 function for θ ≥ 0 satisfying M (θ) = 1 + θλ, λ > 1.

In the case of s = 0 and M (θ) ≡ 1 for problem (1.1) was investigated by
Rammaha and Sakuntasathien [1] and Zennir et al. [2, 3]. Rammaha and Sakun-
tasathien obtained the global well posedness of the solution and Zennir et al. showed
the blow up and growth result. Also, some authors studied the system with degen-
erate damping terms [4, 5, 6, 7].

Ye [8] considered the problem (1.1) when w = b = c = d = 0 and obtained the
global existence and energy decay results.

The rest of this study is organized as follows: In Section 2, we give some lemmas
and assumption. In last section, we prove exponenetial growth of the solution.

Date: May 25, 2021.
Key words and phrases. general decay, parabolic equation.
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2. Preliminaries

Let ‖.‖ and ‖.‖p denote the usual L2 (Ω) norm and Lp (Ω) norm in this paper,
respectively.

We require the following assumptions for our result.
(A) We assume that {

α, β ≥ 1 if n = 1, 2,
1 ≤ α, β ≤ 5 if n = 3.

We take g1 (u, v) and g2 (u, v) such that

g1 (u, v) = k |u+ v|2(γ+1)
(u+ v) + l |u|γ u |v|γ+2

,

g2 (u, v) = k |u+ v|2(γ+1)
(u+ v) + l |v|γ v |u|γ+2

,

where k, l are positive constants and γ satisfies

(2.1)

{
−1 < γ if n = 1, 2,
−1 < γ ≤ 1 if n = 3.

The below equality can been easily verify that

(2.2) ug1 (u, v) + vg2 (u, v) = 2 (γ + 2)G (u, v) , ∀ (u, v) ∈ R2,

where

(2.3) G (u, v) =
1

2 (γ + 2)

[
k |u+ v|2(γ+2)

+ 2l |uv|γ+2
]
.

The energy functional E(t) of problem (1.1) such that

E (t) =
1

s+ 2

(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+

1

2
(‖∇u‖2 + ‖∇v‖2)

+
1

2(λ+ 1)
(‖∇u‖2 + ‖∇v‖2)λ+1 −

∫
Ω

G (u, v) dx.(2.4)

Lemma 2.1. [9]. There exist two positive constants c0 and c1 such that

(2.5) c0

(
|u|2(γ+2)

+ |v|2(γ+2)
)
≤ 2 (γ + 2)G (u, v) ≤ c1

(
|u|2(γ+2)

+ |v|2(γ+2)
)

is satisfied.

Lemma 2.2. E (t) is a nonincreasing function for t ≥ 0 and

(2.6)
d

dt
E (t) = −

∫
Ω

(
|u|w + |v|b

)
|ut|α+1

dx−
∫

Ω

(
|v|c + |u|d

)
|vt|β+1

dx.

3. Growth of solutions

In this part, we show that the energy grow up as an exponential function as time
as goes to infinity.

We take k = l = 1 for sake of simplicity and present the following:

(3.1) B = η
1

2(γ+2) , α1 = B−
γ+2
γ+1 , E1 =

(
1

2
− 1

2 (γ + 2)

)
α2

1.

The following lemma used firstly by Vitillaro [10] and is very important for our
result.
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Lemma 3.1. Suppose that assumption (A) and (2.1) hold. Let (u, v) be a solution
of (1.1). Moreover, suppose that E (0) < E1 and

(3.2)
(
‖∇u0‖2 + ‖∇v0‖2

) 1
2

> α1.

Then there exists a constant α2 > α1 such that

(3.3)

(
‖∇u‖2 + ‖∇v‖2 +

1

λ+ 1
(‖∇u‖2 + ‖∇v‖2)λ+1

) 1
2

> α2, for t > 0,

(3.4)
(
‖u+ v‖2(γ+2)

2(γ+2) + 2 ‖uv‖γ+2
γ+2

) 1
2(γ+2) ≥ Bα2, for t > 0.

for all t ∈ [0, T ).

Theorem 3.2. Suppose that (A1), (A2) and (2.1) hold. Assume further that

2 (γ + 2) > max { s+ 2, k + p+ 1, l + p+ 1, θ + q + 1, %+ q + 1} .

Then any the solution of the problem (1.1) with initial data satisfying(
‖∇u0‖2 + ‖∇v0‖2

) 1
2

> α1, E (0) < E1,

grows exponentially, where α1 and E1 are defined in (3.1).

Proof. We define as follows

(3.5) H (t) = E1 − E (t) .

By applying (2.6) and (3.5), we get

(3.6) H ′ (t) = −E′ (t) ≥ 0, ∀t ≥ 0.

Since E′(t) is definitely continuous, we have

(3.7) 0 < E1 − E (0) = H (0) ≤ H (t) .

We then define

(3.8) Ψ (t) = H (t) +
ε

s+ 1

(∫
Ω

|ut|s utudx+

∫
Ω

|vt|s vtvdx
)

where ε small to be chosen later.
By derivating (3.8) and using Eq.(1.1), we get

Ψ′ (t) = H ′ (t) +
ε

s+ 1

(∫
Ω

|ut|s+2
dx+

∫
Ω

|vt|s+2
dx

)
+ε

(∫
Ω

|ut|s uttudx+

∫
Ω

|vt|s vttvdx
)

= H ′ (t) +
ε

s+ 1
(‖ut‖s+2

s+2 + ‖vt‖s+2
s+2)− ε(‖∇u‖2 + ‖∇v‖2)

−ε(‖∇u‖2 + ‖∇v‖2)λ+1 + 2ε(γ + 2)

∫
Ω

G(u, v)dx

−ε
(∫

Ω

u
(
|u|w + |v|b

)
ut |ut|α−1

dx+

∫
Ω

v
(
|v|c + |u|d

)
vt |vt|β−1

dx

)
(3.9)
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From the definition of H (t) , we have

−(‖∇u‖2 + ‖∇v‖2)λ+1

= 2 (λ+ 1)H (t)− 2 (λ+ 1)E1 +
2 (λ+ 1)

s+ 2

(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+ (λ+ 1)

(
‖∇u‖2 + ‖∇v‖2

)
− 2 (λ+ 1)

∫
Ω

G (u, v) dx(3.10)

Inserting (3.10) into (3.9), we get

Ψ′ (t) = H ′ (t) + ε

(
1

s+ 1
+

2 (λ+ 1)

s+ 2

)(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+ελ

(
‖∇u‖2 + ‖∇v‖2

)
+ 2ε (λ+ 1)H (t)− 2ε (λ+ 1)E1

+ε(1− λ+ 1

γ + 2
)(‖u+ v‖2(γ+2)

2(γ+2) + 2 ‖uv‖γ+2
γ+2)

−ε
(∫

Ω

u
(
|u|w + |v|b

)
ut |ut|α−1

dx+

∫
Ω

v
(
|v|c + |u|d

)
vt |vt|β−1

dx

)
.

Then using (3.4), we have

Ψ′ (t) ≥ H ′ (t) + ε

(
1

s+ 1
+

2 (λ+ 1)

s+ 2

)(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+ελ

(
‖∇u‖2 + ‖∇v‖2

)
+2 (λ+ 1) εH (t) + εc′(‖u+ v‖2(γ+2)

2(γ+2) + 2 ‖uv‖γ+2
γ+2)

−ε
(∫

Ω

u
(
|u|w + |v|b

)
ut |ut|α−1

dx+

∫
Ω

v
(
|v|c + |u|d

)
vt |vt|β−1

dx

)
(3.11)

where c′ = 1 − λ+1
γ+2 − 2 (λ+ 1)E1(Bα2)−2(γ+2) > 0, since α2 > B−

γ+2
γ+1 . For esti-

mating the last two terms in (3.11) we will use the following Young inequality

AB ≤ ηkAk

k
+
η−lBl

l
,

where A,B ≥ 0, η > 0, k, l ∈ R+ such that 1
k + 1

l = 1. Therefore, using the above
inequality we obtain∫

Ω

uut |ut|α−1
dx ≤ ηα+1

1

α+ 1
‖u‖α+1

α+1 +
αη
−α+1

α
1

α+ 1
‖ut‖α+1

α+1 ,

and therefore∫
Ω

(
|u|w + |v|b

)
uut |ut|α−1

dx ≤ ηα+1
1

α+ 1

∫
Ω

(
|u|w + |v|b

)
|u|α+1

dx

+
αη
−α+1

α
1

α+ 1

∫
Ω

(
|u|w + |v|b

)
|ut|α+1

dx.

In the same way, we conclude that∫
Ω

vvt |vt|β−1
dx ≤ ηβ+1

2

β + 1
‖v‖β+1

β+1 +
βη
− β+1

β

2

β + 1
‖vt‖β+1

β+1 ,
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and therefore

∫
Ω

v
(
|v|c + |u|d

)
vt |vt|β−1

dx ≤ ηβ+1
2

β + 1

∫
Ω

(
|v|c + |u|d

)
|v|β+1

dx

+
βη
− β+1

β

2

β + 1

∫
Ω

(
|v|c + |u|d

)
|vt|β+1

dx,

where η1, η2 are constants depending on the time t and specified later. Conse-
quently, (3.11) reduce

Ψ′ (t) ≥ H ′ (t) + ε

(
1

s+ 1
+

2(λ+ 1)

s+ 2

)(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+ελ

(
‖∇u‖2 + ‖∇v‖2

)
+ 2ε (λ+ 1)H (t) + εc′

(
‖u+ v‖2(γ+2)

2(γ+2) + 2 ‖uv‖γ+2
γ+2

)
−ε η

α+1
1

α+ 1

∫
Ω

(
|u|w + |v|b

)
|u|α+1

dx− εαη
−α+1

α
1

α+ 1

∫
Ω

(
|u|w + |v|b

)
|ut|α+1

dx

−ε η
β+1
2

β + 1

∫
Ω

(
|v|c + |u|d

)
|v|q+1

dx− εβη
− β+1

β

2

β + 1

∫
Ω

(
|v|c + |u|d

)
|vt|β+1

dx.(3.12)

By using Young’s inequality, we have

∫
Ω

(
|u|w + |v|b

)
|u|α+1

dx ≤
∫

Ω

|u|w+α+1
dx+

∫
Ω

|v|b |u|α+1
dx

≤
∫

Ω

|u|w+α+1
dx+

b

b+ α+ 1
χ
b+α+1
b

1

∫
Ω

|v|b+α+1
dx

+
α+ 1

b+ α+ 1
χ
− b+α+1

α+1

1

∫
Ω

|u|b+α+1
dx

= ‖u‖w+α+1
w+α+1 +

b

b+ α+ 1
χ
b+α+1
b

1 ‖v‖b+α+1
b+α+1

+
α+ 1

b+ α+ 1
χ
− b+α+1

α+1

1 ‖u‖b+α+1
b+α+1 .(3.13)

Similarly

∫
Ω

(
|v|c + |u|d

)
|v|β+1

dx ≤ ‖v‖c+β+1
c+β+1 +

d

d+ β + 1
χ
β+d+1
d

2 ‖u‖d+β+1
d+β+1

+
β + 1

d+ β + 1
χ
− d+β+1

β+1

2 ‖v‖d+β+1
d+β+1 .(3.14)
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Inserting (3.14) and (3.13) into (3.12) and using Lemma 1, we conclude that

Ψ′ (t) ≥ H ′ (t) + ε

(
1

s+ 1
+

2 (λ+ 1)

s+ 2

)(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+ελ

(
‖∇u‖2 + ‖∇v‖2

)
+ 2ε (λ+ 1)H (t) + εc′

(
‖u‖2(γ+2)

2(γ+2) + ‖v‖2(γ+2)
2(γ+2)

)
−ε η

α+1
1

α+ 1

(
‖u‖w+α+1

w+α+1 +
b

b+ α+ 1
χ
b+α+1
b

1 ‖v‖b+α+1
b+α+1 +

α+ 1

b+ α+ 1
χ
− b+α+1

α+1

1 ‖u‖b+α+1
b+α+1

)
−ε η

β+1
2

β + 1

(
‖v‖c+β+1

c+β+1 +
d

d+ β + 1
χ
d+β+1
d

2 ‖u‖d+β+1
d+β+1 +

β + 1

d+ β + 1
χ
− d+β+1

β+1

2 ‖v‖d+β+1
d+β+1

)

−εαη
−α+1

α
1

α+ 1

∫
Ω

(
|u|w + |v|b

)
|ut|α+1

dx− εβη
− β+1

β

2

β + 1

∫
Ω

(
|v|c + |u|d

)
|vt|β+1

dx.(3.15)

Since

2 (γ + 2) > max {w + α+ 1, b+ α+ 1, c+ β + 1, d+ β + 1} ,
and applying the following algebraic inequality

xυ ≤ x+ 1 ≤
(

1 +
1

δ

)
(x+ δ) , ∀x ≥ 0, 0 < υ ≤ 1, δ > 0,

we have, for all t ≥ 0,

‖u‖w+α+1
w+α+1 ≤ c1 ‖u‖w+α+1

2(γ+2) ≤ C
(
‖u‖2(γ+2)

2(γ+2) +H (0)
)

≤ C
(
‖u‖2(γ+2)

2(γ+2) +H (t)
)
,(3.16)

(3.17) ‖v‖c+β+1
c+β+1 ≤ c2 ‖v‖

c+β+1
2(γ+2) ≤ C

(
‖v‖2(γ+2)

2(γ+2) +H (t)
)

where C = 1 + 1
H(0) . Likewise

(3.18) ‖u‖d+β+1
d+β+1 ≤ c3 ‖u‖

d+β+1
2(γ+2) ≤ C

(
‖u‖2(γ+2)

2(γ+2) +H (t)
)
,

(3.19) ‖v‖b+α+1
b+α+1 ≤ c4 ‖v‖

b+α+1
2(γ+2) ≤ C

(
‖v‖2(γ+2)

2(γ+2) +H (t)
)
,

(3.20) ‖v‖d+β+1
d+β+1 ≤ c5 ‖v‖

d+β+1
2(γ+2) ≤ C

(
‖v‖2(γ+2)

2(γ+2) +H (t)
)
,

(3.21) ‖u‖b+α+1
b+α+1 ≤ c6 ‖u‖

b+α+1
2(γ+2) ≤ C

(
‖u‖2(γ+2)

2(γ+2) +H (t)
)
.

Choosing K1, K2, K3, K4 and K5 such that

(3.22) K1 =
αη
−(α+1)/α
1

α+ 1
, K2 =

βη
−(β+1)/β
1

β + 1
,

(3.23) K3 =
ηα+1

1

α+ 1
(1 +

α+ 1

b+ α+ 1
χ
− b+α+1

α+1

1 ) + (
ηβ+1

2

β + 1

d

d+ β + 1
χ
d+β+1
d

2 ),

(3.24) K4 =
ηβ+1

2

β + 1
(1 +

β + 1

d+ β + 1
χ
− d+β+1

β+1

2 ) + (
ηα+1

1

α+ 1

b

b+ α+ 1
χ
b+α+1
b

1 ),
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and

K5 =
ηα+1

1

α+ 1
(1 +

b

b+ α+ 1
χ
b+α+1
b

1 +
α+ 1

b+ α+ 1
χ
− b+α+1

α+1

1 )

+
ηβ+1

2

β + 1
(1 +

β + 1

d+ β + 1
χ
− d+β+1

β+1

2 +
d

d+ β + 1
χ
d+β+1
d

2 ).(3.25)

From (3.16)-(3.25), (3.15) becomes such that

Ψ′ (t) ≥ H ′ (t) + ε

(
1

s+ 1
+

2 (λ+ 1)

s+ 2

)(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+ελ

(
‖∇u‖2 + ‖∇v‖2

)
+ ε [2 (λ+ 1)− CK5]H (t)

−εK1

∫
Ω

(
|u|w + |v|b

)
|ut|α+1

dx− εK2

∫
Ω

(
|v|c + |u|d

)
|vt|β+1

dx

+ε [c′ − CK3] ‖u‖2(γ+2)
2(γ+2) + ε [c′ − CK4] ‖v‖2(γ+2)

2(γ+2) .(3.26)

At this point, we can find positive constats M1 , M2, M3 and K6 such that (3.26)
becomes

Ψ′ (t) ≥ (1− εK6)H ′ (t) + ε

(
1

s+ 1
+

2 (λ+ 1)

s+ 2

)(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2

)
+εγ

(
‖∇u‖2 + ‖∇v‖2

)
+ εM1H (t) + εM2 ‖u‖2(γ+2)

2(γ+2) + εM3 ‖v‖2(γ+2)
2(γ+2)

≥ β
(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2 +H (t) + ‖∇u‖2 + ‖∇v‖2 + ‖u‖2(γ+2)

2(γ+2) + ‖v‖2(γ+2)
2(γ+2)

)
(3.27)

where β = min
{
ε
(

1
s+1 + 2(λ+1)

s+2

)
, εM1, εM2, εM3

}
and we pick ε small enough so

that 1− εK6 ≥ 0. Consequently we have

(3.28) Ψ (t) ≥ Ψ (0) > 0, ∀t ≥ 0.

We now estimate Ψ (t). By using Hölder inequality and Young inequality, we find∣∣∣∣∫
Ω

|ut|s utudx
∣∣∣∣ ≤ ‖ut‖s+1

s+2 ‖u‖s+2

≤ C |Ω|
1
s+2−

1
2(γ+2)

(
‖ut‖s+2

s+2 + ‖u‖s+2
2(γ+2)

)
≤ C |Ω|

1
s+2−

1
2(γ+2)

(
‖ut‖s+2

s+2 + ‖u‖2(γ+2)
2(γ+2)

)
.(3.29)

Similarly

(3.30)

∣∣∣∣∫
Ω

|vt|s vtvdx
∣∣∣∣ ≤ C |Ω| 1

s+2−
1

2(γ+2)

(
‖vt‖s+2

s+2 + ‖v‖2(γ+2)
2(γ+2)

)
.

By (3.7), it yields

Ψ (t) = H (t) +
ε

s+ 1

(∫
Ω

|ut|s utudx+

∫
Ω

|vt|s vtvdx
)

≤ C
(
‖ut‖s+2

s+2 + ‖vt‖s+2
s+2 +H (t) + ‖u‖2(γ+2)

2(γ+2) + ‖v‖2(γ+2)
2(γ+2) + ‖∇u‖2 + ‖∇v‖2

)
.(3.31)

By unifacation of (3.27) and (3.31) we reach at for ξ > 0 constant

(3.32) Ψ′ (t) ≥ ξΨ (t) .
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A simple integration of (3.32) over (0, t) yields Ψ (t) ≥ Ψ (0) exp (ξt) .We showed
the desired result. �
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Abstract. This study deal with the strongly damped equation with degener-

ate damping has the initial-boundary value. We establish global existence of

weak solution by potential well theory.

1. Introduction and Preliminaries

In this work, we focus on the global existence of solution for the following problem

(1.1)


utt + ∆2u−∆ut −∆utt + (|u|% u)t = |u|p u in Ω× (0, T ) ,
u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = ∂

∂nu (x, t) = 0, x ∈ ∂Ω,

n is the outer normal and Ω is a bounded domain in Rn with a smooth boundary
∂Ω.

This type of problem with degenerate damping was firstly examined by Levine
and Serrin [2] and studied the blow up properties for negative initial energy. Then,
Pitts and Rammaha [3] obtained global and local existence. In additional, the
authors obtained blow up solutions for negative initial energy.

There are numerous study has degenerate damping terms (see [1, 4, 5, 6, 7, 8]).
Now, we present some preliminary material which will be helpful in the proof

of our result. Throughout this paper, we denote the standart L2 (Ω) norm by
‖.‖ = ‖.‖L2(Ω) and Lq (Ω) norm ‖.‖q = ‖.‖Lq(Ω) .

We present the following functionalls:

I (t) = I (u) = ‖∆u‖2 − ‖u‖p+2
p+2 ,

J (t) = J (u) =
1

2
‖∆u‖2 − 1

p+ 2
‖u‖p+2

p+2 ,

(1.2) E (t) = E (u) =
1

2

[
‖ut‖2 + ‖∇ut‖2

]
+ J (u) ,

Date: May 25, 2021.
Key words and phrases. general decay, parabolic equation.
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and as in [12], the potential well depth such that

d = inf
u∈H2

0 (Ω)\{0}
max
λ≥0

j (γu) .

By multiplying Eq.(1.1) by ut, integrating over Ω, and using integration by parts,
we get

E′ (t) = −‖∇ut‖2 − (%+ 1)

∫
Ω

|u|% |ut|2 dx ≤ 0, for t ≥ 0.

Thus,

E (t) ≤ E (0) .

We can now define the stable set [9, 10, 11]

Σ =
{
u ∈ H2

0 |I (u) > 0, J (u) < d
}

and otherwise the stable set can be defined by

Σ = {(γ,E) ∈ [0,+∞)×R : 0 < h (γ) ≤ E < d, 0 < γ < γ0} ,

in which h (γ) = 1
2γ

2 − Cq+2
∗

γp+2

p+2 , h attains its absolute maximum point for γ0 =

C
− p+2

p
∗ , and finally d = h (γ0) =

(
1
2 −

1
p+2

)
γ2

0 > 0.

Now, we give main result in the next section.

2. Global existence of solutions

Lemma 2.1. Assume that u is solution of problem (1.1), and u0, u1 ∈ H2
0 (Ω), if

u0, u1 ∈ Σ and E (0) < d, then u (t) remains inside the set ∈ Σ for any t ≥ 0.

The proof is similiar to that of Lemma 2.2 in [10], thus we omit it.

Theorem 2.2. Let % > 1, if n = 1, 2; % < 2n
n−2 , if n ≥ 3; u0, u1 ∈ H2

0 (Ω) , suppose

that % > q, E (0) < d and u0 ∈ Σ, then the problem (1.1) is bounded and global in
time. Moreover a global weak solution u and u (.) ∈ Σ for t ≥ 0.

Proof. From Lemma 1, we get u (t) ∈ Σ for all t ∈ [0, T0), then I (u) > 0, J (u) < d
for all t ∈ [0, T0). Therefore,

(2.1)

(
1

2
− 1

p+ 2

)
‖u‖p+2

p+2 =
1

2
‖∆u‖2 − 1

p+ 2
‖u‖p+2

p+2 −
1

2
I (u) ≤ J (u) < d,

then

‖u‖p+2
p+2 < d.

By the energy equation (1.2), by definition of J (u) and (2.1), we reach

(2.2)
1

2

[
‖ut‖2 + ‖∇ut‖2 + ‖∆u‖2

]
≤ E (0) +

1

p+ 2
‖u‖p+2

p+2 ≤ Cd, for 0 ≤ t < T0,

That is, u is a global solution. Lastly from Lemma 1 we have u ∈ Σ for t ∈
[0,∞). �
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Abstract. In the approximation theory, polynomials are particularly positive

linear operators. Nonlinear positive operators by means of maximum and prod-
uct were introduced by B. Bede. In this study, nonlinear maximum product

type Bivariate Bernstein Chlodowsky operators are defined and approximation

properties are investigated with the help new definitions.

1. Introduction

The main topic in the classical approximation theory is approximating a contin-
uous function f : [a, b] → R with more elementary functions such as polynomials,
trigonometric functions, etc.. The well-known Korovkin’s theorem, which gives a
simple proof of Weierstrass theorem, is based on the approximation of functions
by linear and positive operators. The underlying algebraic structure of these men-
tioned operators is linear over R and they are also linear operators. In 2006, Bede
et.al [1] asked whether they could change the underlying algebraic structure to more
general structures. In this sense they presented nonlinear Shepard-type operators
by replacing the operations sum and product by max and product. They proved
Weierstrass-type uniform approximation theorem and obtained error estimates in
terms of the modulus of continuity. Following this paper Bede et. al. [2] defined
and studied pseudo linear approximation operators. Several authors introduced the
nonlinear versions of the stated operators and studied order of approximation [1-4].
Also see [2] for the collected papers.In addition, in the book published in 2016,
Bede et al. [2] gave the definition of Bivariate Max-Product Bernstein Operators
and examined various approximation properties. In this study, we will give the
definition of Bivariate Max-Product Bernstein Chlodowsky Operators and examine
various approach features.
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2. Preliminaries

Two bivariate max-product Bernstein operators was defined in [2] (B. Bede, L.
Coroianu, and S. G. Gal ,2016) as

B(M)
n,m (f) (x, y) =

n∨
i=0

m∨
j=0

Pn,i (x)Pm,i (y) f

(
i

n
,
j

m

)
n∨
i=0

m∨
j=0

Pn,i (x)Pm,i (y)

=

n∨
i=0

m∨
j=0

Pn,i (x)Pm,i (y) f

(
i

n
,
j

m

)
n∨
i=0

Pn,i (x) .
m∨
j=0

Pm,i (y)
, (x, y) ∈ [0, 1]

2
, n,m ∈ N,

where f : [0, 1]× [0, 1]→ R and Pn,i (x) =
(
n
i

)
xi (1− x)

n−i
. and

T (M)
n,m (f) (x) =

n∨
i=0

n−i∨
j=0

(
n
i

)(
n−i
j

)
xiyj (1− x− y)

n−i−j
f

(
i

n
,
j

n

)
n∨
i=0

n−i∨
j=0

(
n
i

)(
n−i
j

)
xiyj (1− x− y)

n−i−j
, (x, y) ∈ ∆, n ∈ N,

where f : ∆→ R+ ,∆ = (x, y) ;x ≥ 0, y ≥ 0, x+ y ≤ 1 , [2].

Remarks. 1) Since we have
n∨
i=0

Pn,i (x) .
m∨
j=0

Pm,i (y) > 0 for all x, y ∈ [0, 1] and

by Lemma 2.1.7in [2] in the univariate case, we explicitly can write

n∨
i=0

Pm,i (x) .

m∨
j=0

Pm,i (y) = Pn,r (x) .Pm,s (y) ,

for all (x, y) ∈
[

r
n+1 ,

r+1
n+1

]
×
[

s
m+1 ,

s+1
m+1

]
, r = 0, ..., n, s = 0, ...,m, it follows that

B
(M)
n,m (f) (x, y) is well defined on [0, 1] × [0, 1] and a continuous functions of (x, y)

in [0, 1]
2
.

Also

Ai,n,r (x) =
Pn,i (x)

Pn,r (x)
=

(
n
i

)(
n
r

) ( x

1− x

)i−r
,

Aj,m,s (y) =
Pm,j (y)

Pm,s (y)
=

(
m
j

)(
m
s

) ( y

1− y

)j−s
and

Ai,n,r,j,m,s (x, y) = Ai,n,r (x) .Aj,m,s (y)

write the following formula which is useful in proving approximate results,

B(M)
n,m (f) (x, y) =

n∨
i=0

m∨
j=0

Ai,n,r,j,m,s (x, y) f

(
i

n
,
j

m

)
for all (x, y) ∈

[
r

n+1 ,
r+1
n+1

]
×
[

s
m+1 ,

s+1
m+1

]
, r = 0, ..., n, s = 0, ...,m.[2](B. Bede, L.

Coroianu, and S. G. Gal ,2016)
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2) It easily can be followed

B(M)
n,m (f) (x, y) = B(M)

n,x [B(M)
m,y (f)] (x, y) ,

where, if G = G(x, y) then the notations B
(M)
n,x (G) means that the univariate

max-product Bernstein operator B
(M)
n (G) is applied to G considered as function

of x, while B
(M)
n,y (G) means that the univariate max-product Bernstein operator

B
(M)
n (G) is applied to Gconsidered as function of y. In other words, the bivariate

max-product Bernstein operators are tensor products of the univariate max product
Bernstein operators. [2]

In order to obtain the shape-preserving properties, as in the univariate case,
several shape concepts are needed in the bivariate case, and some of them are
obtained by using the ”tensor product” method.

Definition 2.1. [2]Letf : [0, 1]× [0, 1] → R.

(i) We say that f (x, y) is increasing (decreasing) with respect to x on [0, 1] ×
[0, 1] ,if

f(x+ h, y)− f(x, y) ≥ 0, (≤ 0),∀y ∈ [0, 1] ,∀x, x+ h ∈ [0, 1] , h > 0.

(ii) We say that f (x, y) is increasing (decreasing) with respect to y on [0, 1] ×
[0, 1] ,if

f(x, y + h)− f(x, y) ≥ 0, (≤ 0),∀x ∈ [0, 1] ,∀y, y + h ∈ [0, 1] , h > 0.

(iii) We say that f (x, y) is upper (lower) bidimensional monotone on [0, 1]×[0, 1]
if

∆2f(x, y) = f(x+ h, y + k)− f(x, y + k)− f(x+ h, y) + f(x, y) ≥ 0 (≤ 0) ,

for all x, x+ h ∈ [0, 1] , y, y + k ∈ [0, 1] , h ≥ 0, k ≥ 0.
There are a few more items.( See the book B. Bede, L. Coroianu, and S. G. Gal

,2016.[2])

3. Construction of the Operators

The aim of this study is to introduce bivariate max-product Bernstein Chlodowsky
operators and some properties of the this operators.

Definition 3.1. The bivariate maximum product Bernstein Chlodowsky operators
are defined as

C(M)
n,m (f) (x, y) =

n∨
i=0

m∨
j=0

Sn,i (x)Sm,j (y) f

(
i

n
bn,

j

m
bm

)
n∨
i=0

Sn,i (x) .
m∨
j=0

Sm,i (y)
, (x, y) ∈ [0, bn]×[0, bm] , n,m ∈ N,

where f : [0, bn] × [0, bm] → R and Sn,i (x) =
(
n
i

) (
x
bn

)i (
1− x

bn

)n−i
, Sm,j (y) =(

m
j

) (
y
bm

)j (
1− y

bm

)m−j
,
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limn→∞ bn =∞, limm→∞ bm =∞ and limn→∞
bn
n

= 0, limm→∞
bm
m

= 0.

Güngör et. al [4] investigated maximum product Bernstein Chlodowsky opera-
tors and they examined the various notations and approximation of these operators.
The following notations and Theorem are needed to examine the future approxi-
mation properties of bivariate maximum product Bernstein Chlodowsky operators.

Theorem 3.2. Denoting Sn,i (x) =
(
n
i

) (
x
bn

)i (
1− x

bn

)n−i
,

Sm,j (y) =
(
m
j

) (
y
bm

)j (
1− y

bm

)m−j
, we have

n∨
i=0

Sm,i (x) .

m∨
j=0

Sm,j (y) = Sn,r (x) .Sm,s (y) ,

for all (x, y) ∈
[
rbn
n+1 ,

(r+1)bn
n+1

]
×
[
sbm
m+1 ,

(s+1)bm
m+1

]
, r = 0, ..., n, s = 0, ...,m.

Proof. Firsly , for n ∈ N and 0 ≤ r < r + 1 ≤ n, 0 ≤ s < s+ 1 ≤ m,

0 ≤ Sn,r+1 (x) ≤ Sn,r (x)

0 ≤ Sm,s+1 (x) ≤ Sm,s (x)

where x ∈
[
0, (r+1)bn

n+1

]
, y ∈

[
0, (s+1)bm

m+1

]
. We have,

0 ≤
(

n

r + 1

)(
x

bn

)r+1(
1− x

bn

)n−(r+1)

≤
(
n

r

)(
x

bn

)r (
1− x

bn

)n−r
0 ≤

(
m

s+ 1

)(
y

bm

)s+1(
1− y

bm

)n−(s+1)

≤
(
m

s

)(
y

bm

)s(
1− y

bm

)n−s
and

0 ≤ x

bn

[(
n

r + 1

)
+

(
n

r

)]
≤
(
n

r

)
0 ≤ y

bm

[(
m

s+ 1

)
+

(
m

s

)]
≤
(
m

s

)
Since

(
n
k+1

)
+
(
n
k

)
=
(
n+1
k+1

)
,we get 0 ≤ x ≤ (r+1)bn

n+1 , 0 ≤ y ≤ (s+1)bm
m+1 .

Also

Bi,n,r (x) =
Sn,i (x)

Sn,r (x)
=

(
n
i

)(
n
r

) ( x
bn

1− x
bn

)i−r
,

Bj,m,s (y) =
Sm,j (y)

Sm,s (y)
=

(
m
j

)(
m
s

) ( y
bm

1− y
bm

)j−s
and

Bi,n,r,j,m,s (x, y) = Bi,n,r (x) .Bj,m,s (y)

write the following formula which is useful in proving approximate results,

C(M)
n,m (f) (x, y) =

n∨
i=0

m∨
j=0

Bi,n,r,j,m,s (x, y) f

(
ibn
n
,
jbm
m

)
for all (x, y) ∈

[
rbn
n+1 ,

(r+1)bn
n+1

]
×
[
sbm
m+1 ,

(s+1)bm
m+1

]
, r = 0, ..., n, s = 0, ...,m. �
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It easily can be followed

C(M)
n,m (f) (x, y) = C(M)

n,x [C(M)
m,y (f)] (x, y) ,

where, if H = H(x, y) then the notations C
(M)
n,x (H) means that the univariate

max-product Bernstein Chlodowsky operator C
(M)
n (H) is applied to H considered

as function of x, while C
(M)
n,y (G) means that the univariate max-product Bernstein

Chlodowsky operator C
(M)
n (H) is applied to H considered as function of y. In

other words, the bivariate max-product Bernstein Chlodowsky operators are tensor
products of the univariate max product Bernstein Chlodowsky operators.
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Abstract. Given a group presentation P = GP(x, r), we consider the free

FG(x)-crossed module (G(Υ), θ̃, FG(x)) on the set Y ±1 of symbols (ur)ε (ε =

±1) with r ∈ r. In terms of G(Υ) we prove that if d = (a1, ..., an) is an identity

Y -sequence over P, then d is Peiffer equivalent to the empty sequence if and

only if, the image of d in G(Υ) belongs to the subgroup Û of G(Υ) generated
by the images of aa−1 with a ∈ Y ∪ Y −1. We use this to prove a necessary

and sufficient condition under which a subpresentation of an aspherical group
presentation is aspherical. We also consider the pair of presentations P =

GP(x∪ z, r1 ∪ {r0}) and P1 = GP(x, r1) where P represents the trivial group

and r0 /∈ r1. If we let N0 be the normal closure of r0 in the free group F of x,
then we prove that if the presentation P = GP(x ∪ z, r1 ∪ {r0}) is aspherical,

then the structure map ϑ̃1 of the free crossed module (C̃1, F/N0, ϑ̃1) on r1 over

N/N0 is injective.

1. Introduction

The Whitehead asphericity conjecture, raised as a problem in [15], asks whether
any subcomplex of an aspherical 2-complex is also aspherical. In group theoretic
terms it can be rephrased as follows: given an aspherical presentation P = GP(x, r)
of a group G, is it true that every subpresentation P ′ = GP(x′, r′) of the first is also
aspherical? The aim of this paper is to give a necessary and sufficient condition
under which a subpresentation of an aspherical group presentation is aspherical.
To achieve this we use among other things, some results from the theory of monoid
acts. In this section we give a rough idea of how monoid acts come into play. First,
we recall that a group presentation P = GP(x, r) is aspherical if its geometric
realisationK(P) is an aspherical 2-complex, that is π2(K(P)) = 0. In [2] Brown and
Huebschmann have proved several key results about aspherical group presentation
one of which is their proposition 14 that gives sufficient and necessary conditions
under which a group presentation P = GP(x, r) is aspherical. As we use two of
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them in particular, we will state them here and explain their meanings. One of
these conditions states that the relation module N (P) is a free ZG module. We
give below the definition of N (P) and afterwards introduce its basis when P is
aspherical. If P = GP(x, r) is a presentation for a group G, we denote by FG(x)
the free group on x and let α : FG(x) → G and β : N → N/[N,N ] be the
canonical homomorphisms where N is the normal closure of r in FG(x) and [N,N ]
its commutator subgroup. There is a well defined G-action on N (P) = N/[N,N ]
given by

wα · sβ = (w−1sw)β

for every w ∈ FG(x) and s ∈ N . This action extends to an action of ZG over N (P)
by setting

(wα1 ± wα2 ) · sβ = (w−1
1 sw1w

−1
2 s±1w2)β .

Now the bases of N (P) as a free ZG module is the set of elements rβ with r ∈ r.
The other condition of proposition 14 states that any identity Y -sequence for P is
Peiffer equivalent to the empty sequence. Related to the given data, it is denoted
by H the free group on the set Y of symbols ru where r ∈ r and u ∈ FG(x).
The group homomorphism θ : H → FG(x) defined by θ(ur) = uru−1 has kernel
E the set of identities among the relations for P. Besides H it is considered the
free monoid on the set Y ∪ Y −1 consisting of strings (a1, ..., an) where n ≥ 0 and
each ai ∈ Y ∪ Y −1. The elements of this monoid are usually called Y -sequences
and a string (a1, ..., an) for which θ(a1) · · · θ(an) = 1 in FG(x) is called an identity
Y -sequences for P. Of a particular importance is the concept of Peiffer operations
on Y-sequences.

(i) An elementary Peiffer exchange replaces an adjacent pair (a, b) in a Y -

sequence by either (b,θ(b
−1) a) or (θ(a)b, a).

(ii) A Peiffer deletion deletes an adjacent pair (a, a−1) in a Y -sequence.
(iii) A Peiffer insertion is the inverse of the Peiffer deletion.

The equivalence relation on the set of Y -sequences generated by the above oper-
ations is called Peiffer equivalence. In the next section we will see that, when it
comes for the study of aspherical group presentations, Peiffer operations on Y -
sequences can be better understood within the framework of the theory of monoid
actions. For the benefit of the reader not familiar with monoid actions we will list
below some basic notions and results that are used in the paper. For further results
on the subject the reader may consult the monograph [7]. If S is a monoid with
identity element 1 and X a nonempty set, we say that X is a left S-system if there
is an action (s, x) 7→ sx from S ×X into X with the properties

(st)x = s(tx) for all s, t ∈ S and x ∈ X,
1x = x for all x ∈ X.

Right S-systems are defined dually in the obvious way. If S and T are (not neces-
sarily different) monoids, we say that X is an (S,T)-bisystem if it is a left S-system,
a right T -system, and if

(sx)t = s(xt) for all s ∈ S, t ∈ T and x ∈ X.

If X and Y are both left S-systems, then an S-morphism or S-map is a map
φ : X → Y such that

φ(sx) = sφ(x) for all s ∈ S and x ∈ X.
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Morphisms of right S-systems and of (S, T )-bisystems are defined in an analogue
way. If we are given a left T -system X and a right S-system Y , then we can give
the cartesian product X × Y the structure of an (T, S)-bisystem by setting

t(x, y) = (tx, y) and (x, y)s = (x, ys).

Let now A be an (T,U)-bisystem, B an (U, S)-bisystem and C an (T, S)-bisystem.
As explained above, we can give to A×B the structure of an (T, S)-bisystem. With
this in mind we say that a (T, S)-map β : A×B → C is a bimap if

β(au, b) = β(a, ub) for all a ∈ A, b ∈ B and u ∈ U.

A pair (A⊗UB,ψ) consisting of a (T, S)-bisystem A⊗UB and a bimap ψ : A×B →
A⊗UB will be called a tensor product of A and B over U if for every (T, S)-bisystem
C and every bimap β : A×B → C, there exists a unique (T, S)-map β̄ : A⊗UB → C
such that the diagram

A×B

β

��

ψ // A⊗U B

β̄
yy

C

commutes. It is proved that A⊗U B exists and is unique up to isomorphism. The
existence theorem reveals that A⊗U B = (A×B)/τ where τ is the equivalence on
A×B generated by the relation

T = {((au, b), (a, ub)) : a ∈ A, b ∈ B, u ∈ U}.

The equivalence class of a pair (a, b) is usually denoted by a ⊗U b. To us is of
interest the situation when A = S = B where S is a monoid and U is a submonoid
of S. Here A is clearly regarded as an (S,U)-bisystem with U acting on the right
of A by multiplication, and B as an (U, S)-bisystem where U acts on the left of B
by multiplication. Another concept that is important to our approach is that of
the dominion. If U is a submonoid of a monoid S, then we say that a is in the
dominion of U in S, written as a ∈ DomS(U), if for all monoids T and all monoid
homomorphisms f, g : S → T that agree on U , we have that f(a) = g(a). Related
to dominions there is the well know zigzag theorem of Isbell. We will present here
the Stenstrom version of it which reads. Let U be a submonoid of a monoid S and
let d ∈ S. Then, d ∈ DomS(U) if and only if d⊗U 1 = 1⊗U d in the tensor product
A = S ⊗U S. We mention here that this result holds true if S turns out to be a
group and U a subgroup, both regarded as monoids. A key result that is used to
prove our main theorem in the next section is the fact that any inverse semigroup
U is absolutely closed in the sense that for every semigroup S containing U as a
subsemigroup, DomS(U) = U . It is obvious that groups are absolutely closed as
special cases of inverse monoids (see [8]).

The monoids involved in our approach are the following. The first one is the
monoid Υ defined by the monoid presentation MP(Y ∪ Y −1, P ) where Y −1 is the
set of group inverses of the elements of Y and P consists of all pairs (ab,θ(a) ba)
where a, b ∈ Y ∪ Y −1. The second one is the group G(Υ) given by the group

presentation GP(Y ∪ Y −1, P̂ ) where P̂ is the set of all words abι(a)ι(θ(a)b) where
by ι(c) we denote the inverse of c in the free group over Y ∪Y −1. Before we introduce
the next two monoids and the respective monoid actions, we stop to explain that
Υ and G(Υ) are special cases of a more general situation. If a monoid S is given by
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the monoid presentationMP(X,R), then its universal enveloping group G(S) (see

[1] and [4]) is defined to be the group given by the group presentation GP(X, R̂)

where R̂ consists of all words uι(v) whenever (u, v) ∈ R where ι(v) is the inverse of
v in the free group over X. We let for future use σ : FM(X)→ S be the respective
canonical homomorphism where FM(X) is the free monoid on X. It is easy to see
that there is a monoid homomorphism µS : S → G(S) which satisfies the following
universal property. For every group G and monoid homomorphism f : S → G,

there is a unique group homomorphism f̂ : G(S) → G such that f̂µS = f . This
universal property is indication of an adjoint situation. Specifically, the functor
G : Mon→ Grp which maps every monoid to its universal group, is a left adjoint
to the forgetful functor U : Grp → Mon. This ensures that G(S) is an invariant
of the presentation of S.

The third monoid we consider is the submonoid U of Υ, having the same unit as
Υ, and is generated from all the elements of the form σ(a)σ(a−1) with a ∈ Y ∪Y −1.
This monoid, acts on the left and on the right of Υ by the multiplication in Υ. The
last monoid considered is the subgroup Û of G(Υ) generated by µ(U). Similarly to

above, Û acts on G(Υ) by multiplication.
In the next section we will see that an identity Y -sequence (a1, ..., an) is Peiffer

equivalent to the empty sequence if and only if for the element a = µ(σ(a1)...σ(an))
of G(Υ) we have a ⊗Û 1 = 1 ⊗Û a in the tensor product G(Υ) ⊗Û G(Υ). From
the zigzag theorem of Isbell the last equality is equivalent to assuming that a ∈
DomG(Υ)(Û), where DomG(Υ)(Û) is the dominion of Û in G(Υ). Recalling that the

group Û is absolutely closed we infer that an identity Y -sequence (a1, ..., an) is

Peiffer equivalent to the empty sequence if and only if a = µ(σ(a1)...σ(an)) ∈ Û.
Having proved this it is not to difficult to prove our theorem 2.6 which gives a
necessary and sufficient condition under which a subpresentation of an aspherical
group presentation is itself aspherical.

In the second part of the paper we are interested for pairs of presentations
P = GP(x, r1 ∪ r0) and P1 = GP(x, r1) where r1 ∩ r0 = ∅, r0 = {r0} is a singleton
and P is an aspherical presentation of the trivial group. This situation is of a par-
ticular interest due to a result of Ivanov from [9] which states that if the Whitehead
conjecture is false, then there is an aspherical presentation E = 〈A,R ∪ z〉 of the
trivial group E, where the alphabet A is finite or countably infinite and z ∈ A, such
that its subpresentation 〈A,R〉 is not aspherical. In virtue of this, we see that the
conjecture is true if and only if it is true for subpresentations that differs from the
given aspherical presentation by a single defining relation. This problem is very
difficult and no answer is know, but if we relativize the problem then the answer
is affirmative. To make this term precise, we denote by N the normal closure of
r1 ∪ r0 in the free group F which coincides to the latter in our case, and by N0 the
normal closure of r0 in F , and let (C̃1, N/N0, ϑ̃1) be the free crossed module over
N/N0 on r1. Then we prove in theorem 3.1 that if P is aspherical, then the map

ϑ̃1 is injective.
To prove our theorem 3.1 we need from [10] the notion of the semidirect product

of two crossed modules. We give below the ingredients which make possible the
definition. For a crossed module (T,G, ∂) we denote by Aut(T,G, ∂) the group of
automorphisms of (T,G, ∂) and by Der(T,G, ∂) the set of all derivations from G to
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T , that is maps d : G→ T such that for all x, y ∈ G,

d(xy) = d(x) xd(y).

Each such derivation d defines automorphisms σ and τ of G and T respectively
given by

σ(x) = ∂d(x)x and τ(t) = d∂(t)t.

Der(T,G, ∂) becomes a monoid (with identity the trivial derivation) if we define
the product d1 ◦ d2 = d where

d(x) = d1(σ2(x))d2(x) = τ1(d2(x))d1(x).

We let D(T,G, ∂) the group of units of Der(T,G, ∂) whose derivations are called
the regular derivations and sometimes D(T,G, ∂) is called the Whitehead groups.
There is a homomorphism ∆ : D(G,T )→ Aut(T,G) defined by ∆(d) = 〈τ, σ〉 and
there is an action of Aut(T,G) on D(G,T ) defined by 〈σ,φ〉d = αdφ−1. With this
action, (D(G,T ),Aut(T,G),∆) becomes a crossed module which is called the actor
crossed module A(T,G, ∂) of (T,G, ∂). Suppose now that we are given two crossed
modules (M,P, µ) and (T,G, ∂) and that the first acts on the second which means
that there is a morphism of crossed modules (a commutative diagram of groups)

M

η

��

µ // P

ρ

��
D(G,T )

∆
// Aut(T,G, ∂)

Suppose that ρ has components ρ1 : P → Aut(T ) and ρ2 : T → Aut(G), that is to
say ρ(p) = 〈ρ1(p), ρ2(p)〉 for all p ∈ P . Then M acts on T via ρ1µ and with this
action we can form the semidirect product of groups T oM . Likewise, since P acts
on G via ρ2, we can form the semidirect product Go P . With these data one can
define an action of Go P on T oM by

(g,p)(t,m) =
(
g(pt)(η(pm)g)−1, pm

)
.

The map π : T oM → Go P given by (t,m) 7→ (∂(t), µ(m)) is a homomorphism.
With the action just defined the triple (T o M,G o P, π) is a crossed module
called the semidirect product crossed module relative to 〈η, ρ〉 and denoted by
(T,G, ∂) o〈η,ρ〉 (M,P, µ).

Finally we mention that results related to ours can be found in [3], [5], [6] and
[14]. Also a good account on the Whitehead asphericity problem can be found in
[12].

2. Peiffer operations and monoid actions

If α = (a1, ..., an) is any Y -sequence over the group presentation P = 〈x, r〉, then
performing an elementary Peiffer operation on α can be interpreted in a simple way
in terms of monoids Υ and U defined in the introduction. In what follows we will
denote by σ(α) the element σ(a1) · · · σ(an) ∈ Υ. If β = (b1, ..., bn) is obtained
from α = (a1, ..., an) by performing an elementary Peiffer exchange, then from the
definition of Υ, σ(α) = σ(β), therefore an elementary Peiffer exchange or a finite
sequence of such has no effect on the element σ(a1) · · · σ(an) ∈ Υ. Before we see
the effect that a Peiffer insertion in α has on σ(α) we need the first claim of the
following.
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Lemma 2.1. The elements of U are central in Υ and those of Û are central in
G(Υ).

Proof. We see that for every a and b ∈ Y ∪Y −1, σ(a)σ(a−1)σ(b) = σ(b)σ(a)σ(a−1).
Indeed,

σ(b)σ(a)σ(a−1) = σ(baa−1) =

= σ(abθaa−1) = σ(aa−1(bθa)θa
−1

)

= σ(a)σ(a−1)σ(b).

Since elements σ(b) and σ(a)σ(a−1) are generators of Υ and U respectively, then
the first claim holds true. The second claim follows easily. �

If we insert (a, a−1) at some point in α = (a1, ..., an) to obtain α′ = (a1, ..., a, a
−1, ..., an),

then from lemma 2.1,

σ(α′) = σ(α) · (σ(a)σ(a−1)),

which means that inserting (a, a−1) inside a Y -sequence α has the same effect
as multiplying the corresponding σ(α) in Υ by the element σ(a)σ(a−1) of U and
conversely. Of course the deletion has the obvious interpretation in our semigroup
theoretic terms as the inverse of the above process. We retain the same names for
our semigroup operations, that is insertion for multiplication by σ(a)σ(a−1) and
deletion for its inverse. Related these operations on the elements of Υ we make the
following definition.

Definition 2.2. We denote by ∼U the equivalence relation in Υ generated by all
pairs (σ(α), σ(α) · σ(a)σ(a−1)) where α ∈ FM(Y ∪ Y −1) and a ∈ Y ∪ Y −1. We say
that two elements σ(a1) · · · σ(an) and σ(b1) · · · σ(bm) where m,n ≥ 0 are Peiffer
equivalent in Υ if they fall in the same ∼U-class.

It is obvious that two Y -sequences α and β are Peiffer equivalent in the usual
sense if and only if σ(α) ∼U σ(β), but it should be mentioned that the study of
∼U might be as hard as the study of Peiffer operations on Y -sequences, and at this
point it seems we have not made any progress at all. In fact this definition will
become useful latter in this section and yet we have to prove a few more things
before we utilize it.

The process of inserting and deleting generators of U in an element of Υ is
related to the following new concept. If in general U is a submonoid of a monoid
S and d ∈ S, then we say that d belongs to the weak dominion of U , shortly
written as d ∈WDomS(U), if for every group G and every monoid homomorphisms
f, g : S → G such that f(u) = g(u) for every u ∈ U , then f(d) = g(d). An analogue
of Stenström version of Isbell theorem (theorem 8.3.3 of [7]) for weak dominion holds
true. The proof of the if part of its analogue is similar to that of Isbell theorem
apart from some minor differences that reflect the fact that we are working with
WDom rather than Dom and that will become clear along the proof, while the
converse relies on the universal property of µ : S → G(S).

Proposition 1. Let S be a monoid, U a submonoid and let Û be the subgroup of
G(S) generated by elements µ(u) with u ∈ U . Then d ∈WDomS(U) if and only if

µ(d) ∈ Û .
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Proof. The set Â = G(S)⊗Û G(S) has an obvious (G(S),G(S))-bisystem structure.

The free abelian group ZÂ on Â inherits a (G(S),G(S))-bisystem structure if we
define

g ·
∑

zi(gi ⊗Û hi) =
∑

zi(ggi ⊗Û hi),

and (∑
zi(gi ⊗Û hi)

)
· g =

∑
zi(gi ⊗Û hig).

The set G(S)× ZÂ becomes a group by defining

(g,
∑

zigi ⊗Û hi) · (g
′,
∑

z′ig
′
i ⊗Û h

′
i) =

(gg′,
∑

zigi ⊗Û hig
′ +
∑

z′igg
′
i ⊗Û h

′
i).

The associativity is proved easily. The unit element is (1, 0) and for every (g,
∑
zigi⊗Û

hi) its inverse is the element (g−1,−
∑
zig
−1gi ⊗Û hig−1). Let now define

β : S → G(S)× ZÂ by s 7→ (µ(s), 0),

which is clearly a monoid homomorphism, and

γ : S → G(S)× ZÂ by s 7→ (µ(s), µ(s)⊗Û 1− 1⊗Û µ(s)),

which is again seen to be a monoid homomorphism. These two coincide on U since
for every u ∈ U

γ(u) = (µ(u), µ(u)⊗Û 1− 1⊗Û µ(u)) = (µ(u), 0) = β(u).

The last equality and the assumption that d ∈WDomS(U) imply that β(d) = γ(d),
therefore

(µ(d), 0) = (µ(d), µ(d)⊗Û 1− 1⊗Û µ(d)),

which shows that µ(d) ⊗Û 1 = 1 ⊗Û µ(d) in the tensor product G(S) ⊗Û G(S)

and therefore theorem 8.3.3, [7], applied for monoids G(S) and Û , implies that

µ(d) ∈ DomG(S)(Û). But DomG(S)(Û) = Û as from theorem 8.3.6, [7] every inverse

semigroup is absolutely closed, whence µ(d) ∈ Û .

Conversely, suppose that µ(d) ∈ Û and want to show that d ∈WDomS(U). Let
G be a group and f, g : S → G two monoid homomorphisms that coincide in U ,

therefore the group homomorphisms f̂ , ĝ : G(S) → G of the universal property of

µ coincide in Û which, from our assumption, implies that f̂(µ(d)) = ĝ(µ(d)), and
then f(d) = g(d) proving that d ∈WDomS(U). �

Before we reveal the connection between Peiffer deletions (insertions) and weak
dominion, we need a few more technical result. Let

Ψ : FG(Y ∪ Y −1)→ Υ

be the map defined as follows.

Ψ(u) = σ(u)

if the reduced word u does not contain any ι(a) with a ∈ Y ∪ Y −1, otherwise if u
has occurrences of ι(a) with a ∈ Y ∪ Y −1, then

Ψ(u) = σ(u′)



SOME RESULTS ON THE WHITEHEAD ASPHERICITY PROBLEM 43

where u′ is obtained from u by replacing any ι(a) by a−1. Let u, v, x ∈ FG(Y ∪Y −1)
be irreducibles such that u = u1x, v = ι(x)v1 where ι(x) is the inverse of x and
u1, v1, u1v1 are irreducibles. It is easy to see that

Ψ(uv) = Ψ(u1v1) = Ψ(u1)Ψ(v1),

and that

Ψ(u)Ψ(v) = Ψ(u1)Ψ(x)Ψ(ι(x))Ψ(v1)

= Ψ(u1)Ψ(v1)Ψ(x)Ψ(ι(x))

= Ψ(uv)[u, v],

where [u, v] is Ψ(x)Ψ(ι(x)) for short. In this way we have proved that for any irre-
ducibles u, v ∈ FG(Y ∪ Y −1), there is [u, v] ∈ U such that Ψ(uv)[u, v] = Ψ(u)Ψ(v).

Lemma 2.3. Let ρ be any defining relation of G(Υ) or its inverse and ξρι(ξ) any
conjugate of ρ in FG(Y ∪ Y −1). Then there is u ∈ U such that Ψ(ξρι(ξ)) ∼U u.

Proof. First we see that for any defining relation ρ of G(Υ) we have that Ψ(ρ) ∈ U.
Indeed, if ρ = abι(aθb)ι(b), then

Ψ(abι(aθb)ι(b)) = σ(a)σ(b)σ((aθb)−1)σ(b−1)

= σ(b)σ(aθb)σ((aθb)−1)σ(b−1)

= σ(b)σ(b−1)σ(aθb)σ((aθb)−1) ∈ U.

The proof for the second type of relations is similar. In the same way one can show
that for every defining relation ρ, Ψ(ι(ρ)) ∈ U. Finally, if ξρι(ξ) is a conjugate of
a defining relation or its inverse, then Ψ(ξρι(ξ)) is Peiffer equivalent in Υ to an
element U. Indeed,

Ψ(ξ)Ψ(ρ)Ψ(ι(ξ)) = Ψ(ξ)Ψ(ι(ξ))ε with ε = Ψ(ρ)

= [ξ, ι(ξ)]Ψ(ξι(ξ))ε

= [ξ, ι(ξ)]ε ∈ U.

On the other had,

Ψ(ξ)Ψ(ρ)Ψ(ι(ξ)) = [ξ, ρ]Ψ(ξρ)Ψ(ι(ξ))

= [ξ, ρ][ξρ, ι(ξ)]Ψ(ξρι(ξ)).

Since [ξ, ρ][ξρ, ι(ξ)] ∈ U, and from above Ψ(ξ)Ψ(ρ)Ψ(ι(ξ)) ∈ U, then we have that
Ψ(ξρι(ξ)) ∼U u where u ∈ U. �

The reason why we had to define the map Ψ will become apparent shortly. It
is obvious that when A ∈ FM(Y ∪ Y −1), then Ψ(A) is nothing but σ(A). The
following lemma shows that if two words which contain letters from Y ∪ Y −1 but
not inverses in FG(Y ∪ Y −1) represent the same element in G(Υ), then seen as
elements of Υ, they are ∼U equivalent.

Lemma 2.4. If A,B ∈ FM(Y ∪ Y −1) such that σ̂(A) = σ̂(B) in G(Υ), then
σ(A) ∼U σ(B).

Proof. Suppose that A = (ξ1ρ1ι(ξ1)) · · · (ξnρnι(ξn))B and want to prove that
σ(A) ∼U σ(B). For every 1 ≤ i ≤ n− 1 make the following notations

εi = [ξiρiι(ξi), (ξi+1ρi+1ι(ξi+1)) · · · (ξnρnι(ξn)) ·B].
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Also set

εn = [ξnρnι(ξn), B].

The following hold true

Ψ(A) · ε1 = Ψ(ξ1ρ1ι(ξ1)) ·Ψ((ξ2ρ2ι(ξ2)) · ··
(ξnρnι(ξn)) ·B)

Ψ(A) · ε1 · ε2 = Ψ(ξ1ρ1ι(ξ1)) ·Ψ(ξ2ρ2ι(ξ2))·
Ψ((ξ3ρ3ι(ξ3)) · · · (ξnρnι(ξn)) ·B)

· ··
Ψ(A) · ε1 · · · εn−1 = Ψ(ξ1ρ1ι(ξ1))

· · ·Ψ(ξn−1ρn−1ι(ξn−1)) ·Ψ((ξnρnι(ξn)) ·B)

Ψ(A) · ε1 · · · εn−1 · εn =

Ψ(ξ1ρ1ι(ξ1)) · · ·Ψ(ξnρnι(ξn)) ·Ψ(B).

Since from the proceeding lemma, each Ψ(ξiρiι(ξi)) ∼U ui with ui ∈ U and since
every εi ∈ U, one can easily see that Ψ(A) ∼U Ψ(B), hence σ(A) ∼U σ(B). �

The relation between insertion (deletion) and the weak dominion is now revealed
from the following.

Theorem 2.5. Let d ∈ Υ, then d ∼U 1 if and only if d ∈WDomΥ(U).

Proof. Let G be any group and f, g : Υ → G two monoid homomorphisms that
coincide in U and want to show that f(d) = g(d). The proof will be done by induc-
tion on the minimal number h(d) of insertions and deletions needed to transform
d = σ(a1) · · · σ(an) to 1. If h(d) = 1, then d ∈ U and f(d) = g(d). Suppose
that h(d) = n > 1 and let τ be the first operation performed on d in a series of
operations of minimal length. After τ is performed on d, it is obtained an element
d′ with h(d′) = n − 1. By induction hypothesis, f(d′) = g(d′) and want to prove
that f(d) = g(d). There are two possible cases for τ . First, τ is an insertion and
let u = σ(a)σ(a−1) ∈ U be the element inserted. It follows that f(d′) = f(d)f(u)
and g(d′) = g(d)g(u), but f(u) = g(u), therefore from cancellation law in the group
G we get f(d) = g(d). Second, τ is a deletion and let u = σ(a)σ(a−1) ∈ U be the
element deleted, that is d = d′u. It follows immediately from the assumptions that
f(d) = g(d).

Conversely, assume that d ∈WDomΥ(U) and want to prove that d ∼U 1. From

proposition 1, µ(d) ∈ Û and let u1, ..., un be group generators from Û such that
µ(d) = u1 · · · un. For i = 1, ..., n define

ωui
=

{
(σ(a)σ(a−1))2 if ui = ι(µσ(a)µσ(a−1))

1 if ui is not an inverse

We may now write

µ(ωu1
· · · ωun

d) = µ(ωu1
)u1 · · · µ(ωun

)un,

where the right hand side belongs to µ(U) and let u ∈ U be such that

µ(ωu1 · · · ωund) = µ(u).

Lemma 2.4 implies that ωu1
· · ·ωun

d ∼U u. Since each ωui
is either 1 or square of a

generator from U and since u ∼U 1, we infer that d ∼U 1 concluding the proof. �
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Let P = GP(x, r) be an aspherical group presentation and P1 = GP(x, r1) a
subpresentation of the first where r1 = r \ {r0} and r0 ∈ r is a fixed relation. We

denote by Υ1, U1 monoids associated with P1 and by G(Υ1) and Û1 their respective

groups. Also we consider Â1 the subgroup of Û1 generated by all µ1σ1(bb−1) where
b ∈ Y1 ∪ Y −1

1 . Finally note that the monomorphism f : Υ1 → Υ induced by the

map σ1(a) → σ(a) induces a homomorphism φ̂ : G(Υ1) → G(Υ). With the above
notation we have the following.

Theorem 2.6. The subpresentation P1 = GP(x, r1) is aspherical if and only if

φ̂−1(Â1) = Û1.

Proof. Suppose that (a1, ..., an) is an identity Y1-sequence. Since it is also an iden-
tity Y -sequence and P = GP(x, r) is aspherical, then from [2] (a1, ..., an) is Peiffer
equivalent in P to the empty sequence. The latter is equivalent to assuming that
d = (σ(a1) · · · σ(an)) ∼U 1, and then theorem 2.5 and proposition 1 imply that

µ(d) ∈ Û. We claim that µ(d) ∈ Â1. To see this we first let

µ(d) =(µσ(b1b
−1
1 ) · · · µσ(bsb

−1
s ))·

(ι(µσ(bs+1b
−1
s+1)) · · · ι(µσ(brb

−1
r )))

(µσ(c1c
−1
1 ) · · · µσ(ctc

−1
t ))·

(ι(µσ(d1d
−1
1 )) · · · ι(µσ(dkd

−1
k ))),

where the first half involves elements from Y1 ∪ Y −1
1 and the second one is

µσ(C)ι(µσ(D))

with

C = c1c
−1
1 · · · ctc

−1
t and D = d1d

−1
1 · · · dkd

−1
k ,

where C and D involve only elements of the form (ru0 )ε with ε = ±1. Define

ψ : FM(Y ∪ Y −1)→ N (P)

on free generators as follows

(ru)ε 7→ (u−1ru)β .

It is easy to see that ψ is compatible with the defining relations of Υ, hence there
is g : Υ → N (P) and then the universal property of µ implies the existence of
ĝ : G(Υ)→ N (P) such that ĝµ = g. Recalling from above that in G(Υ) we have

µσ((a1 · · · an)·
((bs+1b

−1
s+1) · · · (brb−1

r )) · ((d1d
−1
1 ) · · · (dkd−1

k )))

= µσ(((b1b
−1
1 ) · · · (bsb−1

s )) · ((c1c−1
1 ) · · · (ctc−1

t ))),

we can apply ĝ on both sides and get

gσ((a1 · · · an)·
((bs+1b

−1
s+1) · · · (brb−1

r )) · ((d1d
−1
1 ) · · · (dkd−1

k )))

= gσ(((b1b
−1
1 ) · · · (bsb−1

s )) · ((c1c−1
1 ) · · · (ctc−1

t ))).
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If we now write each ci = (rui
0 )εi and each dj = (r

vj
0 )δj where εi and δj = ±1, while

we write each a` = (rw`

` )γ` and each bp = (ρ
ηp
p )εp where all r` and ρp belong to r1

and γ`, εp = ±1, then the definition of g yields

(wα1 · r
β
1 + · · ·+ wαn · rβn)+

(2ηαs+1 · ρ
β
s+1 + · · ·2ηαr · ρβr ) + (2vα1 + · · ·+ 2vαk ) · rβ0

= (2ηα1 · ρ
β
1 + · · ·2ηαs · ρβs ) + (2uα1 + · · ·+ 2uαt ) · rβ0

The freeness of N (P) on the set of elements rβ implies in particular that

(2vα1 + · · ·+ 2vαk ) · rβ0 = (2uα1 + · · ·+ 2uαt ) · rβ0
from which we see that k = t, and after a rearrangement of terms uαi = vαi for

i = 1, ..., k. One can see that in general if v = u ·
∏s
i=1 w

−1
i rλi

i wi in FG(x) where
λi = ±1 and ri ∈ r, then in G(Υ) we have

µσ((rv0)δ) = ι

(
s∏
i=1

µσ(rwi
i )λi

)
· µσ((ru0 )δ)

·

(
s∏
i=1

µσ(rwi
i )λi

)
.

Using this it is easy to see that

µσ((rv0)δ(rv0)−δ) = µσ((ru0 )δ(ru0 )−δ).

The easily verified fact that in G(Υ), µσ(aa−1) = µσ(a−1a), implies

µσ((rv0)δ(rv0)−δ) = µσ((ru0 )ε(ru0 )−ε).

If we apply the latter to pairs (ci, di) for which uαi = vαi , we get that µσ(C)ι(µσ(D)) =

1 which shows that µσ(a1 · · ·an) ∈ Â1. If we are now given that φ̂−1(Â1) = Û1, then

µ1σ1(a1 · · · an) ∈ Û1. Proposition 1 and theorem 2.5 imply that σ1(a1 · · · an) ∼U1
1

proving that P1 is aspherical. For the converse, assume that Û1 6= φ̂−1(Â1). It
follows that there is an identity Y1-sequence (a1, ..., an) such that µ1σ1(a1 · · · an) ∈
φ̂−1(Â1) \ Û1 contrary to the assumption of the asphericity for P1. �

3. Relativizing the problem

The special case we deal with in this section is that of the pair of presentations
P = GP(x, r1 ∪ r0) and P1 = GP(x, r1) where r1 ∩ r0 = ∅, r0 = {r0} is a singleton
and P is an aspherical presentation of the trivial group. If we denote by N0, N1

and by N the normal closures of r0, r1 and r0 ∪ r1 respectively in F = FG(x),
then N = F , and as we know from [5] N0 ∩ N1 = [N0, N1]. We write for short
K = [N0, N1]. Observe that for N we have the isomorphism N/K ∼= N0/KoN1/K
where N1/K acts on N0/K by conjugation. To see this we first note that every
n ∈ N decomposes (non uniquely) as n = n0n1 where n0 ∈ N0 and n1 ∈ N1. Now
we define

f : N/K → N0/K oN1/K by nK 7→ (n0K,n1K)

and show that it is well defined and a homomorphism. Indeed, if n0n1K = m0m1K,
then n0n1 = m0m1k where k ∈ K, hence m−1

0 n0 = m1kn
−1
1 = k1 ∈ K. It follows
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that n0 = m0k1 and n1 = k−1
1 m1k and then n0K = m0K and n1K = m1K. To

see that f is a homomorphism we let n = n0n1 and m = m0m1 from N . Then,

f(nK ·mK) = f(n0n1m0m1K)

= f(n0n1m0n
−1
1 · n1m1K)

= (n0n1m0n
−1
1 K,n1m1K)

= (n0K,n1K) · (m0K,m1K)

= f(nK) · f(mK).

Next we define

g : N0/K oN1/K → N/K by (n0K,n1K) 7→ n0n1K.

This is obviously a well defined homomorphism and inverse to f . Finally, we remark
that N1/K ∼= N/N0. Indeed, let

h : N1/K → N/N0 such that n1K 7→ n1N0.

This is well defined since K ⊆ N0, and a homomorphism. Its inverse is the map

j : N/N0 → N1/K defined by n1n0N0 7→ n1K,

which is well defined since if n1n0N0 = m1m0N0, then n−1
1 m1 ∈ N0 ∩ N1 = K,

hence m1 = n1k where k ∈ K and then m1K = n1kK = n1K. That j is a
homomorphism and inverse of h, this is straightforward.

Now we define three crossed modules that will be needed to state and prove the
next theorem. The first one is (C̃1, N1/K, θ̃1) the free crossed modules over N/K
on r1 with codomain restricted to N1/K. This can be also seen as being obtained
from the free crossed module (H1/P1, N1, θ1) associated with P1 = GP(x, r1) (with
codomain restricted to N1) by factoring out elements uri(

kuri)
−1P1 for k ∈ K

in the domain and the whole K in the codomain, and let α1 : H1/P1 → C̃1 and
β1 : N1 → N1/K be the respective quotient maps. From the previous remark,

N1/K ∼= N/N0 and so the free crossed module (C̃1, N1/K, θ̃1) is isomorphic to

(C̃1, N/N0, ϑ̃1) which stands for the free crossed module over N/N0 on r1. An

implication of this is that θ̃1 is injective if and only if ϑ̃1 is. The second crossed
module is (C̃0, N0/K, θ̃0) obtained from the free crossed module over N/K on r0

with codomain restricted to N0/K. Again, this can be seen as being obtained from
the free crossed module (H0/P0, N0, θ0) associated with P0 = GP(x, r0) by factoring
out elements ur0( kur0)−1P0 for k ∈ K in the domain and K in the codomain, and

let α0 : H0/P0 → C̃0 and β0 : N0 → N0/K be the respective quotient maps. The

last crossed module is (C̃,N/K, θ̃) the free crossed module over N/K with base

r1 ∪ r0 and let α : H/P → C̃ and β : N → N/K be the respective quotient map.

Theorem 3.1. If P = GP(x, r1 ∪ r0) is an aspherical presentation of the trivial

group, then ϑ̃1 is an injection.

Proof. From the comment above it suffices to prove that θ̃1 is injective, therefore
we use in our proof the free crossed module (C̃1, N1/K, θ̃1). Since P0 is aspherical,
then there exists an F -homomorphism

a : N0 → H0/P0
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such that ∏
i∈I

uir
εi
0 u
−1
i 7→

∏
i∈I

( uir0)εiP0.

The existence of a comes for free from theorem 3.1 of [11] and the definition shows

that it is an F -map to. The homomorphism a induces ã : N0/K → C̃0 by the rule

(3.1) ã(β0(n0)) = α0(a(n0)),

for if n1n0n
−1
0 ∈ K where n0 =

∏
i∈I uir

εi
0 u
−1
i , then

α0a( n1n0n
−1
0 ) = α0a

(∏
i∈I

n1uir
εi
0 u
−1
i n−1

1

)
·

α0a

(∏
i∈I

uir
εi
0 u
−1
i

)−1

= α0

(∏
i∈I

( n1uir0)εiP0

)
·

α0

(∏
i∈I

( uir0)εiP0

)−1

= 1.

Also ã is an N/K map. Indeed,

ã( β(n)β0(n0)) = ã(β0(nn0n
−1))

= α0(a(nn0n
−1))

= α0( na(n0))

= β(n)α0(a(n0))

= β(n)ã(β0(n0)).

Using (3.1) one can directly check that for every u0 ∈ N0, θ̃0ãβ0(u0) = β0(u0).
For every u ∈ N1, r ∈ r1 and ε = ±1 we define

η(α1(( ur)εP1)) : N0/K → C̃0

by

β0(n0) 7→ β(urεu−1)(ãβ0(n0))(ãβ0(n0))−1.

η(α1(( ur)εP1)) is a derivation. Indeed, for every β0(n0), β0(m0) ∈ N0/K we have

η(α1(( ur)εP1))(β0(n0)β0(m0)) =

β(urεu−1)(ã(β0(n0)β0(m0)))(ã(β0(n0)β0(m0)))−1 =

( β(urεu−1)ã(β0(n0)))( β(urεu−1)ã(β0(m0)))(ã(β0(m0)))−1

(ã(β0(n0)))−1 =
(
β(urεu−1)ã(β0(n0))(ã(β0(n0)))−1

)
β0(n0)

(
β(urεu−1)ã(β0(m0))(ã(β0(m0)))−1

)
=

(η(( ur)εP1)(β0(n0))) β0(n0)(η(( ur)εP1)(β0(m0))).
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Also η(α1(( ur)εP1)) is regular for if β0(n0) ∈ N0/K we see that

(η(α1(( ur)εP1))) ◦ η(α1(( ur)−εP1))(β0(n0)) =

η(α1(( ur)εP1))
(
θ̃0

(
η(( ur)−εP1)(β0(n0))

)
β0(n0)

)
η(α1(( ur)−εP1))(β0(n0))) =

η(α1(( ur)εP1))(β0(ur−εu−1n0ur
εu−1))

( β(ur−εu−1)ã(β0(n0))(ã(β0((n0))−1) =

β(urεu−1)ã(β0(ur−εu−1n0ur
εu−1))

(ãβ0(ur−εu−1n0ur
εu−1)))−1( β(ur−εu−1)ã(β0(n0))

(ã(β0(n0))−1) = β(urεu−1)ã( β(ur−εu−1)β0(n0)))

(ã( β(ur−εu−1)β0(n0)))−1

( β(ur−εu−1)ã(β0(n0))(ã(β0(n0))−1) = 1.

So far we have defined a map η from the generators of C̃1 to D(N0/K, C̃0) and
show that it extends to a homomorphism

η : C̃1 → D(N0/K, C̃0).

For this we need to show that for every β0(n0) ∈ N0/K and α1( urP1), α1( vsP1) ∈
C̃1 we have that η(α1( ur vs)P1)(β0(n0)) = η(α1( uru

−1vs urP1))(β0(n0)). Indeed,
on the one hand we have that

η(α1( ur vs)P1)(β0(n0)) =

(η(α1( urP1)) ◦ η(α1( vsP1)))(β0(n0)) =

η(α1( ur)P1)(ση(α1( vsP1))(β0(n0)))·
(η(α1( vs)P1)(β0(n0))) =

η(α1( ur)P1)
(
β0(vsv−1n0vs

−1v−1)
)
·(

β(vsv−1)ãβ0(n0))(ãβ0((n0)))−1
)

=

β(uru−1·vsv−1)ãβ0((n0))(ãβ0((n0)))−1,

and on the other hand we have

η(α1( uru
−1vs ur)P1)(β0(n0)) =

(η(α1( uru
−1vsP1)) ◦ η(α1( urP1)))(β0(n0)) =

β(uru−1·vsv−1)ã(β0(n0))(ã(β0(n0)))−1,

which shows that

η(α1( ur vs)P1)(β0(n0)) =

η(α1( uru
−1vs urP1))(β0(n0)).

Further we define

ρ : N1/K → Aut(C̃0, N0/K)

by

β1(n1) 7→ (ρ1(β1(n1)), ρ2(β1(n1))),
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where
ρ1(β1(n1)) : C̃0 → C̃0

is defined on generators by

α0( wr0P0) 7→ α0( n1wr0P0),

and similarly

ρ2(β1(n1)) : N0/K → N0/K by β0(n0) 7→ β0(n1n0n
−1
1 ).

It is easy to see that both ρ1(β1(n1)) and ρ2(β1(n1)) are automorphisms that make
the following diagram commutative

C̃0

ρ1(β1(n1))

��

θ̃0 // N0/K

ρ2(β1(n1))

��
C̃0

θ̃0

// N0/K

and that ρ is itself a homomorphism.
Further we check that homomorphisms η and ρ make the following diagram

commutative.

C̃1

η

��

θ̃1 // N1/K

ρ

��
D(N0/K, C̃0)

∆
// Aut(C̃0, N0/K)

Indeed, on the one hand we have that

∆(η(α1( urP1))) = (τη(α1( urP1)), ση(α1( urP1))),

and on the other hand that

ρθ̃1(α1( urP1)) = (ρ1(β1(uru−1)), ρ2(β1(uru−1))),

and see that

τη(α1( urP1))(α0( wr0P0))

= η(α1( urP1))(β0(wr0w
−1)) · (α0( wr0P0))

= α0( uru
−1wr0P0) · (α0( wr0P0))−1 · α0( wr0P0)

= α0( uru
−1wr0P0)

= ρ1(β1(uru−1))(α0( wr0P0)),

and similarly that

ση(α1( urP1))(β0(wr0w
−1))

= ρ2(β1(uru−1))(β0(wr0w
−1)),

showing that ∆η = ρθ1.
So far we have proved that there exists the semidirect product (C̃0, N0/K, θ̃0)o〈η,ρ〉

(C̃1, N1/K, θ̃1). Further we will check that the triple (C̃0 o〈η,ρ〉 C̃1, N/K, g ◦ π) is
a crossed module where g : N0/K o N1/K → N/K is the isomorphism estab-
lished earlier by setting (n0K,n1K) 7→ n0n1K and was the inverse of f : N/K →
N0/K oN1/K which maps β(u) ∈ N/K to (β0(u0), β1(u1)) where u = u0u1 is any
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decomposition of u and so β(u) ∈ N/K is identified with f(β(u)). With this in

mind we define for every β(u) ∈ N/K and (a0, a1) ∈ (C̃0, C̃1)

β(u)(a0, a1) = f(β(u))(a0, a1),

which establishes a left action of N/K on C̃0 o〈η,ρ〉 C̃1. Let check the conditions

for (C̃0 o〈η,ρ〉 C̃1, N/K, g ◦ π) to be a crossed module. First,

(a0, a1)(b0, b1) = π((a0,a1))(b0, b1)(a0, a1)

= (θ̃0(a0),θ̃1(a1))(b0, b1)(a0, a1)

= fg(θ̃0(a0),θ̃1(a1))(b0, b1)(a0, a1)

= g(θ̃0(a0),θ̃1(a1))(b0, b1)(a0, a1)

= (g◦π)((a0,a1))(b0, b1)(a0, a1).

Second, if u ∈ N is decomposed as u0u1 with u0 ∈ N0 and u1 ∈ N1, then

(g ◦ π)
(
β(u)(a0, a1)

)
=

(g ◦ π)
(

(β0(u0),β1(u1))(a0, a1)
)

=

(g ◦ π)

(
β(u)a0

(
η( β1(u1)a1)(β0(u0))

)−1

, β1(u1)a1

)
=

β(u)θ̃0(a0)β(u)−1·

θ̃0

(
ã(β0(u0))

(
β1(u1)θ̃1(a1)β1(u1)−1

ã(β0(u0))
)−1

)
·

β1(u1)θ̃1(a1)β1(u1)−1 =

β(u)θ̃0(a0)θ̃1(a1)β1(u1)−1β0(u0)−1 =

β(u)(g ◦ π)(a0, a1)β(u)−1.

Now we show that there is a morphism ψ from the free crossed module (C̃,N/K, θ̃)

to the crossed module (C̃0 o〈η,ρ〉 C̃1, N/K, g ◦ π). For this we define a map

w : r1 ∪ r0 → C̃0 o〈η,ρ〉 C̃1

such that

w(s) =

{
(α0(r0P0), 1) if s = r0

(1, α1(rP1)) if s = r ∈ r1

Obviously, θ̃(α(sP )) = ((g ◦ π) ◦ w)(s) for every s ∈ r1 ∪ r0, therefore the freeness

of C̃ implies the existence of the desired ψ.
Finally we prove that θ̃1 is injective. Let

∏
i∈I α1( uiriP1)εi ∈ Kerθ̃1 where each

ui is regarded as an element of N1. It follows that
∏
i∈I uir

εi
i u
−1
i ∈ K ⊆ N0 and let∏

j∈J vjr
δj
0 v
−1
j ∈ N0 such that

∏
i∈I uir

εi
i u
−1
i =

∏
j∈J vjr

δj
0 v
−1
j . The asphericity of

P implies that

d =
∏
j∈J

( vjr0P )−δj ·
∏
i∈I

( uiriP )εi = 1



52 ELTON PASKU

in H/P , hence in C̃ we have

1 = α(d) =
∏
j∈J

α(( vjr0P ))−δj ·
∏
i∈I

α(( uiriP ))εi .

Applying ψ on α(d) yields

(1, 1) = ψ(α(d))

=
∏
j∈J

( (f◦β)(vj)(α0(r0P0), 1))−δj ·
∏
i∈I

( (f◦β)(ui)(1, α1(riP1)))εi

=

∏
j∈J

( β(vj)α0(r0P0))−δj , 1

 ·(1,
∏
i∈I

( β1(ui)α1(riP1))εi

)

=

∏
j∈J

( β(vj)α0(r0P0))−δj , 1

 ·(1,
∏
i∈I

α1( uiriP1)εi

)

=

∏
j∈J

( β(vj)α0(r0P0))−δj ,
∏
i∈I

α1( uiriP1)εi

 ,

hence
∏
i∈I α1( uiriP1)εi = 1 proving that θ̃1 is injective. �

References

[1] Bergman, G.M., An Invitation to General Algebra and Universal Constructions, Henry Helson,

1998

[2] Brown, R., Huebschmann, J., Identities among relations, in Low-dimensional Topology, Proc.
Bangor Symp., 1979, Ed. R. Brown and T. L. Thickstun, London Math. Soc. Lecture Notes

Series, Cambridge University Press, 1981

[3] Chiswell, I., M., Collins, D., J., Huebschmann, J., Aspherical Group Presentations, Math. Z.,
178, 1-36, 1981

[4] Cohn, P.M., Universal Algebra, New York : Harper and Row, 1965

[5] Gutierrez, M., Ratcliffe, J.G., On the second homotopy group, Quart. J. Math. Oxford (2)
32(1981), 45-55.

[6] Howie, J., Some remarks on a problem of J. H. C. Whitehead, Topology 22(1983), 475-485.
[7] Howie, J. M., Fundamentals of Semigroup Theory, Clarendon Press Oxford, 1995

[8] Howie, J.M., Isbell, J. R., Epimorphisms and Dominions II, J. Algebra 6, 7-21, (1967)

[9] Ivanov, S., Some Remarks on the Asphericity Whitehead Conjecture, Illinois J., Math., Vol.
43, Nr. 4, 1999

[10] Norrie, K., Actions and Automorphisms of Crossed Modules, Bull. Soc. math. France, 118,
p. 129-146

[11] Papakyriakopoulos, C., D., Attaching 2-dimensional cells to a complex, Ann. of Math. Vol.

78, N. 2 (1963), 205-222

[12] Pride, S.J., Identities among relations of group presentations, in Group Theory from a Geo-
metrical Viewpoint, World Scientific Publishing, Co, Pte, Ltd., 1991

[13] Rosebrock, S., The Whitehead conjecture-an overview, Siberian Electronic Mathematical Re-
ports, Tom 4, cmp. 440-449 (2007)

[14] Stefan, P., On Peiffer transformations, link diagrams and a question of J. H. C. Whitehead,

in Low-dimensional Topology, Proc. Bangor Symp., 1979, Ed. R. Brown and T. L. Thickstun,
London Math. Soc. Lecture Notes Series, Cambridge University Press, 1981

[15] Whitehead, J.H.C., On adding relations to homotopy groups, Ann. of Math. 42 (1941), 409-

428.

(E. Pasku) Tirana university, mathematics department, Tirana, Albania
Email address, E. Pasku: elton.pasku@fshn.edu.al



IFSCOM2021
7th Ifs And Contemporary Mathematics Conference

May, 25-29, 2021, Turkey

ISBN: 978-605-68670-4-0
pp: 53-58

A WAGNER-PRESTON REPRESENTATION THEOREM FOR

CLIFFORD SEMIGROUPS

ELTON PASKU

0000-0003-2496-312X

Abstract. We prove in this paper an analogue of the Wagner-Preston theo-

rem for Clifford semigroups. The role of the symmetric inverse semigroup IX
on a set X is played in our theorem by what we define here as the symmet-
ric Clifford semigroup C (S) on the semilattice of ideals of a semigroup (S, ·),
which consists of all partial bijections of the underlying set S with domain and

codomain an ideal of (S, ·) and that preserve all ideals of (S, ·) which include
in the domain. Our theorem then states that every Clifford semigroup (S, ·)
embeds into its symmetric Clifford semigroup C (S).

1. Introduction and preliminaries

It is shown in [5] that the construction of the symmetric inverse semigroup IX
on a fixed set X is an aspect of a more general construction that can be carried
out in every small monosetting. We will give below a few details on monosettings
in general, and than stop to the monosettings associated with an object X in Set
to see how the symmetric inverse semigroup IX can be constructed in that case.
As it is emphasized in [5], such construction is still possible if Set is replaced by
any well powered category K having finite intersections. The reason we pursue
this path is our intention to prove an analogue of the Wagner-Preston theorem for
Clifford semigroups which would first require the definition of a Clifford semigroup
analogue of the symmetric inverse semigroup on a set X. This definition is made
in this paper following the new conceptual framework of monosettings.

Let K be a category and let X be an object there. The monocontext of X
in K is the pair (M(X), X) where M(X) denotes the subcategory of K of all
monomorphisms between all objects A of K for which a monomorphism α : A→ X
exists. If it happens that M(X) has finite intersections, then (M(X), X) is called
a monosetting.

Given any monosetting (M, X), we can define an inverse semigroup I(M, X) in
the following fashion. Consider parallel pairs of morphisms (α, α′) : A→ X with A
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varying in M. We say that two such pairs (α, α′) and (β, β′) are equivalent if there
is an isomorphism µ ∈M such that β = αµ and β′ = α′µ. A fractional morphism
is the equivalence class of such a pair, with the class of (α, α′) denoted by [α, α′].
We let I(M, X) be the set of all such classes, and endow it with a multiplication
defined by setting

[α, α′][β, β′] = [ακ, β′λ],

where κ and λ arise from taking the intersection of the middle pair, α′ and β in
M: α′ ∩ β = α′κ = βλ. This multiplication turns out to be independent on κ
and λ, and on the representatives (α, α′) and (β, β′). Furthermore I(M, X) is an
inverse monoid. In example 1.4 of [5] it is shown how this construction gives the
symmetric inverse monoid on X when the monocontext of X in Set is made of
all non empty subsets of X with morphisms being precisely the inclusions between
such subsets. In the next section we will modify the monosetting in such a way that,
following the recipe provided in example 1.4 of [5], we obtain an inverse semigroup
with central idempotents, aka a Clifford semigroup. Further, we prove that every
Clifford semigroups embeds into a Clifford semigroup constructed as above, which
is our representation theorem.

Finally, we give below a few detail regarding the structure of Clifford semigroups.
The following is theorem 4.2.1 of [3].

Theorem 1.1. Let S be a semigroup and E the set of its idempotents. Then the
following are equivalent:

(1) S is a Clifford semigroup;
(2) S is a semilattice of groups;
(3) S is a strong semilattice of groups;
(4) S is regular, and the idempotents are central;
(5) S is regular, and DS ∩ (E × E) = 1E

If E is a semilattice, then a strong semilattice of groups is a collection of groups
{He with e ∈ E} together with the group homomorphisms ϕe,e′ : He → He′ for
every e ≥ e′ satisfying the following conditions.

(1) For every e ∈ E, ϕe,e is the identical homomorphism of He

(2) For every e1 ≥ e2 ≥ e3, ϕe2,e3ϕe1,e2 = ϕe1,e3
It turns out that if e ≥ e′ and f ∈ E such that e′ = ef , then ϕe,e′ : He → He′
maps every x ∈ He to xf . In other words we have that ϕe,e′ = ρf | He, where ρf
is the right translation of S by f . We can express the multiplication in Clifford
semigroup S in terms of mappings ϕe,e′ and the multiplication in each group He

in the following way: for every e1, e2 ∈ E and every x1 ∈ He1 and x2 ∈ He2 , we
have: x1x2 = ϕe1,e1e2(x1)ϕe2,e1e2(x2) = (x1e2)(x2e1) where the multiplication of
the right hand side is the multiplication of the group He1e2 . In the particular case
when x ∈ He, y ∈ Hf and e ≤ f , then the product xy equals to ϕe,f (x)y.

2. The representation theorem

Let Sgrp be the category of semigroups and U : Sgrp → Set be the forgetful
functor. For a fixed semigroup S, we consider the subcategory A(U(S)) of Set
with objects all U(I) where I is an ideal of S, and morphisms all bijective maps
α : U(I)→ U(I) such that for every ideal J of S such that J ⊆ I, α(U(J)) = U(J).
We say that α preserves ideals of S that include in I. The letter A of A(U(S)) stands
for automorphism and is chosen to reflect the fact that a morphism of A(U(S))
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with domain the underlying set of some ideal I fixes the semilattice of ideals which
include in I. It is a routine matter to prove that A(U(S)) is a category with finite
intersections. The pair (A(U(S)),U(S)) is called the I-isosetting of U(S) in Set.
Consider now the set of all pairs of parallel morphisms (α, α′) with domain and
codomain some U(I). Two such pairs (α, α′) and (β, β′) with respective domains
U(I) and U(J) are called equivalent if there is a bijection µ : U(J) → U(I) such
that β = αµ and β′ = α′µ. From this it follows directly that U(I) = U(J) and
that µ is a morphism in A(U(S)). We call a fractional morphism the equivalence
class of (α, α′) and denote it by [α, α′]. The set of all such classes is denoted
by I(S). Beside the I-isosetting (A(U(S)),U(S)) defined above, we consider the
monosetting (M(U(S)),U(S)) and the inverse semigroup IU(S) whose elements are
the equivalence classes of pairs (α, α′) of parallel morphisms with domain a subset
D ⊆ U(S) and codomain U(S). There is an injective map Θ : I(S) → IU(S)
which sends [α, α′] to [ια, ια′] where ι embeds the image of α into U(S). We use
this injection to define a multiplication in I(S) in terms of the multiplication in
IU(S). Let [α, α′], [β, β′] be two fractional morphisms in I(S) where the domain
of α is U(I) and that of β is U(J). Let now [ια, ια′] = Θ([α, α′]) and [ηβ, ηβ′] =
Θ([β, β′]). As it is explained in Example 1.4 of [5], [ια, ια′] = [ια(α′)−1, ι] and
similarly [ηβ, ηβ′] = [ηβ(β′)−1, η]. The product [ια, ια′] ◦ [ηβ, ηβ′] is the class
[ια(α′)−1κ, ηλ] where κ = β(β′)−1|C : C → U(I) is the restriction of β(β′)−1 on
C = (β(β′)−1)−1(U(I) ∩ U(J)), and λ : C ⊆ U(J) is the inclusion. Since the
preimage under Θ of [ια(α′)−1, ι] is [α(α′)−1, idU(I)] and similarly the preimage of

[ηβ(β′)−1, η] is [β(β′)−1, idU(J)], we can now define the product in I(S) by setting

[α, α′] ◦ [β, β′] = [α(α′)−1κ, idU(I)∩U(J)].

Summarizing, we have defined a semigroup (I(S), ◦) where the elements of I(S) are
classes [α, idU(I)] where U(I) is the underlying set of an ideal I of S, α : U(I)→ U(I)
is an ideal preserving bijection, and the multiplication of two such classes [α, idU(I)]
and [β, idU(J)] is given by

[α, idU(I)] ◦ [β, idU(J)] = [ακ, idU(I)∩U(J)],

where κ is the restriction of β in β−1(U(I) ∩ U(J)) = U(I) ∩ U(J) = U(I ∩ J). We
can think of the composition ακ as the composition αβ restricted in U(I ∩J). It is
more suitable for our purpose to give the whole thing a more semigroup theoretic
flavor. Before we do so, we give the following.

Definition 2.1. Let (S, ·) be an ordinary semigroup. We denote by C (S) the set
of all partial bijections α of the underlying set S such that:

(i) dom(α) = im(α) = I where I is the underlying set of an ideal of S;
(ii) If J ⊆ I is the underlying set of an ideal of S, then α(J) = J . We say that

α preserves the ideals J of S which include in I.

Remark 2.2. The set C (S) can never be empty because for any ideal I, the identity
map on I satisfies property (ii) of the definition.

We will make C (S) into a Clifford semigroup in the following way. Let α : I → I
and β : J → J be two elements of C (S) and let K = I ∩ J which is again an ideal
of S. Define now α ◦ β : K → K such that (α ◦ β)(x) = α(β(x)) for all x ∈ K. The
composition αβ is a bijection which preserves the ideals of S that are contained in
K, since both α and β do so. This shows that α ◦ β ∈ C (S).
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Theorem 2.3. (C (S), ◦) is a Clifford semigroup.

Proof. It is obvious that ◦ is associative. On the other hand, (C (S), ◦) is regular
for if α : I → I is an element of C (S), its inverse map α−1 : I → I is from definition
2.1 again in C (S). We remark now that an idempotent ε ∈ C (S) is nothing but
the identity map on some ordered ideal I of S since for every x ∈ I, (εε)(x) = ε(x)
implies that

ε(x) = (ε−1(εε))(x) = (ε−1ε)(x) = x.

Now we prove that idempotents are central. So let ε : J → J be any idempotent
and α : I → I any element of C (S). Write K = I ∩ J , and then from the definition
of ◦ we have that ε ◦ α and α ◦ ε are both in C (S) with domain K. We prove that
they in fact coincide. Indeed, for every x ∈ K we have

(ε ◦ α)(x) = (εα)(x) = α(x),

and
(α ◦ ε)(x) = α(ε(x)) = α(x),

proving the equality ε ◦ α = α ◦ ε. �

Definition 2.4. For every semigroup (S, ·) we call (C (S), ◦) the symmetric Clifford
semigroup on the semilattice of ideals of (S, ·).

Now we return to (I(S), ◦) to see how it is related with (C (S), ◦).

Proposition 1. The two semigroups (I(S), ◦) and (C (S), ◦) are isomorphic. In
particular, (I(S), ◦) is a Clifford semigroup.

Proof. Define Ω : C (S)→ I(S) by sending each ideal preserving bijection α : I → I
to [α, idU(I)]. This map is clearly bijective, and a homomorphism since for every
two ideal preserving bijections α : I → I and β : J → J we have that

Ω(α ◦ β) = [αβ, idU(I∩J)] = [α, idU(I)] ◦ [β, idU(J)] = Ω(α) ◦ Ω(β),

where α ◦ β is regarded as the usual composition αβ but restricted in I ∩ J . �

Before we prove our main theorem, we prove a preliminary result.

Lemma 2.5. For every Clifford semigroup (S, ·), the intersection of two principal
ideals aS and bS is the principal ideal abS.

Proof. Let aS and bS be two principal ideals of S, and want to prove that aS ∩
bS = abS. First we note that for every a ∈ S, aS = aa−1S. Indeed, since
a = aa−1a ∈ aa−1S, then aS ⊆ aa−1S. Conversely, aa−1S ⊆ aS is trivial. Finally
we want to prove that aS∩bS = abS. It is obvious that on the one hand abS ⊆ aS,
and on the other hand abS = Sab ⊆ Sb = bS, therefore abS ⊆ aS ∩ bS. For the
converse, let ax = by ∈ aS ∩ bS. Since aS = aa−1S, then ax = aa−1x′, and since
bS = Sb, then by = y′b. So our element in the intersection now is aa−1x′ = y′b.
Since idempotents are central, aa−1x = xaa−1, hence x′aa−1 = y′b. Multiplying
both sides with the idempotent aa−1 we have x′aa−1 = y′baa−1. Using the fact
that aa−1 = a−1a is central, we obtain x′aa−1 = y′a−1ab ∈ Sab = abS, which
proves that ax ∈ abS. �

For every Clifford semigroup (S, ·) we can consider the symmetric Clifford semi-
group (C (S), ◦) associated with (S, ·). The following is the analogue of the Vagner
Preston theorem for Clifford semigroups.
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Theorem 2.6. Every Clifford semigroup (S, ·) embeds into (C (S), ◦).

Proof. Define φ : S → C (S) by sending every a ∈ S to φ(a) : aS → aS such that
φ(a)(x) = ax for every x ∈ aS. We prove first that φ is correct which amounts to
saying that φ(a) is indeed in C (S), which in turn means that aS is an ideal, φ(a) is
bijective, and φ(a) preserves all ideals J ⊆ I of S. To prove that φ(a) is injective,
we recall first that aS = a−1S. Let now a−1s and a−1t be two elements of a−1S
such that φ(a)(a−1s) = φ(a)(a−1t). Hence, aa−1s = aa−1s, and after multiplying
on the left by a−1, we obtain a−1s = a−1t. Also φ(a) is surjective since for every
ay ∈ aS, φ(a)(a−1ay) = a(a−1ay) = ay. It remains to prove that φ(a) preserves all
ideals J ⊆ I of (S, ·). This is an obvious implication of the weaker statement that
φ(a) preserves all principal ideals bS ⊆ aS. To prove that φ(a)(bS) = bS, we recall
first that bS is a disjoint union of H-classes Hγ where γ is an idempotent such that
γ ≤ α where α = aa−1 is the idempotent of the H-class Ha. Consequently, for
every y ∈ Hγ , we have that ay = ϕα,γ(a)y. Letting E be the semilattice of the
idempotents of S, we can now write

φ(a)(bS) =
⋃

γ∈E∩bS

ϕα,γ(a)Hγ

=
⋃

γ∈E∩bS

Hγ = bS, (since ϕα,γ(a) ∈ Hγ ,)

which proves that φ(a)(bS) = bS. Next we prove that φ is injective and a homo-
morphism. Indeed, if there are a, b ∈ S such that φ(a) = φ(b), then aS = bS and
as a result a−1a = b−1b. Now we can write

a = a(a−1a) = φ(a)(a−1a) = φ(b)(a−1a) = φ(b)(b−1b) = b(b−1b) = b,

which proves the injectivity. To prove that φ is a homomorphism, let a, b ∈ S,
then, on the one hand φ(ab) : abS → abS is the left translation by ab, and on the
other hand φ(a) ◦φ(b) : (aS ∩ bS)→ (aS ∩ bS) is the composition φ(a) ◦φ(b) of the
restrictions of φ(a) and φ(b) on aS ∩ bS which from lemma 2.5 equals abS. This
composition sends every b−1a−1s ∈ abS to

(φ(a) ◦ φ(b))(b−1a−1s) = φ(a)(φ(b)(b−1a−1s))

= φ(a)(bb−1a−1s)

= φ(a)(a−1bb−1s)

= aa−1bb−1s

= abb−1a−1s

= φ(ab)(b−1a−1s),

which proves that φ(ab) = φ(a) ◦ φ(b). �

Remark 2.7. The benefit of considering monosettings to define the symmetric in-
verse monoid on a set X, is that it makes it possible to define the symmetric Clifford
semigroups by restricting in the appropriate subcategory. This restriction shows
also that the symmetric Clifford semigroup C (S) we define is a subsemigroup the
symmetric inverse semigroup IS .
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Abstract. The paper presents a review of the results related to the inter-

connectedness between the two fundamental notions of probability theory and

mathematical statistics, namely, the independence and uncorrelatedness of
random variables. Both classical results and recent researches will be dis-

cussed. Two open problems are formulated.

1. Introduction

Independence as a concept is vital in Probability Theory, Mathematical Statis-
tics, and their different applications. It is commonly known that the condition of
independence or dependence are crucial conditions in the great majority of proba-
bilistic results. Due to a high degree of importance of the independence concept,
various generalizations of independence have been introduced and studied. One of
the earliest and most useful generalizations is uncorrelatedness of random variables.
This paper presents an overview of results related to extensions of the uncorrelat-
edness property to sets of n random variables along with their powers.

To begin with, let us recall the following basic definition.

Definition 1.1. Let (Ω,F ,P) be a probability space. Random eventsA1, A2, . . . , An
are independent if, for every selection 1 ≤ j1 < j2 < · · · < jk ≤ n, the following
equality holds:

(1.1) P (Aj1 ∩Aj2 ∩ · · · ∩Ajk) = P (Aj1) ·P (Aj2) . . .P (Ajk) k = 2, . . . , n.

That is, n random events A1, A2, . . . , An are independent if the 2n−n−1 product
rules hold. If at least on the the equalities fail to be true, random events are said
to be dependent. Despite the fact that this definition is presented in all texts in
probability theory and statistics, the following question is often remains in the
shade: do we need to check all of these equalities or it suffices to verify only some
of them?

Date: May 25, 2021.
Key words and phrases. Independence structure, Levels of independence, Moments, Uncor-

reletedness set .
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The examples for n = 3 events show that it is not possible to decrease the number
of conditions.

First, let us show that there exist 3 random events A,B, and C such that
P (A ∩B ∩ C) = P (A) P (B) P (C) , while P (A ∩B) 6= P (A) P (B) , P (A ∩ C) 6=
P (A) P (C) , and P (B ∩ C) 6= P (B) P (C) .

Example 1.2. Let Ω = {1, 2, 3, 4, 5, 6, 7, 8}, where each outcome has probability
1/8. Consider the random events A = {1, 2, 3, 4}, B = {1, 3, 4, 5}, C = {1, 6, 7, 8},
each of them has probability 1/2. Since A ∩B ∩ C = {1}, it follows that

P (A ∩B ∩ C) = P (A) P (B) P (C) .X

At the same time,

A ∩B = {1, 3, 4} ⇒ P (A ∩B) = 3/8 6= P (A) P (B) = 1/4;
A ∩ C = {1} ⇒ P (A ∩ C) = 1/8 6= P (A) P (C) = 1/4;
B ∩ C = {1} ⇒ P (B ∩ C) = 1/8 6= P (B) P (C) = 1/4.

The following important examples showing that 3 pairwise independent random
events may not be independent are due to G. Bohlmann and S. N. Bernstein. They
can be found, for example in [7]. The history of the problem is presented thoroughly
in [4].

Example 1.3 (Georg Bohlmann, 1908). There exist 3 random events, which are
pairwise independent, but not mutually independent.

Let Ω = {(111), (111), (111), (100), (100), (100), (110), (101)

(010), (010), (010), (001), (001), (001), (011), (000)}

with equal probability 1/16 for all outcomes. Consider
Ai = {all outcomes having 1 at the ith place}, i = 1, 2, 3. Then P (Ai) = 1/2, i =
1, 2, 3 and P (Ai ∩Aj) = 1/4 = P (Ai) P (Aj) , i 6= j.X Therefore, A1, A2, and A3

are pairwise independent. Meanwhile, we have:

P (A1 ∩A2 ∩A3) = 3/16 6=1/8 = P (A1) P (A2) P (A3)

Example 1.4 (S. N. Bernstein, 1928). There exist 3 random events, which are
pairwise independent, but not mutually independent.

Let Ω = {1, 2, 3, 4} with equal probability 1/4 for all outcomes. Consider
A1 = {1, 2}, A2 = {1, 3}, A3 = {1, 4}. Obviously, all events Ai, i = 1, 2, 3 have
probabilities 1/2, their pairwise intersections as well as the intersection of the three
events consist only of outcome {1} and hence these intersections have probabilities
1/4.

Consequently, P (Ai ∩Aj) = 1/4 = P (Ai) P (Aj) , i 6= j.X Therefore, A1, A2,
and A3 are pairwise independent. Meanwhile, we have:

P (A1 ∩A2 ∩A3) =
1

4
6= 1

8
= P (A1) P (A2) P (A3)

Although random events A1, A2, . . . , An for which at least one of equalities (1.1)
is violated are said to be dependent, daily life experience proves that dependence
among events may vary in terms of strength, ranging from mild ‘influence’ to strong
‘cause-effect’ connections. It seems practical, therefore, to distinguish the different
types of independence or dependence, and to introduce appropriate notions regard-
ing partial independence. Some of such notions will be discussed in the consequent
sections.
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2. Levels of independence and the Italian problem

The notion was introduced and examined by Jordan Stoyanov, the author of the
“Counterexamples in Probability”, see [7]. It provides a far-reaching generalization
of the classical examples related to the independence conditions of n random events.

Definition 2.1. Let (Ω,F ,P) be a probability space. Random eventsA1, A2, . . . , An
are independent at level k, 2 ≤ k ≤ n if, for every k-tuple 1 ≤ j1 < j2 < · · · < jk ≤
n, the following equality holds:

P (Aj1 ∩Aj2 ∩ · · · ∩Ajk) = P (Aj1) ·P (Aj2) . . .P (Ajk) .

Otherwise, these random events are said to be dependent at level k.

Clearly random events are independent if and only if they are independent at all
levels 2, 3, . . . , n. Independence at level 2 is just the pairwise independence.

The following observation is crucial for understanding the notion of indepen-
dence:

The independence at one level does not imply the independence at any other
level - either higher or lower.

A detailed proof of this statement can be found, for example, in [8].
J. Stoyanov introduced another important notion related to the independence

properties of a collection of random events.

Definition 2.2. Given a probability space (Ω,F ,P) and a collection of random
events A1, A2, . . . , An. The independence structure of these random events is a
finite sequence (i2, i3, . . . , in) , where 0 ≤ ik ≤

(
n
k

)
is the number of k-tuples among

A1, A2, . . . , An for which the product rule holds.

It is obvious that, for any collection of n random events, its independence struc-
ture can be uniquely determined. Yet, a more challenging problem is the next one,
proposed and eventually solved by J. Stoyanov.

The Italian Problem. Let us have a sequence of integers (i2, i3, . . . , in) with
0 ≤ ik ≤

(
n
k

)
. In this case, does there exist a probability space (Ω,F ,P) and a

collection of n random events A1, A2, . . . , An, such that (i2, i3, . . . , in) is exactly
their independence structure?

J. Stoyanov obtained the affirmative answer to this question in the same paper
[8]. Actually, he proved a more general statement. To formulate his result, we
introduce the following notation. For random events A1, . . . , An denote

Jk := {(j1, . . . , jk) : 1 ≤ j1 < · · · < jk ≤ n

and P (

k⋂
l=1

Ajl) =

k∏
l=1

P (Ajl)}, k = 2, . . . , n.

The sets Jk(k = 2, . . . , n) list those k- tuples for which the multiplication rule
holds. Obviously, ik =| Jk | (k = 2, . . . n). We call the finite sequence (J2, . . . , Jn)
the independence characteristic of the set of random events A1, . . . , An. Evidently,
the independence characteristic provides more detailed information than the inde-
pendence structure.

The following generalization of the Italian problem holds.

Theorem 2.3 ([8]). Let (J2, . . . , Jn), where

Jk ⊆ {(j1, . . . , jk) : 1 ≤ j1 < · · · < jk ≤ n}, k = 2, . . . , n
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be a given finite sequence.
Then there exists a probability space (Ω,F , P ) and a collection of random events

A1, . . . , An ∈ F such that (J2, . . . , Jn) is the independence characteristic of A1, . . . , An.

That is, we may prescribe not only the number of k-tuples for which the multi-
plication rule holds, but also specify in advance k-tuples themselves.

3. Independence, uncorrelatedness and uncorrelatedness sets of
random variables

For the sake of simplicity of presentation we discuss only the case of two random
variables, though all results below can be generalized for n ≥ 2 random variables.

Definition 3.1. Random variables X1 and X2 are independent if

P{X1 ∈ E1 ∩X2 ∈ E2} = P{X1 ∈ E1} ·P{X2 ∈ E2} for all E1, E2 ⊂ R.

Although this definition is presented in all probability and statistic courses, in
applications it is often confused by weaker conditions indicating the weak or no
relationship between the variables.

The most popular condition to be used in place of independence is uncorrelated-
ness of random variables.

Definition 3.2. Random variables X1 and X2 are uncorrelated if

E (X1X2) = E (X1) E (X2) ,

provided that all of the expected values exist.

It is commonly known that independent random variables are uncorrelated. How-
ever, random variables may be uncorrelated without being independent.

Example 3.3. Let Ω = [0, 2π] be a sample space with the probability P(A) =
1
2π length(A), and let X1, X2 be random variables on Ω given by: X1(x) = sinx
and X2(x) = cosx. The expected values of these random variables can be found
easily: E (X1) = E (X2) = 0. Also, E (X1X2) = 0, whence we see that X1 and X2

are uncorrelated. However they cannot be independent because they are connected
with the well-known identity: sin2 x+ cos2 x = 1.

Uncorrelatedness is measured with the help of a correlation coefficient

ρ =
E(X1X2)−E(X1)E(X2)

σX1
σX2

taking values from −1 to 1 with ρ = 0 if and only if random variables are uncorre-
lated, while ρ = ±1 indicates a linear dependence between X1 and X2.

Notice that not only ρ = 0 does not imply independence, but uncorrelated
random variables can be even functionally dependent (but not linearly).

In the interesting article [2], the connection between the condition of indepen-
dence and the lack of correlation is investigated from the historical perspective.

The aim of this paper is to discuss the uncorrelatedness of positive integer powers
of random variables.

Regardless of the fact that many different approaches on measures of indepen-
dence have been developed, in distinction from the uncorrelatedness, there is no
universal way of measuring whether random variables are “more independent” or
“less independent.” Here, we make one more attempt to compare the degrees of
relationship between random variables based on the next definition.



INDEPENDENCE VERSUS UNCORRELATEDNESS 63

Definition 3.4. Let X1 and X2 be random variables with finite moments of all
orders. The collection of pairs (j, l) ∈ N2 so that Xj

1 and X l
2 are uncorrelated is

called an uncorrelatedness set of X1 and X2.

We denote an uncorrelatedness set of X1 and X2 by U(X1, X2). The definition
above means that

(j, l) ∈ U(X1, X2)⇔ E
(
Xj

1X
l
2

)
= E

(
Xj

1

)
E
(
X l

2

)
.

Random variables X1 and X2 are uncorrelated in the usual sense if and only if
(1, 1) ∈ U(X1, X2).

Uncorrelatedness sets give us a partial order of “independencies”: we may think
that the wider an uncorrelatedness set is, the more independent random variables
are. However, sometimes we cannot compare degrees of independence for different
random variables with this approach. Obviously, for independent random variables
U = N2.

Remark 3.5. Note that U(X1, X2) = N2 does not imply the independence of X1

and X2, as it was proved in [5]

Which sets in N2 can be uncorrelatedness sets?

Theorem 3.6. ([6]) Let a subset U of N2 be given. There exist random variables
X1 and X2 such that U is their uncorrelatedness set.

In other words, for an arbitrary subset U of N2, there exist random variables X1

and X2 such that

E(Xj
1X

l
2) = E(Xj

1)E(X l
2) for all (j, l) ∈ U,

while
E(Xj

1X
l
2) 6= E(Xj

1)E(X l
2) for all (j, l) /∈ U.

4. Uncorrelatedness sets for random variables with given
distributions

Despite the general result on an arbitrary uncorrelatedness set, the statement
cannot be true for for random variables with predetermined distributions.

For example, two binary random variables are independent if and only if they
are uncorrelated. In other words, for such random variables U(X1, X2) 3 (1, 1) ⇔
U(X1, X2) = N2.

Even more generally, if X1 and X2 are discrete random variables taking two
values, then the uncorrelatedness implies independence, that is, again U(X1, X2) 3
(1, 1)⇔ U(X1, X2) = N2.

As it turns out, we obtain the challenging problem of describing possible uncor-
relatedness sets for random variables with given distributions.

First, consider some simple results in this directions.

Example 4.1 (D. Yıldırım). If random variables X1 and X2 are such that X1 ∈
{a, b}, X2 ∈ {c, d}, a < b, c < d, then:

• If for both random variables the sets of values are not symmetric, then either
U(X1, X2) = N2 (and random variables are independent) or U(X1, X2) = ∅.

• If just one set of values is symmetric, say, X1 ∈ {−a, a}, then either
U(X1, X2) = N2 (and random variables are independent) or U(X1, X2) =
2N× N.
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• If both of them sets of values are symmetric, then either U(X1, X2) = N2

(and random variables are independent) or U(X1, X2) = 2N× 2N.

The next problems on the uncorrelatedness sets turn out to be very challenging:

• Describe all possible uncorrelatedness sets of discrete random variables tak-
ing three values: X1 ∈ {a1, b1, c1}, X2 ∈ {a2, b2, c2}.
• Describe all possible uncorrelatedness sets of two normal random variables:

variables taking three values: X1 ∼ N (a1, σ1}, X2 ∼ N (a2, σ2).

Both problems are still open, only some special cases have been considered. In the
proceeding section, we consider partail solution to the first one.

5. Uncorrelatedness sets for random variables taking 3 values

The problem was investigated in the paper [9]. We consider random variables X
and Y uniformly distributed on the set {a, b, c}, 0 < a < b < c.

Theorem 5.1 ([9]). The following possibilities exist for U(X,Y ):

• U(X,Y ) = ∅;
• U(X,Y ) = (j0, l0) any given (j0, l0) ∈ N2;
• U(X,Y ) = {(j1, l1), (j2, l2)}, where j1 6= j2 and l1 6= l2.
• If (j1, l1), (j2, l2) ∈ U(X,Y ) and j1 = j2, then {j1}×N ∈ U(X,Y ). Likewise

for l1 = l2. That is, two points on the same vertical/horizontal line cannot
form an uncorrelatedness set. Meanwhile any vertical/horizontal line can
be an uncorrelatedness set.

• The line j = l may be an uncorrelatedness set.

Corollary 5.2. For random variables taking 3 values uncorrelatedness does not
imply independence.

Theorem 5.3 ([9]). There exist random variables X and Y uniformly distributed
on 3 values with uncorrelatedness set of any given size n ∈ N0.

Namely, if {a, b, c} = {α, αβ, αβ2}, then every straight line j + l = n is an
uncorrelatedness set (of size n− 1).

6. A scale of degrees of independence

Uncorrelatedness sets may be used to construct not only partial but also linear
order for the degrees of independence. Ona of the approaches uses the definition of
k-independence given in [1, 5].

Definition 6.1. . Let k ≥ 2 be a positive integer. We say that random variables
X1 and X2 are k-uncorrelated if

E(Xj
1X

l
2) = E(Xj

1)E(X l
2) for {(j, l) ∈ N2 : j + l ≤ k}.

Obviously, 2-uncorrelatedness coincides with uncorrelatedness in the usual sense,
and independent random variables are k-uncorrelated for all k = 2, 3, . . . As we
have already mentioned, k-uncorrelatedness for all k = 2, 3, . . . does not imply
independence.

In terms of uncorrelatedness sets, we may say that X1 and X2 are k-uncorrelated
if and only if ∆k ⊂ U(X1, X2), where ∆k is the triangle j + l ≤ k.
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Clearly, (k + 1)-uncorrelated random variables are k-uncorrelated. It is proved
that converse is not true, that is (k + 1)-uncorrelatedness is a strictly stronger
condition than k-uncorrelatedness.

As a result, we obtain the following scale of independence: 2-uncorrelatedness
(uncorrelatedness), 3-uncorrelatedness, 4-uncorrelatedness, ... , k-uncorrelatedness
for all k = 2, 3, . . . , convolutional independence and, finally, independence.

2-uncorr 3-uncorr . . . . . . k-uncorr for all k convolutional indep independence

Figure 1

7. Conclusions

Since probabilistic methods play a profound role in modern theoretical and ap-
plied research, there is no doubt that the summary of results on the underlying
fundamental concepts of probability theory is beneficial for the purpose of pro-
viding the educators and researches with with an up-to-date background to the
subject.
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Abstract. In this paper, we establish some sufficient conditions to guarantee

the existence of non-global solutions to the model for any η(0) and also derive
the upper bounds for the blow-up time and a criterion for blow-up.

1. Introduction

In this paper, we study the following parabolic problem

(1.1)

 ut = ∆u+ f(u), x ∈ Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, x ∈ ∂Ω, t > 0,

where Ω ∈ RN is a bounded domain with a smooth boundary ∂Ω and the source
term is of the form

f(x, u) = βup(x) or f(u) = β

∫
Ω

uq(y) (y, t) dy,

and β > 1 is a parametr. We impose the following conditions on the variable sources
functions p, q : Ω→ (1,+∞) such that

(1.2) 1 < p− < p (x) < p+ < +∞ a.e. x ∈ Ω,

and

(1.3) 1 < q− < q (x) < q+ < +∞ a.e. x ∈ Ω.

Equation (1.1) describes the diffusion of concentration of some Newtonian fluids
through porous medium or the density of some biological species in many physical
phenomena and biological species theories (see [5, 8]).

Under certain conditions on the initial data and certain ranges of exponents,
the existence, uniqueness, blow up and other qualitative properties of solutions for
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parabolic equations with constant and variable nonlinearity have been studied by
many authors (see [1, 2, 4, 6, 7, 9, 11, 12, 14] and references therein).

In [13], the author studied the blow up in finite time with initial data which is
sufficiently large for positive solutions of parabolic and hyperbolic problems with
reaction terms of local, nonlocal type involving a variable exponent for following
problem:

(1.4)

 ut = ∆u+ f(u), (x, t) ∈ Ω× [0, T ) ,
u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ) ,

where the source term is of the form

f(x, u) = a (x)up(x) or f(u) = a (x)

∫
Ω

uq(y) (y, t) dy,

and functions p, q : Ω→ (1,+∞) and the continuous function a : Ω→ R :

(1.5) 1 < p− ≤ p (x) ≤ p+ < +∞,

(1.6) 1 < q− ≤ q (x) ≤ q+ < +∞,

(1.7) 0 < ca ≤ a (x) ≤ Ca < +∞.

The author stated the following Theorem and proved the existence of initial data
such that the corresponding solutions blow up at a finite time.

Theorem 1.1. (Theorem 1.1 in [13]). Let Ω ∈ RN be a bounded smooth domain
and let u be a positive solution of equation (1.4), with p, q and a satisfying conditions
(1.5)− (1.7). Then, for a sufficiently large initial datum u0 (x), there exists a finite
time Tf > 0 such that

sup
0≤t≤Tf

‖u (., t)‖∞ = +∞.

In this paper we study the blow up problem for positive solutions of parabolic
problems with reaction terms of local and nonlocal type involving a variable sources.
Based on a modified differential inequality technique, we establish some sufficient
conditions to guarantee the existence of non-global solutions to the model and also
derive the upper bounds for the blow-up time for any initial data of the problem
(1.1).

We define the function

(1.8) η (t) =

∫
Ω

uϕ1dx,

where ϕ1(x) > 0 in Ω and λ1 > 0, respectively, the first eigenfunction and the
corresponding (smallest) eigenvalue of the problem

(1.9) ∆ϕ+ λϕ = 0, x ∈ Ω, ϕ|∂Ω = 0,

and ∫
Ω

ϕ1dx = 1.

Definition 1.2. We say that the solution u (x, t) blows up in a finite time if there
exists an instant Tf < +∞ such that

‖u(., t)‖∞ →∞ as t→ Tf .
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It is easy to see that the finite time blow-up happens if, say, there exists a
moment Tf < +∞ such that η (Tf ) = +∞. Indeed:

η (t) =

∫
Ω

uϕ1dx ≤ ‖u(., t)‖∞
∫

Ω

ϕ1dx = ‖u(., t)‖∞ →∞ as t→ Tf .

This observation allows us to characterize blow-up of the solution u (x, t) in terms
of the function η (t).

2. Main Results and Proofs

Next we will use Kaplan’s method (see [10]) to investigate the upper bound for
blow-up time of blow-up solution to problem (1.1).

Our main results are the following theorems:

Theorem 2.1. Let Ω be a bounded smooth domain in RN and let u be a positive
solution of problem (1.1), and function p satisfying condition (1.2) and

f(x, u) = βup(x).

If

0 < λ1 <
ηp

−
(0)

1 + ηp− (0)
,

and

β > max


(

1

(1− λ1) ηp− (0)− λ1

) p+−p−

p−

, 1

 ,

then the problem (1.1) has no global solutions in finite time Tf > 0 for any η (0).
We have ∫ +∞

η(0)

ds

(1− λ1) sp− − λ1 − β
− p−

p+−p−

≥ Tf ,

where

η (0) =

∫
Ω

u0ϕ1dx.

Theorem 2.2. Let Ω be a bounded smooth domain in RN and let u be a positive
solution of problem (1.1), and function q satisfying condition (1.3) and

f(u) = β

∫
Ω

uq(y) (y, t) dy.

If

0 < λ1 <
ηq

−
(0)

‖ϕ1‖∞
(
1 + ηq− (0)

) ,
and

β > max


(

1

(1− λ1 ‖ϕ1‖∞) ηq− (0)− λ1 ‖ϕ1‖∞

) q+−q−

q−

, 1

 ,
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then the problem (1.1) has no global solutions in finite time Tf > 0 for any initial
data u0. We have∫ +∞

η(0)

‖ϕ1‖∞ dξ

(1− λ1 ‖ϕ1‖∞) ξq− − λ1 ‖ϕ1‖∞ − β
− q−

q+−q−

≥ Tf .

We consider the problem (1.1) but now ask that p satisfying condition 0 < p− ≤
p+ ≤ 1. In this case, we show that the solution remains bounded for all time when
a restriction is imposed on the constant β.

Theorem 2.3. Let Ω be a bounded smooth domain in RN and let u be a positive
solution of problem (1.1) and

f(x, u) = βup(x).

If function p satisfying conditions 0 < p− ≤ p+ ≤ 1 and 0 < β ≤ λ1

2 , then u is
bounded for all time.

Proof of Theorem 2.1. Taking the scalar product in L2(Ω) with ϕ1 of both
parts of the equation (1.1) and integrating the resulting expression in t, we obtain
the equality

(2.1) (u, ϕ1)− b0 = −λ1

∫ t

0

η (s) ds+ β

∫ t

0

(
up(x), ϕ1

)
ds,

where

b0 = (u0, ϕ1) > 0.

Let remind the following elementary inequality (see [3]):

(2.2) aθl − bθm ≤ a
(a
b

) l
m−l

,∀θ > 0,

where a, b > 0 and 0 < l < m. By using (1.2) and (2.2) , since β > 1 we derive

(2.3) up
−
− βup(x) ≤

(
1

β

) p−

p(x)−p−

≤
(

1

β

) p−

p+−p−

,∀x ∈ Ω,

and so we have

(2.4) βup(x)ϕ1 ≥ up
−
ϕ1 − β

− p−

p+−p− ϕ1.

By (2.1) and (2.4), we get

(u, ϕ1)− b0

≥
∫ t

0

(
up

−
, ϕ1

)
ds− λ1

∫ t

0

η (s) ds−
∫ t

0

∫
Ω

β
− p−

p+−p− ϕ1dxds.(2.5)

Furthermore, taking into account the fact that p− > 1, by using Hölder’s inequality,
in (1.8), we obtain

η (t) =

∫
Ω

uϕ
1

p−

1 ϕ
1− 1

p−

1 dx ≤
(∫

Ω

up
−
ϕ1dx

) 1

p−
(∫

Ω

ϕ1dx

) p−−1

p−

=

(∫
Ω

up
−
ϕ1dx

) 1

p−

.(2.6)



70 E. AKKOYUNLU AND R. AYAZOGLU (MASHIYEV)

By (2.1), (2.5) and (2.6), we can write

(2.7) η (t)− b0 ≥
∫ t

0

(
ηp

−
(s)− β−

p−

p+−p−

)
ds− λ1

∫ t

0

η (s) ds.

From (2.7), we obtain

(2.8) η′ (t) ≥ ηp
−

(t)− λ1η (t)− β−
p−

p+−p− , t > 0.

Since

η (t) ≤ max
{
ηp

−
(t) , 1

}
,

from (2.8), we get

(2.9) η′ (t) ≥ (1− λ1) ηp
−

(t)− λ1 − β
− p−

p+−p− ≡ f (η (t)) , t > 0.

Obviously, since p− > 1 and

β > max


(

1

(1− λ1) ηp− (0)− λ1

) p+−p−

p−

, 1

 ,

and

λ1 < min

{
ηp

−
(0)

1 + ηp− (0)
, 1

}
=

ηp
−

(0)

1 + ηp− (0)
,

we can get that the function ηp
−

is monotone increasing for all t ≥ 0, then we
can know that the solution of problem (1.1) blows up in finite time. Therefore the
solution of the boundary value problem is unbounded. Moreover, dividing the both
parts of (2.9) by f (s) and integrating, we have

I(η) =

∫ η(t)

η(0)

ds

f (s)
≥ t.

Since the integral I(s) is convergent at s = +∞, this inequality is possible only if
there exists Tf such that lim

t→Tf

η (t) → ∞. Therefore u cannot exist globally. The

proof of Theorem 2.1 is completed. �

Proof of Theorem 2.2. Let us now consider the case

f(u) = β

∫
Ω

uq(y) (y, t) dy.

We obtain in much the same way

η (t)− b0

= −λ1

∫ t

0

η (s) ds+

∫ t

0

∫
Ω

(∫
Ω

βuq(y) (y, s) dy

)
ϕ1 (x) dxds,

where

b0 = (u0, ϕ1) > 0.

Similarly relation (2.3), we have

uq
−
− βuq(y) ≤ β−

q−

q+−q− ,∀y ∈ Ω,
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with β > 1, then

η (t)− b0

≥ −λ1

∫ t

0

η (s) ds+

∫ t

0

∫
Ω

(
uq

−
(y, s)− β−

q−

q+−q−

)
dy

∫
Ω

ϕ1 (x) dxds

≥ −λ1

∫ t

0

η (s) ds+
1

‖ϕ1‖∞

∫ t

0

∫
Ω

(
uq

−
(y, s)− β−

q−

q+−q−

)
ϕ1 (y) dyds

≥ −λ1

∫ t

0

η (s) ds+
1

‖ϕ1‖∞

∫ t

0

(
ηq

−
(s)− β−

q−

q+−q−

)
ds,

since

ηq
−

(t) ≤
∫

Ω

uq
−
ϕ1dy.

Then we have

η (t)− b0 ≥ −λ1

∫ t

0

η (s) ds+
1

‖ϕ1‖∞

∫ t

0

(
ηq

−
(s)− β−

q−

q+−q−

)
ds.

Similarly (2.9), we have

η′ (t) ≥ 1

‖ϕ1‖∞
ηq

−
(t)− λ1η (t)− 1

β
q−

q+−q− ‖ϕ1‖∞

≥
(

1

‖ϕ1‖∞
− λ1

)
ηq

−
(t)− λ1 −

1

β
q−

q+−q− ‖ϕ1‖∞
≡ g (η (t)) , t > 0.

Since q− > 1 and

β > max


(

1

(1− λ1 ‖ϕ1‖∞) ηq− (0)− λ1 ‖ϕ1‖∞

) q+−q−

q−

, 1

 ,

with

0 < λ1 < min

{
ηq

−
(0)

‖ϕ1‖∞
(
1 + ηq− (0)

) , 1

‖ϕ1‖∞

}

=
ηq

−
(0)

‖ϕ1‖∞
(
1 + ηq− (0)

)
we can know that the solution to problem (1.1) blows up in finite time and∫ +∞

η(0)

dξ

g (ξ)
≥ Tf .

The proof of Theorem 2.2 is completed. �

Proof of Theorem 2.3. We define the function

µ (t) =

∫
Ω

u2dx,



72 E. AKKOYUNLU AND R. AYAZOGLU (MASHIYEV)

and compute

µ′ (t)

= 2

∫
Ω

uutdx

= 2

∫
Ω

u
(

∆u+ βup(x)
)
dx = −2

∫
Ω

|∇u|2 dx+ 2β

∫
Ω

up(x)+1dx

≤ −2

∫
Ω

|∇u|2 dx+ 2β

(∫
Ω

up
−+1dx+

∫
Ω

up
++1dx

)
≤ −2 ‖∇u‖22 + 2β

(∫
Ω

up
−+1dx+

∫
Ω

up
++1dx

)
.(2.10)

Let us suppose that u becomes unbounded at some time T . Make use of the
Rayleigh principle

λ1

∫
Ω

υ2dx ≤
∫

Ω

|∇υ|2 dx,

where λ1 is the first positive eigenvalue of the fixed membrane problem (1.9). From
(2.10) and the assumption 0 < p− ≤ p+ ≤ 1, we have

µ′ (t) ≤ 2 (2β − λ1)

∫
Ω

u2dx.

If we restrict β such that β ≤ λ1

2 , where λ1 the first positive eigenvalue of (1.9), we
easily get µ′ (t) ≤ 0.

Moreover it must be noticed that the blow-up time is T (supposes to exist), but
µ′ (t) ≤ 0 holds for every time t, which implies that u is bounded. A contradiction
occurs. We can obtain that there is no time T such that u is unbounded. This is
to say u is bounded for every time t. Thus, Theorem 2.3 is proved. �
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Abstract. Consider a linear mixed model (LMM) and its transformed model

without making any restrictions on the correlation of random effects and any

full rank assumptions. LMMs include both fixed and random effects and supply
helpful tools to account for the variability of model parameters that affect

response variables. This study concerns rank relations of covariance matrices

of predictors under the original LMM and its transformed model. Our aim is
to establish the rank of covariance matrices between the best linear unbiased

predictors (BLUPs) of unknown vectors under considered two LMMs by using

various rank formulas. We also give some results for special cases by applying
the results obtained for general cases.

1. Introduction

Consider a linear mixed model (LMM)

(1.1) M : y = Xβ + Zu + ε

and its transformed model

(1.2) T : Ty = TXβ + TZu + Tε,

where y ∈ Rn×1 is a vector of observable response variables, X ∈ Rn×k, Z ∈ Rn×p,
and T ∈ Rm×n are known matrices of arbitrary rank, β ∈ Rk×1 is a vector of fixed
but unknown parameters, u ∈ Rp×1 is a vector of unobservable random effects, and
ε ∈ Rn×1 is an unobservable vector of random errors. To establish some results on
predictors of all unknown vectors under the modelsM and T , we can consider the
following vector

(1.3) φ = Kβ + Gu + Hε = Kβ +
[
G, H

] [u
ε

]
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for given matrices K ∈ Rs×k, G ∈ Rs×p, and H ∈ Rs×n. We assume the following
general assumptions for considered models:

(1.4) E

[
u
ε

]
= 0 and D

[
u
ε

]
= cov

{[
u
ε

]
,

[
u
ε

]}
=

[
Σ11 Σ12

Σ21 Σ22

]
:= Σ,

where Σ ∈ R(n+p)×(n+p) is a positive semi-definite matrix of arbitrary rank and all
the entries of Σ are known. Let B =

[
Z, In

]
and J =

[
G, H

]
. Then we obtain

(1.5) E(y) = Xβ, D(y) =
[
Z, In

]
Σ
[
Z, In

]′
= BΣB′ := R,

(1.6) E(φ) = Kβ, D(φ) =
[
G, H

]
Σ
[
G, H

]′
= JΣJ′ := S,

(1.7) cov(φ,y) =
[
G, H

]
Σ
[
Z, In

]′
= JΣB′ := C.

Further, we assume thatM is consistent, i.e., y ∈ C
[
X, R

]
holds with probability

1, see, e.g., Rao (1973). The consistency of T is provided with the condition
Ty ∈ C

[
TX, TRT′

]
with probability 1. We note that T is consistent under the

assumption of consistency of M.
Investigating the relationships between two different linear models is one of the

classical research problems in linear regression analysis. In this study, we consider
a LMM and its transformed model. We establish a rank relation between the
best linear unbiased predictors (BLUPs) of unknown vectors under these models
through various rank formulas. We also give some results for different choices of
the matrices in general vector of unknown variables in the models. For studies on
transformation approach to linear models in the literature, see, e.g., Baksalary &
Kala (1981), Dong, Guo, & Tian (2014), Güler (2020), Kala & Pordzik (2009),
Morrell, Pearson & Brant (1997), Shao & Zhang (2015), Tian (2017b), Tian &
Liu (2010), and Tian & Puntanen (2009). For studies on BLUPs and LMMs in
the literature, see, e.g., Brown & Prescott (2006), Demidenko (2004), Güler &
Büyükkaya (2019), Haslett & Puntanen (2011), Haslett, Puntanen & Arendacká
(2015), Jiang (2007), Liu, Rong & Liu (2008), Liu & Wang (2013), Searle (1997),
and Tian (2015). For more results on the Löwner partial ordering of real symmetric
matrices and applications in statistical analysis and on rank of matrices, see, e.g.,
Puntanen, Styan & Isotalo (2011), Tian (2010), Tian (2017a), and Tian & Jiang
(2016).

In the present paper, we use the following formulas for ranks of block matrices
to establish the results. They are collected in the following lemma; see Marsaglia
& Styan (1974).

Lemma 1.1. Let A ∈ Rm×n, B ∈ Rm×k, C ∈ Rl×n, and D ∈ Rl×k. Then,

(1.8) r
[
A, B

]
= r(A) + r(EAB) = r(B) + r(EBA),

(1.9) r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC),

(1.10) r

[
A B
C D

]
= r(A) + r(D−CA+B) if C (B) ⊆ C (A) ,C (C′) ⊆ C (A′).
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We introduce the notation used in the paper. Let Rm×n stand for the set of
all m× n real matrices. A′, r(A), C (A), and A+ denote the transpose, the rank,
the column space, and the Moore–Penrose generalized inverse of A ∈ Rm×n, re-
spectively. Im denotes the identity matrix of order m. PA = AA+, EA = A⊥ =
Im −AA+, FA = In −A+A stand for the orthogonal projectors.

2. BLUPs in LMMs

In this section, we review the predictability conditions of general linear function
of all unknown vectors under the models M and T , and also review the definition
of BLUP. Then we give the fundamental BLUP equations and related properties
under the considered models.

The predictability requirement of vector φ under M is described as holding the
following inclusion

(2.1) C (K′) ⊆ C (X′).

This requirement also corresponds to the estimability of vector Kβ under M; see,
e.g., Alalouf & Styan (1979). For transformed model T , the predictability require-
ment of vector φ is

(2.2) C (K′) ⊆ C (X′T′).

It is obvious that φ is predictable under M if it is predictable under T ; see, Tian
(2017b). Further, note that Xβ is always estimable under M and the condition
for estimability of vector Xβ under two LMMs M and T is holding the equality
r(X) = r(TX).

Let φ predictable under M. If there exists Ly such that

(2.3) D(Ly − φ) = min subject to E(Ly − φ) = 0

holds in the Löwner partial ordering, the linear statistic Ly is defined to be the
BLUP of φ and is denoted by Ly = BLUPM(φ) = BLUPM(Kβ + Gu + Hε),
originated from Goldberger (1962). If G = 0 and H = 0 in φ, Ly corresponds the
best linear unbiased estimator (BLUE) of Kβ, denoted by BLUEM(Kβ), under
M.

To obtain some results of the BLUPs under the modelsM and T , we need some
fundamental facts on BLUPs under LMM. Concerning the matrix equations and
the exact algebraic expressions of the BLUPs of φ, as well as properties of the
BLUPs, we have the following comprehensive result; see Tian (2017b).

Lemma 2.1. (Fundamental BLUP Equation) Let T be as given in (1.2) and let φ
in (1.3) be predictable under T . In this case,

E(Lty − φ) = 0 and cov(Lty − φ) = min

⇔ Lt

[
TX, TRT′(TX)⊥

]
=
[
K, CT′(TX)⊥

]
.

(2.4)

The equation in (2.4), called the fundamental BLUP equation, is consistent and the
general solution Lt of this equation and BLUPT (φ) are given by

(2.5) BLUPT (φ) = LtTy =
([

K, CT′(TX)⊥
]
W+

t T + UtW
⊥
t T
)
y,

where Ut ∈ Rs×m is an arbitrary matrix and Wt =
[
TX, TRT′(TX)⊥

]
. In

particular,
Lt is unique ⇔ r

[
TX, TRT′(TX)⊥

]
= m,

BLUPT (φ) is unique with probability 1 ⇔ T is consistent,
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r
[
TX, TRT′(TX)⊥

]
= r

[
TX, TRT′

]
= r

[
TX, (TX)⊥TRT′

]
,

C
[
TX, TRT′(TX)⊥

]
= C

[
TX, TRT′

]
= C

[
TX, (TX)⊥TRT′

]
.

The dispersion matrices of BLUPT (φ) and φ− BLUPT (φ) are given as

(2.6) D[BLUPT (φ)] =
[
K, CT′(TX)⊥

]
W+

t TRT′
([

K, CT′(TX)⊥
]
W+

t

)′
,

D[φ− BLUPT (φ)]

=
([

K, CT′(TX)⊥
]
W+

t TB− J
)
Σ
([

K, CT′(TX)⊥
]
W+

t TB− J
)′
.

(2.7)

Let φ be predictable underM. By setting T = In in Lemma 2.1, we obtain the
following well-known results on BLUP of φ under M.

(2.8) BLUPM(φ) = Ly =
([

K, CX⊥
] [

X, RX⊥
]+

+ U
[
X, RX⊥

]⊥)
y,

(2.9) D[BLUPM(φ)] =
[
K, CX⊥

]
W+R

([
K, CX⊥

]
W+

)′
,

D[φ− BLUPM(φ)]

=
([

K, CX⊥
]
W+B− J

)
Σ
([

K, CX⊥
]
W+B− J

)′
,

(2.10)

where U ∈ Rs×n is an arbitrary matrix and W =
[
X, RX⊥

]
. In particular,

L is unique ⇔ r
[
X, RX⊥

]
= n,

BLUPM(φ) is unique with probability 1 ⇔M is consistent ,

r
[
X, RX⊥

]
= r

[
X, R

]
= r

[
X, X⊥R

]
,

C
[
X, RX⊥

]
= C

[
X, R

]
= C

[
X, X⊥R

]
.

We also note that the covariance between φ− BLUPM(φ) and φ− BLUPT (φ) is
written as

cov[φ− BLUPM(φ),φ− BLUPT (φ)]

=
([

K, CX⊥
]
W+B− J

)
Σ
([

K, CT′(TX)⊥
]
W+

t TB− J
)′
.

(2.11)

3. Rank of covariance matrices between BLUPs in LMMs

In this section, we give the rank of covariance matrix between BLUPs of φ under
the modelsM and T by using block matrices’ rank formulas and elementary matrix
operations. Also we give some consequences for special cases.

Theorem 3.1. Let consider the modelsM and T in (1.1) and (1.2), respectively.
Assume that the φ in (1.3) is predictable under these models. Denote

(3.1) M =


RT′ R X 0 C′

TRT′ 0 0 TX TC′

X′T′ 0 0 0 K′

0 X′ 0 0 0
CT′ C K 0 S

 .

Then,

(3.2)
r (cov {φ− BLUPM (φ) ,φ− BLUPT (φ)})
= r (M)− r (X)− r (TX)− r

[
X, R

]
− r

[
TX, TRT′

]
.
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Proof. Applying (1.10) to (2.11), we obtain

r(cov[φ− BLUPM(φ),φ− BLUPT (φ)])

= r
(([

K, CX⊥
]
W+B− J

)
ΣΣ+Σ

([
K, CT′(TX)⊥

]
W+

t TB− J
)′)

= r

[
Σ Σ

([
K, CT′(TX)⊥

]
W+

t TB− J
)′([

K, CX⊥
]
W+B− J

)
Σ 0

]
− r(Σ)

= r

([
Σ −ΣJ′

−JΣ 0

]
+

[
ΣB′T′ 0

0
[
K, CX⊥

]] [ 0 W
W′

t 0

]+

×
[
BΣ 0

0
[
K, CT′(TX)⊥

]′])− r(Σ)

(3.3)

where W =
[
X, RX⊥

]
and Wt =

[
TX, TRT′(TX)⊥

]
. We can reapply (1.10)

to last equality in (3.3) since C (TBΣ) = C (TRT′) ⊆ C (Wt), C (BΣ) = C (R) ⊆
C (W), C

([
K, CT′(TX)⊥

]′) ⊆ C (W′
t), and C

([
K, CX⊥

]′) ⊆ C (W′) hold.

Then, by simplifying Lemma 1.1, (3.3) is written as

r


0 −X −RX⊥ BΣ 0

−X′T′ 0 0 0 K′

−(TX)⊥TRT′ 0 0 0 (TX)⊥TC′

ΣB′T′ 0 0 Σ −ΣJ′

0 K CX⊥ −JΣ 0

− r [TX, TRT′(TX)⊥
]

− r
[
X, RX⊥

]
− r(Σ)

= r


−RT′ −X −RX⊥ C′

−X′T′ 0 0 K′

−(TX)⊥TRT′ 0 0 (TX)⊥TC′

CT′ K CX⊥ −S

− r [TX, TRT′
]

− r
[
X, R

]

= r


−RT′ −X −R C′ 0
−X′T′ 0 0 K′ 0
−TRT′ 0 0 TC′ TX

CT′ K C −S 0
0 0 X′ 0 0

− r [TX, TRT′
]
− r

[
X, R

]

− r(TX)− r(X)

= r


RT′ R X 0 C′

TRT′ 0 0 TX TC′

X′T′ 0 0 0 K′

0 X′ 0 0 0
CT′ C K 0 S

− r [TX, TRT′
]
− r

[
X, R

]

− r(TX)− r(X).

(3.4)

The required result is seen from (3.4). �
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Corollary 3.1. Let consider the modelsM and T in (1.1) and (1.2), respectively.
Assume that Kβ is estimable under these models. Then

cov[ BLUEM(Kβ),BLUET (Kβ)]

= r


RT′ R X 0 0

TRT′ 0 0 TX 0
X′T′ 0 0 0 K′

0 X′ 0 0 0
0 0 K 0 0

− r [TX, TRT′
]
− r

[
X, R

]

− r(TX)− r(X).

(3.5)

If Xβ is estimable under the modelsM and T , then
r(cov[BLUEM(Xβ),BLUET (Xβ)])

= r

 RT′ R 0
TRT′ 0 TX

0 X′ 0

− r [TX, TRT′
]
− r

[
X, R

]
.

(3.6)

4. Conclusion

In this study, we consider comparison problems of predictors under a LMM
M and its transformed model T . We present rank relations between BLUPs of
unknown vectors under considered models by using various rank formulas of block
matrices and elementary matrix operations. In order to establish the general results
on the predictors, we consider the general linear function of all unknown vectors.
Besides, results for special cases are also given.
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Abstract. There is a striking similarity between Γ-semigroups on the one

hand, and semigroups on the other one. In this paper we express this sim-

ilarity using the language of the category theory. To this end we consider
two categories. The category Γ-Sgrp of Γ-semigroups and Γ-semigroup mor-

phisms, and the category Γ ↓ Sgrp of semigroups under a given semigroup

(Γ, •), and prove that there are functors Ψ : Γ-Sgrp → Γ ↓ Sgrp and
Ψ′ : Γ ↓ Sgrp→ Γ-Sgrp such that Ψ is a left adjoint of Ψ′.

1. Introduction and Preliminaries

Let S and Γ be two non empty sets. Every map from S×Γ×S to S will be called
a Γ-multiplication in S and is denoted by (·)Γ. The result of this multiplication
for a, b ∈ S and γ ∈ Γ is denoted by aγb. According to Sen and Saha [7], a Γ-
semigroup S is an ordered pair (S, (·)Γ) where S and Γ are non empty sets and (·)Γ

is a Γ-multiplication on S which satisfies the following property

∀(a, b, c, α, β) ∈ S3 × Γ2, (aαb)βc = aα(bβc).

Let (Γ, •) be any semigroup. The category Γ ↓ Sgrp of semigroups under Γ has
objects all pairs (j, T ) with T a semigroup and j : Γ → T a homomorphism of
semigroups. If (j1, T1) and (j2, T2) are two such objects, a morphism h : (j1, T1)→
(j2, T2) is a homomorphism h : T1 → T2 of semigroups such that hj1 = j2.

Recall that the category of Γ-semigroups Γ-Sgrp has objects all Γ-semigroups
and morphisms all homomorphisms between them. In this paper we will define two
functors Ψ : Γ-Sgrp → Γ ↓ Sgrp dhe Ψ′ : Γ ↓ Sgrp → Γ-Sgrp for which we will
prove that are adjoints of each other.

2. The enveloping semigroup Λ(S, γ0)

For any nonempty set Γ we let Γ+ be the free semigroup on Γ. Every congruence
on Γ+ which has the set Γ as a cross-section defines a multiplication • on Γ in
such a way that (Γ, •) becomes a semigroup. We mention here by passing that
such congruences really exist. For example the congruence generated by all pairs

Date: May 25, 2021.
Key words and phrases. Semigroup, Γ-semigroup, Category, Adjoint Functor.
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((α, β), α) where α and β vary in Γ. In this case a congruence class contains all
words beginning with the same letter α.

Let now σ be a congruence having Γ as a cross-section. Define in Γ the multi-
plication

α • β = γ

where γ ∈ Γ is (the unique letter) such that γσ = αβ
σ
. Define now the onto map

ν : Γ+ → Γ

such that

u 7→ γ

with γσ = uσ. This map is a homomorphis since if u, v ∈ Γ+ are such that ασ = uσ

and β
σ

= vσ, then

ν(uv) = ν(αβ) (since αβ
σ

= uvσ)

= γ (if γσ = αβ
σ
)

= α • β (from the definition of •)
= ν(u) • ν(v).

It follows that (Γ, •) is a semigroup.
Let (S,Γ) be a Γ-semigroup and γ0 ∈ Γ a fixed element. As we explained above,

there is an associative multiplication • in Γ and so the pair (S, •) is a semigroup. In
a similar way with [5] we can define a semigroup Λ(S, γ0) out of (S,Γ). We quotient
the free semigroup (S ∪ Γ)+ on S ∪ Γ by the congruence generated by all pairs

((x, α, y), xαy),

((x, y), xγ0y)

and

((α, β), α • β).

The result will be a semigroup which is denoted here by Λ(S, γ0). We prove the
following which is the analogue of Lemma 2.4 of [5].

Lemma 2.1. Every element of Λ(S, γ0) is represented by an irreducible word which
has one of the following five forms (γ, x, γ′), (γ, x), (x, γ), γ or x with x ∈ S and
γ, γ′ ∈ Γ.

Proof. To prove the lemma, we must prove first that the reduction system arsing
from the presentation of Λ(S, γ0) is Noetherian and confluent, which would imply
that any element of Σγ0

is given by an irreducible word from (S ∪ Γ)+. Secondly,
we must prove that the irreducible words have the required forms.
If a word w of (S ∪ Γ)+ has the form (u, γ1, γ2, v) with γ1, γ2 ∈ Γ, and u, v are
words from (S ∪ Γ)+, then w reduces to w′ = (u, γ1 • γ2, v). If for some x, y ∈ S
and γ ∈ Γ, the word w contains a subword of the form (x, γ, y), which means that
w = (u, x, γ, y, v) where u, v are words from (S ∪ Γ)+ or are empty words, then it
reduces to w′ = (u, xγy, v). Lastly, if the word w contains two adjacent letters from
S, which means that w = (u, x, y, v) where u and v are as before and x, y ∈ S, then
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it reduces to w′ = (u, xγ0y, v). In this way we have obtained a reduction system
consisting in three reductions:

(u, γ1, γ2, v) → (u, γ1 • γ2, v)
(u, x, γ, y, v) → (u, xγy, v)
(u, x, y, v) → (u, xγ0y, v)

which is obviously Noetherian since it is length reducing. To prove that it is con-
fluent, from the Newman lemma, it is sufficient to prove that it is locally confluent.
As this system does not contain inclusion ambiguities, it is enough to check all
overlapping pairs. There are only five such pairs:
1- (x, y, γ, z)→ (xγ0y, γ, z) and (x, y, γ, z)→ (x, yγz). Both resolve to (xγ0yγz).
2- (x, γ, y, z)→ (x, γ, yγ0z) and (x, γ, y, z)→ (xγy, z) which resolve to (xγyγ0z).
3- (x, γ, y, γ′, z) → (x, γ, yγ′z) and (x, γ, y, γ′, z) → (xγy, γ′, z) which resolve to
(xγyγ′z).
4- (x, y, z)→ (xγ0y, z) and (x, y, z)→ (x, yγ0z), which resolve to (xγ0yγ0z).
5- (γ1, γ2, γ3) → (γ1 • γ2, γ3) and (γ1, γ2, γ3) → (γ1, γ2 • γ3) which resolve to
(γ1 • γ2 • γ3).

To conclude the proof we must show that the irreducible word that represents
an element of Σγ0

has the required form. First observe that any word which has
neither a prefix nor a suffix made of letters from Γ, reduces to an element of S
by performing the three type of the above reductions. Otherwise, if the word is
(η, U, η′) where η, η′ are words from the free monoid on Γ and U has neither a prefix
nor a suffix made of letters from Γ, then we reduce η and η′ in a single letter from
Γ by performing reductions of the first type, and then reduce U into a single letter
from S. �

Lemma 2.2. The semigroup (Γ, •) embeds into Λ(S, γ0).

Proof. The map χ : Γ → Λ(S, γ0) defined by γ 7→ µ(γ) where µ : (S ∪ Γ)+ →
Λ(S, γ0) is the canonical epimorphism, is a homomorphism, and injective as well.

�

3. The adjunction

From now and on we will assume that the set Γ which appears in Γ-Sgrp i
equipped with a multiplication • such that (Γ, •) is a semigroup. Along with Γ-Sgrp
we consider the category Γ ↓ Sgrp which we defined in the previous paragraph.
The following lemma gives a recipe to associate each object of Γ ↓ Sgrp a certain
Γ-semigroup. This will be used in the proof of our main theorem.

Lemma 3.1. For every (j, T ) ∈ Γ ↓ Sgrp we can give the semigroup T the structure
of a Γ-semigroup (T,Γ).

Proof. Define the map

· : T × Γ× T → T

such that

(x, γ, y) 7→ xj(γ)y
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where the multiplication on the right hand side is that of T . For every x, y, z ∈ T
and α, β ∈ Γ we see that

xα(yβz) = xj(α)(yj(β)z)

= (xj(α)y)j(β)z

= (xαy)βz,

which shows that the pair (T,Γ) is a Γ-semigroup. �

Theorem 3.2. There is an adjunction between the two categories Γ-Sgrp and
Γ ↓ Sgrp.

Proof. First we define a functor Ψ : Γ-Sgrp→ Γ ↓ Sgrp. On objects, Ψ is defined
by assigning to each Γ-semigroup (S,Γ) the pair (j,Λ(S, γ0)) where Λ(S, γ0) is the
enveloping semigroup of (S,Γ) and j : Γ → Λ(S, γ0) is the monomorphism that
γ 7→ µ(γ). To define Ψ on morphisms, it is enough to show that if (S,Γ) and (S′,Γ)
are two Γ-semigroups, then for every morphism of Γ-semigroups ϕ : S → S′, there is
a unique homomorphism of semigroups φ : Λ(S, γ0)→ Λ(S′, γ0) such that φj1 = j2
which has the additional property that φµ = µ′ϕ. Here µ and µ′ are the canonical
epimorphisms µ : (S ∪ Γ)+ → Λ(S, γ0) and µ : (S′ ∪ Γ)+ → Λ(S′, γ0). Indeed,
let us write by f : (S ∪ Γ)+ → (S′ ∪ Γ)+ the homomorphism of free semigroups
induced by the extension of ϕ on S ∪ Γ which fixes the elements of Γ. We prove
that f induces a homomorphism φ : Λ(S, γ0)→ Λ(S′, γ0), which amounts to saying
that the defining relations of Λ(S, γ0) belong to the kernel of µ′f . Indeed, for the
relations of the first kind ((γ1, γ2), γ1 • γ2) we have that

µ′f(γ1, γ2) = µ′(ϕ(γ1), ϕ(γ2))

= γ1 • γ2

= µ′f(γ1 • γ2).

For the relations of the second kind ((x, γ, y), xγy) we have

µ′f(x, γ, y) = µ′(ϕ(x), γ, ϕ(y))

= ϕ(x)γϕ(y)

= ϕ(xγy)

= µ′f(xγy),

and for those of the third kind ((x, y), x1y) we have that

µ′f(x, y) = µ′(ϕ(x), ϕ(y))

= ϕ(x)1ϕ(y)

= ϕ(x1y)

= µ′f(x1y).

Thus µ′f induces a φ : Λ(S, γ0) → Λ(S′, γ0) with the property that φµ = µ′f .
Since ϕ is the restriction of f on S∪Γ, then we get that φµ = µ′ϕ. The uniqueness
of φ with the given property follows from the fact that any other homomorphism

φ̂ : Λ(S, γ0) → Λ(S′, γ0) which satisfies the equality φ̂µ = µ′ϕ coincides with φ
on the generators of Λ(S, γ0) and as a result coincides with φ. Also φ satisfies the
condition φj = j′ since for every γ ∈ Γ we have that

(φj)(γ) = φ(cls(γ)) = cls(γ) = j′(γ).
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So we have obtained a morphism φ : (j,Λ(S, γ0)) → (j′,Λ(S′, γ0)) in the category
Γ ↓ Sgrp, which is more convenient to write as Ψ(f).

Now we prove the functorial properties of Ψ. It is straightforward that Ψ(id(S,Γ)) =
idΛ(S,γ0). To check the covariance we see that if

ϕ : (S,Γ)→ (S′,Γ) and ϕ′ : (S′,Γ)→ (S′′,Γ)

are morphisms in Γ-Sgrp, then

Ψ(ϕ′ϕ) : Λ(S, γ0)→ Λ(S′′, γ0)

coincides with Ψ(ϕ′) ◦Ψ(ϕ) since both agree on generators. Indeed, if f and f ′ are
morphisms induced by ϕ and ϕ′ respectively, then for every x ∈ S we have that,

Ψ(ϕ′ϕ)(µ(x)) = (µ′′(f ′f))(x)

= (Ψ(ϕ′)µ′)(f(x))

= (Ψ(ϕ′)Ψ(ϕ))(µ(x)).

In a similar way we have that for all γ ∈ Γ,

Ψ(ϕ′ϕ)(µ(γ)) = (Ψ(ϕ′)Ψ(ϕ))(µ(γ)).

Next we define another functor Ψ′ : Γ ↓ Sgrp → Γ-Sgrp on objects by assigning
to each object (j, S) of Γ ↓ Sgrp the Γ-semigroup (S,Γ) of lemma 3.1, and to each
morphism f : (j, S)→ (j′, S′), the map

Ψ′(f) : (S,Γ)→ (S′,Γ)

such that for every x ∈ S,

Ψ′(f)(x) = f(x).

This map is a homomorphism of Γ-semigroups since for every x, y ∈ S and γ ∈ Γ
we have that

Ψ′(f)(xγy) = f(xγy)

= f(x)f(γ)f(y)

= f(x)γf(y)

= Ψ′(f)(x)γΨ′(f)(y).

The functorial properties of Ψ′ are easy to prove and are omitted here.
In the second part of the proof we show that Ψ is a left adjoint of Ψ′. Let

(S,Γ) ∈ Γ-Sgrp and (j,M) ∈ Γ ↓ Sgrp be arbitrary objects. Define

ξ(S,Γ),M : Γ-Sgrp((S,Γ),Ψ′(M))→ Γ ↓ Sgrp(Ψ(S,Γ),M),

such that

h 7→ h∗

where for the two types of generators, x ∈ S and γ ∈ Γ, h∗ is defined by

h∗(x) = h(x) and h∗(γ) = j(γ).

To see that h∗ is a homomorphism, we need to check that it is compatible with the
defining relations of Ψ(S,Γ) = Λ(S, γ0). Indeed, for the relations (x, γ, y) ∼ (xγy)
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we see that

h∗(xγy) = h(xγy)

= h(x)γh(y)

= h(x)j(γ)h(y)

= h∗(x)h∗(γ)h∗(y).

For the relations (x, y) ∼ (xγ0y) we have that

h∗(xy) = h(xγ0y)

= h(x)γ0h(y)

= h(x)j(γ0)h(y)

= h∗(x)h∗(γ0)h∗(y).

For the relations of the last type (α, β) ∼ (α • β) we have

h∗(α, β) = j(α)j(β)

= j(α • β)

= h∗(α • β).

Also we observe that the map ξ(S,Γ),M is a bijection. It is an injection since if
h, g : (S,Γ)→ (M,Γ) are such that h∗ = g∗, then for every x ∈ S, we have

h(x) = h∗(x) = g∗(x) = g(x).

The map is a surjection as well since for every homomorphism of semigroups g :
Λ(S, γ0)→ M such that g(µ(γ)) = j(γ) for every γ ∈ Γ, we can define h : S → M
such that x 7→ g(x). This map is a Γ-homomorphism since for every x, y ∈ S and
γ ∈ Γ we have that

h(xγy) = g(xγy)

= g(x)g(γ)g(y)

= g(x)j(γ)g(y)

= h(x)j(γ)h(y)

= h(x)γh(y).

We prove now that ξ(S,Γ),M is natural in both variables. To prove the naturality
in the first variable, we must prove that for every Γ-homomorphism f : (S,Γ) →
(S′,Γ), the following diagram commutes.

Γ-Sgrp((S,Γ),Ψ′(M))
ξ(S,Γ),M // Γ ↓ Sgrp(Λ(S, γ0),M)

Γ-Sgrp((S′,Γ),Ψ′(M))

Γ-Sgrp(f,Ψ′(M))

OO

ξ(S′,Γ),M

// Γ ↓ Sgrp(Λ(S′, γ0),M)

Γ-Sgrp(Ψ(f),M)

OO

This means that for every h′ : (S′,Γ) → (M,Γ) we have to show that (h′f)∗ =
h′∗Ψ(f). It is sufficient to see that (h′f)∗ and h′∗Ψ(f) agree on generators. This is
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true since for every x ∈ S we have that

(h′f)∗(x) = (h′f)(x) = h′∗(f(x)) = h′∗(Ψ(f)(x)) = (h′∗Ψ(f))(x).

Also for all γ ∈ Γ we have that

(h′f)∗(γ) = j(γ) = h′∗(γ) = h′∗(Ψ(f)(γ)) = (h′∗Ψ(f))(γ).

Finally, we check the naturality in the second variable. Let χ : M → N be a
homomorphism such that χjM = jN where jM : Γ→M and jN : Γ→ N . We have
to prove that the following diagram commutes too

Γ-Sgrp((S,Γ),Ψ′(M))

Γ-Sgrp((S,Γ),Ψ′(χ))

��

ξ(S,Γ),M // Γ ↓ Sgrp(Λ(S, γ0),M)

Γ-Sgrp(Λ(S,γ0),χ)

��
Γ-Sgrp((S,Γ),Ψ′(N))

ξ(S,Γ),N // Γ ↓ Sgrp(Λ(S, γ0), N)

which means that χh∗ = (Ψ′(χ)h)∗. As before, it is enough to prove that both
morphisms agree on the generators of Λ(S, γ0). For every x ∈ S we see that

(Ψ′(χ)h)∗(x) = (Ψ′(χ)h)(x)

= (χh)(x)

= (χh∗)(x).

Also for every γ ∈ Γ we have that

(Ψ′(χ)h)∗(γ) = Ψ′(χ)(h∗(γ))

= Ψ′(χ)(γ)

= γ

= (χh∗)(γ).

This concludes the proof. �
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Abstract. It is well known that any nonempty set Γ can be equipped with

a multiplication • such that (Γ, •) is a group. Related to (Γ, •), we consider
two categories. The first one is the category Γ-Sgrp of Γ-semigroups and

their homomorphisms, and the second one is the category Mon(Γ) of monoids

having the same group of units (Γ, •) and with morphisms those monoid ho-
momorphisms which fix Γ. Then we define a functor Ψ : Γ-Sgrp →Mon(Γ)

which maps each (S,Γ) to its enveloping monoid Ω1(S,Γ), and another functor

Ψ′ : Mon(Γ) → Γ-Sgrp which maps each monoid M to its Γ semigroup of
units (M,Γ), and prove that Ψ is a left adjoint of Ψ′.

1. Introduction and preliminaries

Let S and Γ be two non empty sets. Every map from S×Γ×S to S will be called
a Γ-multiplication in S and is denoted by (·)Γ. The result of this multiplication
for a, b ∈ S and γ ∈ Γ is denoted by aγb. According to Sen and Saha [8], a Γ-
semigroup S is an ordered pair (S, (·)Γ) where S and Γ are non empty sets and (·)Γ

is a Γ-multiplication on S which satisfies the following property

∀(a, b, c, α, β) ∈ S3 × Γ2, (aαb)βc = aα(bβc).

Given a Γ-semigroup S, we have defined in [2] a monoid Ωγ0
(S,Γ) where γ0 is a

fixed element of Γ. The construction is very similar to that of [1] except for the
fact that here we have a unit element. The definition of Ωγ0(S,Γ) is based on a
result from [3] which states that we can always define a multiplication • on any non
empty set Γ in such a way that (Γ, •) becomes a group. Letting the unit element
of (Γ, •) be γ0 we define Ωγ0

(S,Γ) in the following way. We first let (F, ·) be the
free semigroup on S whose elements are finite strings (x1, ..., xn) where each xi ∈ S
and the product · is the concatenation of words. Then we define Ωγ0

(S,Γ) as the
quotient semigroup of the free product F ∗ Γ of two semigroups (F, ·) with (Γ, •)
by the congruence generated from the set of relations

((x, y), xγ0y), ((x, γ, y), xγy), (γ0x, x), (xγ0, x),

Date: May 25, 2021.
Key words and phrases. Semigroup, Γ-semigroup, Category, Adjoint Functor.
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for all x, y ∈ S, γ ∈ Γ and with γ0 ∈ Γ being the unit element of (Γ, •). We can also
regard the group (Γ, •) as given by a presentation with generators the elements of Γ,
and relations arising from the multiplication table of the group. So a presentation
of Ωγ0

(S,Γ) has now as a generating set S∪Γ, and relations those mentioned above
together with those arising from the multiplication table of (Γ, •). It is obvious
that Ωγ0

(S,Γ) becomes thus a monoid with unit element the class of γ0 modulo the
defining relations. We recall from [2] the following useful results.

Lemma 1.1. Every element of Ωγ0(S,Γ) can be represented by an irreducible word
which has the form (α, x, β), (α, x), (x, β), γ or x where x ∈ S and α, β ∈ Γ \ {γ0}
and γ ∈ Γ.

The map

ι : S → Ωγ0(S,Γ) such that x 7→ cls(x)

where cls(x) is the class of x ∈ F modulo the defining relations of Ωγ0
(S,Γ) is

proved to be an injection and this allows us to regard S as a subset of Ωγ0
(S,Γ).

There is also a monomorphism of monoids

j : Γ→ Ωγ0
(S,Γ)

defined by setting

γ 7→ cls(γ).

This allows us to regard the group (Γ, •) as a submonoid of Ωγ0(S,Γ) via j.
If S is any Γ-semigroup, and (Γ, •) is a group on Γ with unit 1 ∈ Γ, then, as we

exhibited above, we have defined Ω1(S,Γ) which we call the enveloping monoid of
(S,Γ) relative to the group (Γ, •). The following is also proved in [2].

Lemma 1.2. The group of units of Ω1(S,Γ) is exactly the group (Γ, •) regarded as
a subgroup of Ω1(S,Γ) via j.

We have observed in [2] that the reverse of this process can be performed to any
given monoid M with group of units Γ to define a Γ-semigroup (M,Γ) where the
Γ-multiplication is given by

· : M × Γ×M →M such that (x, γ, y) 7→ xγy,

and the multiplication on the right hand side is the one defined in M . We have
called (M,Γ) the Γ-semigroup of units of M . We note here by passing that if a
monoid M ∈Mon(Γ) is von Neumann regular, then its Γ-semigroup of units (M,Γ)
is a regular Γ-semigroup, and conversely. Indeed, for every x ∈ M , there is some
x′ ∈M such that x = xx′x. This can be rewritten as x = x ·1 ·x′ ·1 ·x which means
that x′ is a (1, 1)-inverse of x in (M,Γ). For the converse, assume that for every
x ∈ M , there are α, β ∈ Γ and x′ ∈ M such that x = xαx′βx. This means that in
M the element αx′β is an inverse of x, hence x is regular and M is von Neumman
regular.

The main result of [2] states that (S,Γ) embeds into the Γ-semigroup of units
(Ω1(S,Γ),Γ) of the enveloping monoid Ω1(S,Γ) of (S,Γ). This result says roughly
that every Γ-semigroup arises from a certain monoid and its group of units giv-
ing thus hope that one can entirely describe Γ-semigroups by means of monoids
and groups. Finally, we mention briefly that the pair of Γ-semigroups, (S,Γ) and
(Ω1(S,Γ),Γ) are simultaneously regular. Indeed, if (S,Γ) is regular, then from
Proposition 2.3 of [1] Ω1(S,Γ) is von Neumann regular, and then from the above
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we derive that its Γ-semigroup of units (Ω1(S,Γ),Γ) is a regular Γ-semigroup. Con-
versely, if (Ω1(S,Γ),Γ) is a regular Γ-semigroup, then every x ∈ S, has an inverse
which has to be of one of the following five forms: x′ ∈ S, αx′β ∈ ΓSΓ, αx′ ∈ ΓS,
x′β ∈ SΓ, α ∈ Γ. In either case it follows that x has an inverse in (S,Γ). We give
the proof for convenience in the last case. In this case x = xαx, hence x = xαxαx
and this means that x is an (α, α)-inverse of x.

2. The adjunction

This paper is a continuation of [2] and aims to express in a mathematical way
the similarity between Γ-semigroups and monoids. This is done by considering two
categories. The first one is the category of Γ-semigroups, and the second one is the
subcategory of the category of monoids whose objects are all those monoids having
the same group of units Γ, and whose morphisms are those monoid homomorphisms
that fix Γ. We then define two functors from one category to the other, and prove
that they form an adjoint pair.

In what follows (Γ, •) is a group with unit element 1.

Definition 2.1. We let Γ-Sgrp be the category of Γ-semigroups and their ho-
momorphisms, and Mon(Γ) the category of monoids having the same group of
units (Γ, •) and with morphisms those monoid homomorphisms which fix (Γ, •).
An alternative way of defining the objects of Mon(Γ) is to regard them as monoid
extensions of the same group (Γ, •).

Theorem 2.2. There is an adjunction between the two categories Γ-Sgrp and
Mon(Γ).

Proof. First we define a functor Ψ : Γ-Sgrp → Mon(Γ). In objects, Ψ will be
defined by mapping each Γ-semigroup (S,Γ) to the enveloping monoid Ω1(S,Γ).
To define Ψ on morphisms, we proceed as follows. Let (S,Γ) and (S′,Γ) be both
Γ-semigroups. For every homomorphism of Γ-semigroups ϕ : S → S′, there is a
unique homomorphism of monoids φ : Ω1(S,Γ)→ Ω1(S′,Γ) identical on (Γ, •) such
that φµ = µ′ϕ. Indeed, let f : F (S ∪ Γ) → F (S′ ∪ Γ) be the homomorphism of
free semigroups induced from the extension of ϕ on S ∪ Γ that fixes Γ. We prove
that f induces a homomorphism φ : Ω1(S,Γ) → Ω1(S′,Γ). To do this we need
to show that every relation that defines Ω1(S,Γ) lies in the kernel of µ′f where
µ′ : F (S′ ∪ Γ) → Ω1(S′,Γ) is the canonical homomorphism. Indeed, for the first
type of relations ((γ1, γ2), γ1 • γ2) we have

µ′f(γ1, γ2) = µ′(ϕ(γ1), ϕ(γ2))

= γ1 • γ2

= µ′f(γ1 • γ2).

For the second type ((x, γ, y), xγy) we have

µ′f(x, γ, y) = µ′(ϕ(x), γ, ϕ(y))

= ϕ(x)γϕ(y)

= ϕ(xγy)

= µ′f(xγy),
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and for the last type ((x, y), x1y) we have

µ′f(x, y) = µ′(ϕ(x), ϕ(y))

= ϕ(x)1ϕ(y)

= ϕ(x1y)

= µ′f(x1y).

Therefore µ′f induces φ : Ω1(S,Γ) → Ω1(S′,Γ) such that φµ = µ′f . Since ϕ is
the restriction of f in S ∪ Γ, then we derive that φµ = µ′ϕ. The uniqueness of
φ with the given property follows easily from the fact any other homomorphism

φ̂ : Ω1(S,Γ) → Ω1(S′,Γ) satisfying φ̂µ = µ′ϕ coincides with φ on the generators
of Ω1(S,Γ) and therefore equals with φ. Also φ is identical on (Γ, •) since it is
induced by f and f fixes Γ. Now we prove the functorial properties of Ψ. It is
straightforward from the definition that Ψ(id(S,Γ)) = idΩ1(S,Γ). If now

ϕ : (S,Γ)→ (S′,Γ) and ϕ′ : (S′,Γ)→ (S′′,Γ)

are morphisms in Γ-Sgrp, then

Ψ(ϕ′ϕ) : Ω1(S,Γ)→ Ω1(S′′,Γ)

coincides with Ψ(ϕ′) ◦ Ψ(ϕ) since they coincide on generators. Indeed, if we let f
and f ′ be the morphisms induced by ϕ and ϕ′ respectively, then for every x ∈ S
we have,

Ψ(ϕ′ϕ)(µ(x)) = (µ′′(f ′f))(x)

= (Ψ(ϕ′)µ′)(f(x))

= (Ψ(ϕ′)Ψ(ϕ))(µ(x)).

In a similar way we get that for every γ ∈ Γ,

Ψ(ϕ′ϕ)(µ(γ)) = (Ψ(ϕ′)Ψ(ϕ))(µ(γ)).

Next we define a functor Ψ′ : Mon(Γ) → Γ-Sgrp on objects by assigning to each
monoid S its Γ-semigroup of units (S,Γ), and to each homomorphism of monoids
f : S → S′ which fixes Γ, the map

Ψ′(f) : (S,Γ)→ (S′,Γ)

such that for every x ∈ S,

Ψ′(f)(x) = f(x).

This map is a homomorphism of Γ semigroups since for every x, y ∈ S and γ ∈ Γ
we have that

Ψ′(f)(xγy) = f(xγy)

= f(x)f(γ)f(y)

= f(x)γf(y)

= Ψ′(f)(x)γΨ′(f)(y).

The functorial properties of Ψ′ are easy to prove. Next we will prove that Ψ is a
left adjoint of Ψ′. Let (S,Γ) ∈ Γ-Sgrp and M ∈Mon(Γ) be two arbitrary objects.
We define

ξ(S,Γ),M : Γ-Sgrp((S,Γ),Ψ′(M))→Mon(Γ)(Ψ(S,Γ),M),
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by

h 7→ h∗

where for the two types of generators, x ∈ S and γ ∈ Γ, h∗ is defined by

h∗(x) = h(x) and h∗(γ) = γ.

To see that h∗ is a homomorphism we need to check that it is compatible with
the defining relations of Ψ(S,Γ) = Ω1(S,Γ). Indeed, for the relations of the type
(x, γ, y) ∼ (xγy) we have that

h∗(xγy) = h(xγy)

= h(x)γh(y)

= h∗(x)h∗(γ)h∗(y).

For relations of the type (x, y) ∼ (x1y) we have that

h∗(xy) = h(x1y)

= h(x)h(1)h(y)

= h∗(x)h∗(1)h∗(y).

And for the last type of relations (α, β) ∼ (α • β) we have

h∗(α, β) = α • β
= h∗(α • β).

The map ξ(S,Γ),M is indeed a bijection. It is an injection since if h, g : (S,Γ) →
(M,Γ) are such that h∗ = g∗, then for every x ∈ S,

h(x) = h∗(x) = g∗(x) = g(x).

It is also surjective since every homomorphism of monoids g : Ω1(S,Γ) → M that
fixes Γ is induced by the restriction h = g|S and so g = h∗. Next we prove that
ξ(S,Γ),M is natural in both variables. To see the naturality in the first variable,
we must prove that for every Γ-homomorphism f : (S,Γ) → (S′,Γ), the following
diagram commutes.

Γ-Sgrp((S,Γ),Ψ′(M))
ξ(S,Γ),M // Mon(Γ)(Ω1(S,Γ),M)

Γ-Sgrp((S′,Γ),Ψ′(M))

Γ-Sgrp(f,Ψ′(M))

OO

ξ(S′,Γ),M

// Mon(Γ)(Ω1(S′,Γ),M)

Γ-Sgrp(Ψ(f),M)

OO

This means that for every h′ : (S′,Γ)→ (M,Γ) we must have that (h′f)∗ = h′∗Ψ(f).
It is enough that (h′f)∗ and h′∗Ψ(f) coincide on generators. This is true since for
every x ∈ S we have that

(h′f)∗(x) = (h′f)(x) = h′∗(f(x)) = h′∗(Ψ(f)(x)) = (h′∗Ψ(f))(x).

For for every γ ∈ Γ we have that

(h′f)∗(γ) = γ = h′∗(γ) = h′∗(Ψ(f)(γ)) = (h′∗Ψ(f))(γ).
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Now we see the naturality in the second variable. Let χ : M → N be a monoid
morphism that fixes the common group of units Γ. We must prove that the following
diagram commutes.

Γ-Sgrp((S,Γ),Ψ′(M))

Γ-Sgrp((S,Γ),Ψ′(χ))

��

ξ(S,Γ),M // Mon(Γ)(Ω1(S,Γ),M)

Γ-Sgrp(Ω1(S,Γ),χ)

��
Γ-Sgrp((S,Γ),Ψ′(N))

ξ(S,Γ),N // Mon(Γ)(Ω1(S,Γ), N)

which amounts to saying that χh∗ = (Ψ′(χ)h)∗. As before, we need to prove that
the above maps coincide in the generators of Ω1(S,Γ). For every x ∈ S we see that

(Ψ′(χ)h)∗(x) = (Ψ′(χ)h)(x)

= (χh)(x)

= (χh∗)(x).

Also for every γ ∈ Γ we have

(Ψ′(χ)h)∗(γ) = Ψ′(χ)(h∗(γ))

= Ψ′(χ)(γ)

= γ

= (χh∗)(γ).

This concludes the proof. �
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Abstract. In this paper, we establish some sufficient conditions on variable
sources and parametris to guarantee the existence blow-up of solutions para-

bolic system with variable sources.

1. Introduction

This paper is concerned with the properties of solutions of a parabolic system
involving two semilinear equations associated with nonlinear heat diffusion with
variable sources:

(1.1)


ut = ∆uγ+1 + δυp(x), x ∈ Ω, t > 0,
υt = ∆υµ+1 + δuq(x), x ∈ Ω, t > 0,
u(x, t) = υ(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), υ(x, 0) = υ0(x), x ∈ Ω,

where γ, µ > 0 such that

1 + µ ≤ p− ≤ p(x) < +∞, x ∈ Ω,

1 + γ ≤ q− ≤ q(x) < +∞, x ∈ Ω,

and

(1.2) 1 < p− ≤ p(x) < +∞, x ∈ Ω,

(1.3) 1 < q− ≤ q(x) < +∞, x ∈ Ω.

Parabolic systems such as (1.1) appear in population dynamics with nonlocal growth
terms, heat propagation in a two component combustible mixture, porous medium,
electro-rheological fluids and chemical processes (see [8, 9] and references therein).
There is a rich literature devoted to the existence of global solution, unique solv-
ablity and blow-up rates for parabolic equations ( see [1, 2, 3, 4, 7]). Also, Souplet
[10] considered the nonlocal problems with homogeneous Dirichlet boundary condi-
tion and determined some sharp critical exponents for blow-up or global existence.
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In [5, 6], Galaktionov et al. considered the system

ut = ∆uγ+1 + δυp, υt = ∆υµ+1 + δuq, (x, t) ∈ Ω× (0, T )

with homogeneous Dirichlet boundary conditions. In the proof of the proposi-
tions, the authors assumed that the local solution of the boundary value problem

satisfies the natural inclusions u
γ+1
2 , υ

µ+1
2 ∈ L2

(
0, T ;L2 (Ω)

)
and uγ+1, υµ+1 ∈

L∞
(
0, T ;H1

0 (Ω)
)
, T < T0. Under the assumption of boundedness of u, υ these

was derived by Galerkin approximations and also the authors established a weak
Maximum Principle, so that if u, υ a bounded in (0, T ) × Ω, then u, υ ≥ 0 a.e. in
Ω, 0 < t < T .

In this paper, we establish some sufficient conditions on variable sources and
parametris to guarantee the existence blow-up of solutions parabolic system with
variable sources for any initial data of the problem (1.1).

2. Main Results and Proofs

Let λ1 > 0 be the first eigenvalue and ϕ1 be the corresponding eigenfunction of
the following fixed membrane problem

∆ϕ+ λϕ = 0, ϕ > 0 in x ∈ Ω,
ϕ = 0, on ∂Ω,

with

(2.1)

∫
Ω

ϕ1dx = 1.

We define the auxiliary function of the form

η (t) =

∫
Ω

uϕ1dx, t > 0

with

a0 =

∫
Ω

u0ϕ1dx > 0,

and

b0 =

∫
Ω

υ0ϕ1dx > 0.

Our main result is the following theorem:

Theorem 2.1. Let Ω be a bounded smooth domain in RN and let u, υ be a positive
solution of problem (1.1).
i)a Let p− = 1 + µ, q− = 1 + γ and µ = γ > 0. If λ1 < δ with

δ >
λ1 (a0 + b0)

γ+1

(a0 + b0)
γ+1 − 2γ+1

,

and a0 + b0 > 2, then we can derive that the blow-up time T satisfies∫ +∞

a0+b0

2γdζ

(δ − λ1) ζγ+1 − 2γ+1δ
≥ T.

i)b Let p− = 1 + µ, q− = 1 + γ, µ 6= γ such that 0 < γ < µ. If λ1 < δ with

δ >
λ1

[
(γ + 1) (a0 + b0)

γ+1 − 2γ (µ− γ)
]

(γ + 1)
[
(a0 + b0)

γ+1 − 2γ+1
]
− 2γ (µ− γ)

,
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then we can derive that the blow-up time T satisfies∫ +∞

a0+b0

2γdζ

(δ − λ1) ζγ+1 − 2γ(δ−λ1)(µ−γ)+2δ(γ+1)
γ+1

≥ T,

for a0 + b0 satisfying

a0 + b0 >

(
(δ − λ1) (µ− γ)

2−γ (δ − λ1) (γ + 1)

) 1
γ+1

.

ii)a Let p− > 1 + µ, q− > 1 + γ and µ = γ > 0. If λ1 > 0 and

δ >
2γC1

(a0 + b0)
γ+1 ,

then we can derive that the blow-up time T satisfies∫ +∞

a0+b0

2γdζ

δζγ+1 − 2γC1
≥ T,

for a0 + b0 satisfying

a0 + b0 > (2γC1)
1

1+γ ,

where C1 is a positive constant which will be determined later.
ii)b Let p− > 1 + µ, q− > 1 + γ and µ > γ > 0. If λ1 > 0 and

δ >
2γ (C1 +D1)

(a0 + b0)
γ+1 ,

then we can derive that the blow-up time T satisfies∫ +∞

a0+b0

2γdζ

δζγ+1 − 2γ (C1 +D1)
≥ T,

for a0 + b0 satisfying

a0 + b0 > (2γ (C1 +D1))
1

1+γ ,

where C1, D1 are positive constants which will be determined later.

Proof. By integrating in t both parts of the equation (1.1), we obtain the system
of equalities

η (t)− a0 = −λ1

∫ t

0

∫
Ω

uγ+1ϕ1dxds+ δ

∫ t

0

∫
Ω

υp(x)ϕ1dxds,(2.2)

and

η (t)− b0 = −λ1

∫ t

0

∫
Ω

υµ+1ϕ1dxds+ δ

∫ t

0

∫
Ω

uq(x)ϕ1dxds.(2.3)

Let define the functions

(2.4) f (t) =

(∫
Ω

uγ+1ϕ1dx

) 1
γ+1

,

and

(2.5) g (t) =

(∫
Ω

υµ+1ϕ1dx

) 1
η+1

.
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From the Hölder inequality, (2.4) and (2.5) it follows that

(2.6) η (t) ≤
(∫

Ω

uγ+1ϕ1dx

) 1
γ+1

= f (t) ,

and

(2.7) η (t) ≤
(∫

Ω

υµ+1ϕ1dx

) 1
µ+1

= g (t) .

If p and q satisfies the condition (1.2), (1.3), by using (2.1) we have∫
Ω

υp(x)ϕ1dx =

∫
Ω∩{u≥1}

υp(x)ϕ1dx+

∫
Ω∩{u<1}

υp(x)ϕ1dx

≥
∫

Ω∩{u≥1}
υp

−
ϕ1dx+

∫
Ω∩{u<1}

υp
+

ϕ1dx

≥
∫

Ω∩{u≥1}
υp

−
ϕ1dx

≥
∫

Ω∩{x:u<1}
υp

−
ϕ1dx+

∫
Ω∩{u≥1}

υp
−
ϕ1dx−

∫
Ω∩{x:u<1}

υp
−
ϕ1dx

≥
∫

Ω

υp
−
ϕ1dx−

∫
Ω

ϕ1dx

=

∫
Ω

υp
−
ϕ1dx− 1,(2.8)

and

(2.9)

∫
Ω

uq(x)ϕ1dx ≥
∫

Ω

uq
−
ϕ1dx− 1.

Then from (2.2) , (2.3) , (2.6) , (2.7) , (2.8) and (2.9) we obtain

η (t)− a0 ≥ −λ1

∫ t

0

fγ+1 (s) ds+

∫ t

0

(
δ

∫
Ω

υp
−
ϕ1dx− δ

)
ds,

and

η (t)− b0 ≥ −λ1

∫ t

0

gµ+1 (s) ds+

∫ t

0

(
δ

∫
Ω

uq
−
ϕ1dx− δ

)
ds.

Furthermore, taking into account the fact that p− ≥ 1 + η, q− ≥ 1 + γ, we obtain

f (t) =

(∫
Ω

uγ+1ϕ
1+γ

p−

1 ϕ
1− 1+γ

p−

1 dx

) 1
γ+1

≤
(∫

Ω

υp
−
ϕ1dx

) 1

p−
(∫

Ω

ϕ1dx

) p−−γ−1

p−

=

(∫
Ω

υp
−
ϕ1dx

) 1

p−

,

we get ∫
Ω

υp
−
ϕ1dx ≥ fp

−
(t) ,

and similarly ∫
Ω

uq
−
ϕ1dx ≥ gq

−
(t) .
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Then, we have

(2.10) f (t)− a0 ≥ −λ1

∫ t

0

fγ+1 (s) ds+ δ

∫ t

0

(
gp

−
(t)− 1

)
ds, t > 0,

and

(2.11) g (t)− b0 ≥ −λ1

∫ t

0

gµ+1 (s) ds+ δ

∫ t

0

(
fq

−
(t)− 1

)
ds, t > 0.

In conjunction with (2.10) and (2.11) let us consider the following of ordinary
differential equations:

(2.12) f̃ ′(t) = −λ1f̃
γ+1 (t) + δg̃p

−
(t)− δ, t > 0,

and

(2.13) g̃′(t) = −λ1g̃
µ+1 (t) + δf̃q

−
(t)− δ, t > 0.

Let the functions f̃ , g̃ satisfy the conditions

(2.14) f̃ (0) = a0 > 0, g̃ (0) = b0 > 0.

A direct comparison of (2.10), (2.11) with the equations (2.12), (2.13) and (2.14)
shows that for all admissible t we have the inequalities

(2.15) f (t) ≥ f̃(t), g (t) ≥ g̃(t).

Therefore the system of equations (2.12), (2.13) allows us, in view of (2.15), to
define the conditions under which the functions f (t), g (t) cannot both be bounded
for all t > 0, that is

(2.16) lim max{f (t) , g (t)} =∞, t→ T−0 <∞.

In view of the inequalities

f (t) ≤
(∥∥uγ+1

∥∥2

2
‖ϕ1‖22

) 1
2(γ+1)

,

and

g (t) ≤
(∥∥υµ+1

∥∥2

2
‖ϕ1‖22

) 1
2(µ+1)

,

this ensures that (2.16) holds.
i)a For p− = 1 + µ, q− = 1 + γ and µ = γ.

We define the functions f̃ and g̃. Adding up equations (2.12), (2.13), we have

(2.17) f̃ ′(t) = −λ1f̃
γ+1 (t) + δg̃γ+1 (t)− δ, t > 0,

and

(2.18) g̃′(t) = −λ1g̃
γ+1 (t) + δf̃γ+1 (t)− δ, t > 0.

Let as before E(t) := f̃(t) + g̃(t) with E(0) = a0 + b0 > 0, we get

E′(t) ≥ −λ1

(
f̃γ+1 (t) + g̃γ+1 (t)

)
+ δ

(
f̃γ+1(t) + g̃γ+1 (t)

)
− 2δ

= (δ − λ1)
(
f̃γ+1(t) + g̃γ+1 (t)

)
− 2δ.

From (2.17), (2.18) and inequality

cσ + dσ ≥ 21−σ (c+ d)
σ

, where c, d > 0, σ ≥ 1,
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it follows that

E′(t) ≥ (δ − λ1) 2−γ
(
f̃γ+1(t) + g̃γ+1 (t)

)
− 2δ

= (δ − λ1) 2−γEγ+1(t)− 2δ, t > 0.(2.19)

Obviously, since λ1 < δ, γ > 0 we can get that the function Eγ+1 is monotone
increasing and with E(0) > 2 and

δ > max

{
λ1,

λ1E
γ+1(0)

Eγ+1(0)− 2γ+1

}
=

λ1E
γ+1(0)

Eγ+1(0)− 2γ+1
.

Then we can know that the solution to problem (1.1) blows up in finite time, by
virtue of (2.19), we can derive that the blow-up time T satisfies∫ E(t)

E(0)

2γdζ

(δ − λ1) ζγ+1 − 2γ+1δ
≥ T,

such that E(t)→∞ as t→ T−0 .
i)b For p− = 1 +µ, q− = 1 + γ, µ 6= γ with 0 < γ < µ. Then from (2.17), (2.18),

using Young’s inequality

g̃µ+1 (t) ≥ µ+ 1

γ + 1
g̃γ+1 (t)− µ− γ

γ + 1
≥ g̃γ+1 (t)− µ− γ

γ + 1
.

By (2.19), we obtain

E′(t) ≥ (δ − λ1)
(
f̃γ+1 (t) + g̃µ+1 (t)

)
− 2δ

≥ (δ − λ1)
(
f̃γ+1 (t) + g̃γ+1 (t)

)
−
(

(δ − λ1) (µ− γ)

γ + 1
+ 2δ

)
≥ (δ − λ1) 2−γEγ+1(t)− (δ − λ1) (µ− γ) + 2δ (γ + 1)

γ + 1
.

Therefore, since λ1 < δ, µ > γ > 0 we can get that the function Eγ+1 is monotone
increasing with

E(0) >

(
(δ − λ1) (µ− γ)

2−γ (δ − λ1) (γ + 1)

) 1
γ+1

,

and

δ >
λ1

[
(γ + 1)Eγ+1(0)− 2γ (µ− γ)

]
(γ + 1) [Eγ+1(0)− 2γ+1]− 2γ (µ− γ)

> 0.

We can derive that the blow-up time T satisfies∫ +∞

E(0)

2γdζ

(δ − λ1) ζγ+1 − 2γ(δ−λ1)(µ−γ)+2δ(γ+1)
γ+1

≥ T.

Let us estimate f̃(t), g̃ (t) using Young’s inequality:

g̃q
−

(t) ≥ (δ + λ1) g̃γ+1 (t)−A0,

and

f̃p
−

(t) ≥ (δ + λ1) f̃µ+1 (t)−B0,

where A0 and B0 are constants:

A0 =
q− − γ − 1

γ + 1

[
(δ + λ1) (γ + 1)

q−

] q−

q−−γ−1

,
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and

B0 =
p− − µ− 1

µ+ 1

[
(δ + λ1) (µ+ 1)

p−

] p−

p−−µ−1

.

Then we obtain from (2.19) that

(2.20) E′(t) ≥ δ
(
f̃γ+1 (t) + g̃µ+1 (t)

)
− C0, t > 0,

where C0 = A0 + B0 − 2δ > 0 for small enough δ > 0.
ii)a For p− > 1 + µ, q− > 1 + γ. If γ = µ, using the inequality

1 + ωγ+1 ≥ 2−γ (1 + ω)
γ+1

, ω ≥ 0,

we derive from (2.20) the inequality

E′(t) ≥ 2−γδEγ+1(t)− C1, t > 0,

where C1 = C0 − 2 > 0 and

δ >
C12γ

Eγ+1(0)
=

C12γ

(a0 + b0)
γ+1 .

ii)b For p− > 1 + µ, q− > 1 + γ. If, on the other hand, γ 6= µ, then, setting for
definiteness µ > γ, and using the estimate

g̃µ+1 (t) ≥ g̃γ+1 (t)−D1, t > 0,

where D1 = µ−γ
µ+1

(
γ+1
µ+1

) γ+1
µ−γ

. Then we obtain from (2.20)

(2.21) E′(t) ≥ 2−γδEγ+1(t)− (C1 +D1) , t > 0,

where

δ >
2γ (C1 +D1)

Eγ+1(0)
=

2γ (C1 +D1)

(a0 + b0)
γ+1 .

Hence, if E(0) satisfying

E(0) = λ1

∫
Ω

u0dx+ λ1

∫
Ω

υ0dx > 2
γ
γ+1 (C1 +D1)

1
γ+1 ,

since γ > 0, we can get that the function Eγ+1 is monotone increasing with E (0)
such that

E(0) > (2γ (C1 +D1))
1
γ+1 .

Then we can know that the solution to problem (1.1) blows up in finite time. It
is easy to see that the right-hand side of this inequality admits passing to the
limµ→γ+ that is, for γ = µ it is the same as (2.21). Thus, the proof of Theorem 2.1
is completed. �
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Abstract. The global usability analysis of the multi-epidemic model with

an overall incidence rate on this page is being investigated. The problem,
exposure, is modeled by a system of 4 untranslated ordinary differential equa-

tions that describe the treated individuals. The creation model is well defined,

apart from its solutions, except for its positivity and speech. Generally speak-
ing, 3 equilibrium points; disease-free equilibrium point, endemic equilibrium

point according to Type i and the last endemic equilibrium point according

to the species. Appropriate Lyapunov news, global applications of disease-free
equilibria points are proved depending on the basic reproduction number R0.

In addition, the global practical results of the other suitable Lyapunov anno-

tated endemic equilibrium, species with -1 reproduction number R1
0, Type-2

reproduction number R2
0 and species reproduction number Ri

0. Simulations

are made to verify the different theoretical results. An important broad view
on the application of equilibrium is presented that the generalized incidence

function model covers multiple models with classical incidence rates. Com-

parisons were made between model results and numerical results of the new
coronavirus. It is pointed out that this realized model fits well with the ac-

tual results. It is an undeniable fact that some strategies such as quarantine,

isolation, wearing a mask, and disinfection have an undeniable importance in
controlling the spread of the epidemic during this period of the disease.

1. Introduction

Today, many infectious diseases still grow large populations targeting. It is the
leading cause of deaths, especially in many developing countries. They are counted
among the years. Accordingly, mathematical modeling has become an increas-
ingly dominant place in epidemiology. These studies do indeed contribute to a
good understanding of the epidemiological phenomenon under study and the differ-
ent factors that could lead to a serious worldwide epidemic and even a dangerous
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Key words and phrases. Novel Coronavirus Disease, Epidemiology, Mathematical Epidemiol-

ogy, Lyapunov function, Global stability analysis, SEIR, Incidence function, General incidence
function, Multiple epidemic model, Basic reproduction number, Equilibrium point.
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pandemic. Therefore, multiple SEIR epidemic patterns include a long incubation
period, ie the time from the entry of an infectious agent into the body to the emer-
gence of disease symptoms; It offers an important tool for studying incubation time
as well as infectious diseases involving various types of infections. The importance
of studying multifarious models is to find different conditions that allow all their
influential types to coexist. Global dynamics of a single SEIR model, with known
or nonlinear incidence functions; By including the two incidence functions in the
global stability of the two types of SEIR models, the first is bilineer, the second is
not monotonous, and recently they have been investigating non-monotonous cases
of two incidence functions of similar problems. Thus, the overall incidence function
has the purpose to represent the incidence rates of a major outbreak. The aim
of this research, then, is to generalize the previous models, taking into account a
multifaceted SEIR model with an overall incidence rate of n. So, our research will
be done on n types of expanded epidemic model as follows:

dS

dt
= Λ−

n∑
i=1

fi (S, Ii) Ii − δS

dEi
dt

= fi (S, Ii) Ii − (γi + δ)Ei, i = 1, 2, . . . , n

dIi
dt

= γiEi − (µi + δ) Ii, i = 1, 2, . . . , n

dR

dt
=

n∑
i=1

µiIi − δR

(1.1)

with S(0) ≥ 0, Ei(0) ≥ 0, Ii(0) ≥ 0, R(0) ≥ 0,
∀i ∈ {1, 2, . . . , n}.
(S) is the number of susceptible individuals, (E1) , (E2) ,

. . . , (En) each latent (exposed) are the numbers of the individual class, (I1) , (I2) , . . . , (In)
respectively for each contagious are the numbers of the individual class and (R) is
the number of people who have recovered.

Table 1. Explanation of the Parameters of the Model

Parametre Explanation
Λ Population birth rate
δ Mortality rate of the population
γi ith hatching rate of the species
µi ith infection rate of the species

Finally, the general incidence function fi (S, Ii), ith represents the infection trans-
mission rates for the species and confirms the following conditions:

fi (0, Ii) = 0 ,∀Ii ≥ 0 , i = 1, 2, . . . , n(1.2)

∂fi (0, Ii)

∂S
> 0 ,∀S > 0,∀Ii ≥ 0 , i = 1, 2, . . . , n(1.3)

∂fi (0, Ii)

∂Ii
≤ 0 ,∀S ≥ 0,∀Ii ≥ 0 , i = 1, 2, . . . , n(1.4)
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The properties (1.2),(1.3) and (1.4) for fi functions
bilineer incidence functions βS [1, 2, 3, 4, 5],

saturated incidence function βS
1+α1S

or βS
1+α2I

[6, 7, 8],

Beddington-DeAngelis incidence function βS
1+α1S+α2I

[9],

Crowley-Martin incidence function βS
1+α1S+α2I+α1α2I

[10],

specific nonlinear incidence function βS
1+α1S+α2I+α3IS

[11, 12, 13, 14, 15],

and non-monotonous incidence function βS
1+αI2 [16, 17, 18, 19, 20]

S Ei Ii R
Λ

δ

βi

δ

γi

δ

µi δ

Susceptible Exposed Infected Recovered

Figure: Flowchart of multi-strain SEIR model

The flow chart of the multifarious epidemiological SEIR model is shown in figure.
Our focus revolves around the overall incidence rates and the global stability of the
multifarious Seir epidemic model.

The following parts of our study are summarized as follows. In the section 1
the model is examined by proving the existence, positivity and limitation of the
solutions. In section 3, we make the global stability analysis of the equilibrium
points of the model, calculate and prove the basic reproduction number of our epi-
demic model. In the section 4 numerical simulations were obtained using different
incidence functions and comments were made about the progress of the epidemic
in the light of these numerical results.

2. Positivity and Limitedness of Model Solutions

For problems with population dynamics, the variables should be positive and
limited. First, let’s assume that the model parameters are positive.

Definition of the total population is

N(t) = S(t) +

n∑
i=1

Ei(t) +

n∑
i=1

Ii(t) +R(t).

Proposition 1. From every non-negative initial conditions, solutions (1.1) are
limited and non-negative.

Otherwise, N(t) ≤ Λ

δ
+N(0)

.

Proof. With the basic differential equation theory, it is verified that there is only
one solution for [21, 22, 23, 24, 25, 26] (1.1) in this framework.

We’ll show it stays there forever at
R2n+2

+ =
{

(S,E1, E2, . . . , En, I1, I2, . . . In, R) ∈ R2n+2 : S ≥ 0,
E1 ≥ 0, E2 ≥ 0, . . . , En ≥ 0, I1 ≥ 0, I2 ≥ 0, . . . In ≥ 0, R ≥ 0} to prove its posi-

tivity.
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Primarily, let

T = sup{τ ≥ 0 | ∀t ∈ [0, τ ] such that

S(t) ≥ 0, E1(t) ≥ 0, E2(t) ≥ 0, . . . , En(t) ≥ 0,

I1(t) ≥ 0, I2(t) ≥ 0, . . . In(t) ≥ 0, R(t) ≥ 0}(2.1)

Now let’s prove it’s T = +∞.
Suppose that T is finite; by continuity of solutions, we have
S(T ) = 0 either E1(T ) = 0 either E2(T ) = 0 either · · · either En(T ) = 0 either

I1(T ) = 0 either I2(T ) = 0 either · · · either In(T ) = 0 either R(T ) = 0.
If S(T ) = 0 before the other variables E1, E2, . . . , En, I1, I2, . . . In, R become zero

then

(2.2)
dS(T )

dt
= lim
t→T−

S(T )− S(t)

T − t
= lim
t→T−

−S(t)

T − t
≤ 0

From the 1 st equation of system (1.1), we have

(2.3) Ṡ(T ) = Λ−
n∑
i=1

fi (S(T ), Ii(T )) Ii(T )− δS(T )

then,

(2.4) Ṡ(T ) = Λ−
n∑
i=1

fi (0, Ii(T )) Ii(T )

However, from (1.2) we have

(2.5) Ṡ(T ) = Λ > 0

which presents a contradiction.
If E1(T ) = 0 , before the other parameters S,E2, . . . ,

En, I1, I2, . . . In, R become zero then,

(2.6)
dE1(T )

dt
= lim
t→T−

E1(T )− E1(t)

T − t
= lim
t→T−

−E1(t)

T − t
≤ 0

From the 2 nd equation of system (1.1), we have

(2.7)
dE1(T )

dt
= f1 (S, I1) I1

However, from (1.2) and (1.3), f1 (S, I1) I1 is positive, then we will have

(2.8)
dE1(T )

dt
> 0

Similar calculations are the same for E2(T ) = 0, E3(T ) = 0, . . . , En(T ) = 0.
If I1(T ) = 0, before the other variables S,E1, E2, . . . , En,

I2, I3, . . . In, R become zero then
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(2.9)
dI1(T )

dt
= lim
t→T−

I1(T )− I1(t)

T − t
= lim
t→T−

−I1(t)

T − t
≤ 0

From the third equation of system (1.1), we will have

(2.10)
dI1(T )

dt
= γ1E1

Since γ1 > 0, we have

(2.11)
dI1(T )

dt
= γ1E1 > 0

This leads to contradiction.
Similar calculations are the same for I2(T ) = 0, I3(T ) = 0, . . . , In(T ) = 0.
If R(T ) = 0, before the other variables S,E1, E2, . . . , En, I1, I2, . . . In, become

zero then

(2.12)
dR(T )

dt
= lim
t→T−

R(T )−R(t)

T − t
= lim
t→T−

−R(t)

T − t
≤ 0

But from the fourth equation of system (1.1), we will have

(2.13)
dR(T )

dt
=

n∑
i=1

µiIi(T )

Since µi > 0, we have

(2.14)
dR(T )

dt
> 0

This leads to contradiction.
T is not finite. Hence, S(t) ≥ 0, E1(t) ≥ 0, E2(t) ≥ 0, . . . , En(t) ≥ 0, I1(t) ≥

0, I2(t) ≥ 0, . . . In(t) ≥ 0, R(t) ≥ 0 for all t > 0. This proves to be positive.
Let’s examine the case of limitedness. The total population becomes

(2.15) N(t) = S(t) +

n∑
i=1

Ei(t) +

n∑
i=1

Ii(t) +R(t)

Using system (1.1),

(2.16)
dN(t)

dt
= Λ− δN(t)

therefore,

(2.17) N(t) =
Λ

δ
+Ke−δt

At t = 0, we have

(2.18) N(0) =
Λ

δ
+K
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then

(2.19) N(t) =
Λ

δ
+

(
N(0)− Λ

δ

)
e−δt

As a result,

(2.20) lim
t→+∞

N(t) =
Λ

δ

in that case

(2.21) N(t) ≤ Λ

δ
+N(0)

So it means that N(t) is limited and hence S(t), E1(t),
E2(t), . . . , En(t), I1(t), I2(t), . . . In(t) and R(t) are limited. The solution then means
it exists globally for any t > 0.

�

3. Stability Analysis of the Model

In this subsection, we show that there is a disease free equilibrium point and
(2n + 1) endemic equilibrium point. We can omit the fourth equation of the (1.1)
system, since we know that the total population confirms (2.17) and is independent
of R. So, the equation is written as:

dS

dt
= Λ−

n∑
i=1

fi (S, Ii) Ii − δS

dEi
dt

= fi (S, Ii) Ii − (γi + δ)Ei, i = 1, 2, . . . , n

dIi
dt

= γiEi − (µi + δ) Ii, i = 1, 2, . . . , n

(3.1)

with R = N − S − E1 − E2 − . . .− En − I1 − I2 − . . .− In.
As always, the basic reproduction number can be written as the mean value of

new cases of contamination caused by the contamination when the entire population
is susceptible. We will use the definition of the next generation matrix to calculate
the basic reproduction number.

The formula for the basic reproduction number:

R0 = ρ
(
FV −1

)
,

The spectral radius ρ is the matrix of new non-negative infection cases and the
matrix of the passage of infections associated with the V model (3.1).

F =

[
0 fi

(
Λ
δ , 0
)

0 0

]
, V =

[
γi + δ 0
−γi µi + δ

]
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FV −1 =
1

(γi + δ) + (µi + δ)

[
0 fi

(
Λ
δ , 0
)

0 0

] [
µi + δ 0
γi γi + δ

]
=

1

(γi + δ) + (µi + δ)

[
fi
(

Λ
δ , 0
)
γi fi

(
Λ
δ , 0
)

(γi + δ)
0 0

]
We can write the basic reproduction number as follows:

(3.2) R0 = max
i∈{1,2,...,n}

{
fi
(

Λ
δ , 0
)
γi

(γi + δ) + (µi + δ)

}
and ith basic reproduction number of species

(3.3) Ri0 =
fi
(

Λ
δ , 0
)
γi

(γi + δ) + (µi + δ)
, i = 1, 2, . . . , n

.

Theorem 3.1. The problem ( 3.1 ) has the disease-free equilibrium Ef , endemic
equilibrium εSt and εSi , i = 1, 2, ..., n with respect to the i th strain. Moreover,
we have

-When Ri0 > 1, ith strain endemic equilibrium point εSi exists,
-When R1

0, R
2
0, . . . , R

n
0 > 1, endemic equilibrium point εSt exists.

Proof. In order to examine the stability states of the (3.1) system, we must analyze
the following equations.

Λ−
i=n∑
i=1

fi (S, Ii) Ii − δS = 0(3.4)

fi (S, Ii) Ii − (γi + δ)Ei = 0, i = 1, 2, . . . , n(3.5)

γiEi − (µi + δ) Ii = 0, i = 1, 2, . . . , n(3.6)

-We find the disease-free equilibrium point when Ii = 0, i = 1, 2, . . . , n.

εf =

(
Λ

δ
, 0, . . . , 0

)
-When Ii 6= 0, I1 = 0, I2 = 0 . . . , In = 0, we find the ith type endemic equilibrium

point.

εSi =

(
S∗i , 0, 0, . . . ,

1

(γi + δ)
(Λ− δS∗i ) , 0, 0,

. . . , 0,
γi

(γi + δ) (µi + δ)
(Λ− δS∗i )

)
where S∗i ∈

[
0, Λ

δ

]
.

Define also a function Ω on [0,+∞[ as follows
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Ω(S) = fi

(
S,

γi
(γi + δ) (µi + δ)

(Λ− δS)

)
− (γi + δ) (µi + δ)

γi
(3.7)

∂Ω(S)

∂S
=
∂fi (S, Ii)

∂S

+
∂fi (S, Ii)

∂Ii

(
− δγi

(γi + δ) (µi + δ)

)
(3.8)

Using the conditions (1.3) and (1.4) we conclude that

(3.9)
∂Ω(S)

∂S
≥ 0

However,

Ω(0) = fi
(
0, I∗i,Si

)
− (γi + δ) (µi + δ)

γi
= − (γi + δ) (µi + δ)

γi
< 0

So, for Ri0 > 1, we have

Ω

(
Λ

δ

)
= fi

(
Λ

δ
, 0

)
− (γi + δ) (µi + δ)

γi

= − (γi + δ) (µi + δ)

γi

(
Ri0 − 1

)
> 0(3.10)

Thus, there exists a unique i th species endemic equilibrium point.

(3.11) εSi =
(
S∗i , E

∗
1,Si , E

∗
2,Si , . . . , E

∗
n,Si , I

∗
1,Si , I

∗
2,Si , . . . , I

∗
n,Si

)
with S∗i ∈] 0, Λ

δ

[
, E∗i,Si > 0, I∗i,Si > 0 ve E∗1,Si = . . . = E∗n,Si = I∗1,Si = . . . =

I∗n,Si = 0.
-When I1 6= 0, I2 6= 0 . . . , In 6= 0, We find the 3 rd endemic equilibrium point.

(3.12) εSt =
(
S∗t , E

∗
1,t, E

∗
2,t, . . . , , E

∗
n,t, I

∗
1,t, I

∗
2,t, . . . , , I

∗
n,t

)
where

(3.13) E∗1,t =
µ1 + δ

γ1
I∗1,t, E∗2,t =

µ2 + δ

γ2
I∗2,t, . . . , E∗n,t =

µn + δ

γn
I∗n,t

(3.14) S∗t =
1

δ

[
Λ−

fi
(

Λ
δ , 0
)

Ri0
I∗i,t

]
, i = 1, 2, . . . , n

with Λ ≥ fi( ∆
δ ,0)
Ri0

I∗i,t, R
1
0, R

2
0, . . . , R

n
0 > 1.

�
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4. Global Stability of Equilibrium Points

4.1. Global Stability of Disease Free Equilibrium Points.

Theorem 4.1. When R0 ≤ 1, then the disease-free equilibrium εf is globally
asymptotically stable.

Proof. First, we consider the following Lyapunov function in R2n−1
+ :

Lf (S,E1, E2, . . . , En, I1, I2, . . . , In)

= S − S∗0 −
∫ S

S∗0

f (S∗0 , 0)

f(X, 0)
dX + E1 + E2 + . . .+

En +
γ1 + δ

γ1
I1 +

γ2 + δ

γ2
I2 + . . .+

γn + δ

γn
In(4.1)

If we take the derivative of both sides of (4.1) depending on t (time):

L̇f (S,E1, E2, . . . , En, I1, I2, . . . , In)

= Ṡ − f (S∗0 , 0)

f(X, 0)
Ṡ + Ė1 + Ė2 + . . .+ Ėn

+
γ1 + δ

γ1
İ1 +

γ2 + δ

γ2
İ2 + . . .+

γn + δ

γn
In

= δS∗0

(
1− S

S∗0

)(
1− f (S∗0 , 0)

f(X, 0)

)
+

(γ1 + δ) (µ1 + δ)

γ1
I1

(
f (S, I1)

f(S, 0)
R1

0 − 1

)
(4.2)

+
(γ2 + δ) (µ2 + δ)

γ2
I2

(
f (S∗0 , 0)

f(S, 0)

f̃ (S, I2)

f̃ (S∗0 , 0)
R2

0 − 1

)
(4.3)

...

+
(γn + δ) (µn + δ)

γn
In

(
f (S∗0 , 0)

f(S, 0)

f (S, In)

f (S∗0 , 0)
Rn0 − 1

)
(4.4)

≤ δS∗0
(

1− S

S∗0

)(
1− f (S∗0 , 0)

f(X, 0)

)
+

(γ1 + δ) (µ1 + δ)

γ1
I1
(
R1

0 − 1
)

+
(γ2 + δ) (µ2 + δ)

γ2
I2

(
f (S∗0 , 0)

f(S, 0)

f̃ (S, I2)

f̃ (S∗0 , 0)
R2

0 − 1

)
(4.5)

...

+
(γn + δ) (µn + δ)

γn
In

(
f (S∗0 , 0)

f(S, 0)
· · · f̃ (S, In)

f̃ (S∗0 , 0)
Rn0 − 1

)
(4.6)

We will discuss 2 cases:
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• If S ≤ S∗0 using the condition (1.3), we will have f̃(S,Ii)

f̃(S∗0 ,0)
≤ 1, i = 1, 2, ..., n,

then

L̇f (S,E1, E2, . . . , En, I1, I2, . . . , In)

≤ δS∗0
(

1− S

S∗0

)(
1− f (S∗0 , 0)

f(X, 0)

)
+

(γ1 + δ) (µ1 + δ)

γ1
I1
(
R1

0 − 1
)

+
(γ2 + δ) (µ2 + δ)

γ2
I2

(
f (S∗0 , 0)

f(S, 0)
R2

0 − 1

)
(4.7)

...

+
(γn + δ) (µn + δ)

γn
In

(
f (S∗0 , 0)

f(S, 0)
Rn0 − 1

)
(4.8)

Since Ri0 ≤
f(S,0)
f(S∗0 ,0) ≤ 1, we obtain

(4.9)
f (S∗0 , 0)

f(S, 0)
Ri0 − 1 ≤ 0

Otherwise,

1− f(S∗0 ,0)
f(S,0) ≤ 0 , therefore

(4.10) δS∗0

(
1− S

S∗0

)(
1− f (S∗0 , 0)

f(S, 0)

)
≤ 0.

• If S∗0 < S, using the condition (1.3), we will have f(S,Ii)

f(S∗0 ,0)
> 1, i = 1, 2, . . . , n

and
f(S∗0 ,0)
f(S,0) < 1 then.

L̇f (S,E1, E2, . . . , En, I1, I2, . . . , In)

≤ δS∗0
(

1− S

S∗0

)(
1− f (S∗0 , 0)

f(X, 0)

)
+

(γ1 + δ) (µ1 + δ)

γ1
I1
(
R1

0 − 1
)

+
(γ2 + δ) (µ2 + δ)

γ2
I2

(
f̃ (S∗0 , 0)

f̃(S, 0)
R2

0 − 1

)
(4.11)

...

+
(γn + δ) (µn + δ)

γn
In

(
f̃ (S∗0 , 0)

f(S, 0)
Rn0 − 1

)
(4.12)

Since Ri0 <
f̃(S∗0 ,0)
f(S,Ii)

< 1, we obtain
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(4.13)
f̃ (S, Ii)

f̃ (S∗0 , 0)
Ri0 − 1 < 0.

Otherwise,
f(S∗0 ,0)
f(S,0) < 1, therefore

(4.14) δS∗0

(
1− S

S∗0

)(
1− f (S∗0 , 0)

f(S, 0)

)
≤ 0.

By the above discussion, we deduce that, if Ri0 ≤ 1, i = 1, 2, . . . , n (
(which means that R0 ≤ 1), then

(4.15) L̇f (S,E1, E2, . . . , En, I1, I2, . . . , In) ≤ 0.

Thus, the disease free equilibrium point is globally asymptotically stable
when εf , R0 ≤ 1.

�

4.2. Global Stability of i th Species Equilibrium Points. For the global
stability of εSi , we assume that the function f̃i satisfies the following condition:

(4.16) (1− Γ)

(
1

Γ
− Ii
I∗i,Si

)
≤ 0, ∀S, Ii > 0, i = 1, 2, . . . , n

with Γ =
i=n∏
i=1

fi(S,I∗i,Si)
fi

(
S∗i ,I

∗
i,Si

) fj
(
S∗j ,I

∗
j,Sj

)
fj

(
S,I∗j,Sj

) such that I∗i,Si 6= 0, I∗j,Sj 6= 0, i ∈ 1, 2, . . . , n, j ∈

1, 2, . . . , n and i 6= j.

Theorem 4.2. When Rk0 ≤ 1 < Ri0, k 6= i, the i. species endemic equilibra points
εSi are globally asymptotically stable.

Proof. First, we consider the Lyapunov function Li defined by:

Li (S,E1, E2, . . . , En, I1, I2, . . . , In)

= S − S∗i −
∫ S

S∗i

f
(
S∗Si , I

∗
i,Si

)
f
(
X, I∗i,Si

) dX
+

n∑
i=1

E∗i,Si

(
Ei
E∗i,Si

− ln

(
Ei
E∗i,Si

)
− 1

)

+

n∑
i=1

γi + δ

γi
I∗i,Si

(
Ii
I∗i,Si

− ln

(
Ii
I∗i,Si

)
− 1

)
(4.17)

If we take the derivative of both sides of equation (4.17) depending on t (time):
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L̇i (S,E1, E2, . . . , En, I1, I2, . . . , In)

= (Λ− fi (S, Ii) Ii − δS)

1−
f
(
S∗i , I

∗
i,Si

)
f
(
S, I∗i,Si

)


+ (fi (S, Ii) Ii − (γi + δ)Ei)

(
1−

E∗i,Si
Ei

)
+
γi + δ

γi
(γiEi − (µi + δ) Ii)

(
1− I∗i , Si

Ii

)
(4.18)

We have

Λ = δS∗i + f
(
S∗i , I

∗
i,Si

)
I∗i,Si

f
(
S∗i , I

∗
i,Si

)
I∗i,Si =

(γi + δ) (µi + δ)

γi
I∗i,Si = (γi + δ)E∗i,Si

E∗i,Si
I∗i,Si

=
µi + δ

γi

(4.19)

Therefore,

L̇i (S,E1, E2, . . . , En, I1, I2, . . . , In)

= δS∗i

1−
f
(
S∗i , I

∗
i,Si

)
f
(
S, I∗i,Si

)


+ f
(
S∗i , I

∗
i,Si

)
I∗i,Si − f

(
S∗i , I

∗
i,Si

)
I∗i,Si

f
(
S∗i , I

∗
i,Si

)
f
(
S, I∗i,Si

)
− fi (S, Ii) Ii + fi (S, Ii) Ii

f
(
S∗i , I

∗
i,Si

)
f
(
S, I∗i,Si

)
− δS

1−
f
(
S∗i , I

∗
i,Si

)
f
(
S, I∗i,Si

)


+ fi (S, Ii) Ii − (γi + δ)Ei − fi (S, Ii)
IiE
∗
i,Si

Ei
+ (γi + δ)E∗i

+ (γi + δ)Ei −
(γi + δ)(µi + δ)

γi
Ii − (γi + δ)

EiI
∗
i,Si

Ii

+
(γi + δ) (µi + δ)

γi
I∗i,Si(4.20)

Then,
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L̇i (S,E1, E2, . . . , En, I1, I2, . . . , In)

= (γi + δ)E∗i,Si

[
4−

(γi + δ)E∗i,Si[
f
(
S, I∗i,Si

)
f
(
S, I∗j,Sj

)]
I∗i,Si

− [f (S, Ii) f (S, Ij)] Ii
(γi + δ)Ei

−
I∗i,SiEi

IiE∗i,Si
−
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

]

+ (γi + δ)E∗i,Si

[
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

+
f (S, Ii)

f
(
S, I∗i,Si

) f (S, Ij)

f
(
S, I∗j,Sj

) Ii
I∗i,Si

− Ii
I∗i,Si

− 1

]

+
f
(
S∗i , I

∗
i,Si

)
f
(
S, I∗i,Si

) f
(
S∗j , I

∗
j,Sj

)
f
(
S, I∗j,Sj

) [ n∑
i=1

fi (S, Ii) Ii

]

−
n∑
i=1

(γi + δ) (µi + δ)

γi
Ii(4.21)

= (γi + δ)E∗i,Si

[
4−

(γi + δ)E∗i,Si[
f
(
S, I∗i,Si

)
f
(
S, I∗j,Sj

)]
I∗i,Si

− [f (S, Ii) f (S, Ij)] Ii
(γi + δ)Ei

−
I∗i,SiEi

IiE∗i,Si
−
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

]

+ (γi + δ)E∗i,Si

[
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

+
f (S, Ii)

f
(
S, I∗i,Si

) f (S, Ij)

f
(
S, I∗j,Sj

) Ii
I∗i,Si

− Ii
I∗i,Si

− 1

]

+
(γi + δ) (µi + δ)

γi
Ii n∑

i=1

f
(
S∗i , I

∗
i,Si

)
f
(
S, I∗i,Si

) f
(
S∗j , I

∗
j,Sj

)
f
(
S, I∗j,Sj

) fi (S, Ii) Ii
fi (S∗0 , 0)

Ri0 − 1

(4.22)

Using the condition (1.3) and (1.4), we have fi(S,Ii)

f(S∗0 ,0)
≤ 1, then,
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L̇i (S,E1, E2, . . . , En, I1, I2, . . . , In) ≤ (γi + δ)E∗i,Si[
4−

(γi + δ)E∗i,Si[
f
(
S, I∗i,Si

)
f
(
S, I∗j,Sj

)]
I∗i,Si

− [f (S, Ii) f (S, Ij)] Ii
(γi + δ)Ei

−
I∗i,Si , Ei

IiE∗i,Si
−
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

]

+ (γi + δ)E∗i,Si

[
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

+
f (S, Ii)

f
(
S, I∗i,Si

) f (S, Ij)

f
(
S, I∗j,Sj

) Ii
I∗i,Si

− Ii
I∗i,Si

− 1

]

+

n∑
i=1

[
(γi + δ) (µi + δ)

γi
Iif (S∗i , I∗i,Si)

f
(
S, I∗i,Si

) f
(
S∗j , I

∗
j,Sj

)
f
(
S, I∗j,Sj

) Ri0 − 1

](4.23)

from (4.16)

[
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

+
f (S, Ii)

f
(
S, I∗i,Si

) f (S, Ij)

f
(
S, I∗j,Sj

) Ii
I∗i,Si

− Ii
I∗i,Si

− 1

]
= (1− Γ)

(
1

Γ
− Ii
I∗i,Si

)
≤ 0

By the relation between arithmetic and geometric means, we have

4−
(γi + δ)E∗i,Si[

f
(
S, I∗i,Si

)
f
(
S, I∗j,Sj

)]
I∗i,Si

− [f (S, Ii) f (S, Ij)] Ii
(γi + δ)Ei

(4.24) −
I∗i,SiEi

IiE∗i,Si
−
f
(
S, I∗i,Si

)
f (S, Ii)

f
(
S, I∗j,Sj

)
f (S, Ij)

≤ 0

We discuss 2 cases:

• If S∗i ≤ S, from the condition (1.3), we will have

f(S∗i ,I
∗
i,Si

)
f
(
S,I∗i,Si

) f
(
S∗j ,I

∗
j,Sj

)
f
(
S,I∗j,Sj

) ≤ 1, we obtain, for(
f(S∗i ,I

∗
i,Si

)
f
(
S,I∗i,Si

) f
(
S∗j ,I

∗
j,Sj

)
f
(
S,I∗jSj

) Rk0 − 1

)
≤ 1

⇒ Rk0 ≤ 1 , the following L̇i ≤ 0 .
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• If S ≤ S∗i from the condition (1.3), we will have
f(S∗i ,I

∗
i,Si

)
f
(
S,I′i,Si

) f(S∗j ,I
∗
j,S)

f
(
S,I∗j,Sj

) ≥ 1, we obtain, for,

Rk0 ≤
f(S,I∗i,Si)
f
(
S∗i ,I

∗
i,Si

) f
(
S,I∗j,Sj

)
f
(
S∗j ,I

∗
j,Sj

) ≤ 1⇒ f(S∗i ,I
∗
i,Si

)
f
(
S,I∗i,Si

) f
(
S∗j ,I

∗
j,Sj

)
f
(
S,I∗j,Sj

) Rk0−1 ≤ 0 the following L̇i ≤

0.
By the above discussion, we deduce that if Rk0 ≤ 1, then L̇i ≤ 0.
ith endemic equilibrium point εSi is globally asymptotically stable when

Rk0 ≤ 1 < Ri0, k 6= i.

�

4.3. Global Stability of The Last Endemic Equilibrium Points. For the
global stability analysis of εSt of the last endemic equilibrium point, suppose the

functions f and f̃ satisfy the following condition:

(4.25)

(
1− f̃ (S, I2)

f̃
(
S∗1 , I

∗
2,t

) f (S∗t , I∗1,t)
f
(
S, I∗1,t

) )( f̃ (S∗1 , I∗2,t)
f̃ (S, I2)

f
(
S, I∗1,t

)
f
(
S∗t , I

∗
1,t

) − I2
I∗2,t

)
≤ 0

∀S, I1, I2, . . . , In > 0

Theorem 4.3. When R1
0, R

2
0, . . . , R

n
0 > 1, the endemic equilibrium point εSt is

globally asymptotically stable.

Proof. First, we consider the Lyapunov function L3 defined by:
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L3 (S,E1, E2, . . . , En, I1, I2, . . . , In)

= S − S∗t −
∫ S

S∗i

f
(
S∗t , I

∗
1,t

)
f
(
X, I∗1,t

) dX
+ E∗1,t

(
E1

E∗1,t
− ln

(
E1

E∗1,t

)
− 1

)

+ E∗2,t

(
E2

E∗2,t
− ln

(
E2

E∗2,t

)
− 1

)
+

...

+ E∗n,t

(
En
E∗n,t

− ln

(
En
E∗n,t

)
− 1

)
+
γ1 + δ

γ1
I∗1,t

(
I1
I∗1,t
− ln

(
I1
I∗1,t

)
− 1

)

+
γ2 + δ

γ2
I∗2,t

(
I2
I∗2,t
− ln

(
I2
I∗2,t

)
− 1

)
+

...

+
γn + δ

γn
I∗n,t

(
In
I∗n,t
− ln

(
In
I∗n,t

)
− 1

)
(4.26)

If we take the derivative of both sides of the equation (4.26) depending on t
(time):
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L3 (S,E1, E2, . . . , En, I1, I2, . . . , In)

=

(
1−

f
(
S∗t , I

∗
1,t

)
f
(
S, I∗1,t

) ) Ṡ
+

(
1−

E∗1,t
E1

)
Ė1

+

...

+

(
1−

E∗n,t
En

)
Ėn

+
γ1 + δ

γ1

(
1−

I∗1,t
I1

)
İ1

+

...

+
γn + δ

γn

(
1−

I∗n,t
In

)
İn(4.27)

It is easy to verify that

Λ = δS∗t + f
(
S∗t , I

∗
1,t

)
I∗1,t + f̃

(
S∗t , I

∗
2,t

)
I∗2,t

f
(
S∗t , I

∗
1,t

)
I∗1,t = (γ1 + δ)E∗1,t

f̃
(
S∗t , I

∗
2,t

)
I∗2,t = (γ2 + δ)E∗2,t

E∗1,t
I∗1,t

=
µ1 + δ

γ1

E∗2,t
I∗2,t

=
µ2 + δ

γ2

(4.28)

Consequently,
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L̇3 (S,E1, E2, . . . , En, I1, I2, . . . , In)

= δS∗t

(
1− S

S∗t

)(
1−

f
(
S∗t , I

∗
1,t

)
f
(
S, I∗1,t

) )

(γ1 + δ)E∗1,t

[
4−

(γ1 + δ)E∗1,t

f
(
S, I∗1,t

)
I∗1,t

− f (S, I1) I1
(γ1 + δ)E1

−
I∗1,tE1

I1E∗1,t
−
f
(
S, I∗1,t

)
f (S, I1)

]
...

+ (γ2 + δ)E∗2,t

[
f̃
(
S∗t , I

∗
2,t

)
f̃ (S, I2)

f
(
S, I∗1,t

)
f
(
S∗t , I

∗
1,t

)
+

f (S, I2)

f̃
(
S∗t , I

∗
2,t

) I2
I∗2,t
− I2
I∗2,t
− 1

]

+
f̃ (S, I2)

f̃
(
S∗t , I

∗
2,t

) f (S∗t , I∗1,t)
f
(
S, I∗1,t

) [f3 (S, I3) I3 + . . .+ fn (S, In) In]

− [(γ3 + δ)E3 + . . .+ (γn + δ)En](4.29)

With the help of the following inequality

(4.30) 1−
f
(
S∗t , I

∗
1,t

)
f
(
S, I∗1,t

) ≥ 0 for S ≥ S∗t

(4.31) 1−
f
(
S∗t , I

∗
1,t

)
f
(
S, I∗1,t

) < 0 for S < S∗t

Using the inequalities (4.30) and ( 4.31 ) then

(4.32)

(
1− S

S∗t

)(
1−

f
(
S∗t , I

∗
1,t

)
f
(
S, I∗1,t

) ) ≤ 0

by the relation between arithmetic and geometric means, we have

(4.33)

[
4−

(γ1 + δ)E∗1,t

f
(
S, I∗1,t

)
I∗1,t
− f (S, I1) I1

(γ1 + δ)E1
−
I∗1,tE1

I1E∗1,t
−
f
(
S, I∗1,t

)
f (S, I1)

]
≤ 0

[
4−

f
(
S∗t , I

∗
1,t

)
f
(
S, I∗1,t

) − f̃ (S, I2) I2
(γ2 + δ)E2

−
I∗2,tE2

I2E∗2,t

−
(γ2 + δ)E∗2,tf

(
S, I∗1,S1,t

)
f̃ (S, I2) f

(
S∗t , I

∗
1,t

)
I∗2,t

]
≤ 0(4.34)

from (4.16) we have
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[
f
(
S, I∗1,t

)
f (S, I1)

+
f (S, I1)

f
(
S, I∗1,t

) I1
I∗1,t
− I1
I∗1,t
− 1

]

=

(
1− f (S, I1)

f
(
S, I∗1,t

))(f (S, I∗1,t)
f (S, I1)

− I1
I∗1,t

)
≤ 0(4.35)

also from (4.25) we have[
f̃
(
S∗t , I

∗
2,t

)
f̃ (S, I2)

f
(
S, I∗1,t

)
f
(
S∗t , I

∗
1,t

) +
f̃ (S, I2)

f̃
(
S∗t , I

∗
2,t

) I2
I∗2,t
− I2
I∗2,t
− 1

]

= (1− Γ)

(
1

Γ
− I2
I∗2,t

)
≤ 0(4.36)

with Γ = f(S,I2)

f(S∗t ,I∗2,t

f(S∗i ,r
r
1,t)

f(S,I1,t)
.

When R1
0, R

2
0, . . . , R

n
0 > 1, the endemic equilibrium point εt is globally asymp-

totically stable.
�

5. Application of New Coronavirus Disease

As we mentioned in the introduction, the latest epidemic New Coronavirus Dis-
ease is a very kind of infection. For this reason, the main area of interest of this
subsection is the numerical simulations caused by our multi-species SEIR epidemic
model, Coronavirus disease 2019 in short ”COVID-19”, Middle East Respiratory
Syndrome in short ”MERS-CoV” and Severe Acute. Respiratory Failure Syndrome
(Severe Acute Respiratory Syndrome) is briefly compared with ”SARS-CoV” clin-
ical data. We used clinical data from Saudi Arabia during March-December 2020
for our comparison. [27, 28]

The behavior of the infection was examined for the Λ = 2.64, β1 = 4.27, β2 =
2.85, β3 = 2.13, γ1 = 7, γ2 = 2.5, γ3 = 5, µ1 = 0.001, µ2 = 0.005, µ3 = 0.087,
δ = 0.2, w1 = 1.2, w2 = 0.05, w3 = 1.2, w4 = 0.05, x1 = 0.4, x2 = 0.05, x3 = 0.4,
x4 = 0.05, α1 = 0.14, α2 = 0.145, α3 = 0.150 parameter values. If we write
down the parameter values in the mathematical model using different incidence
functions represented with the help of COVID-19, MERS-CoV and SARS-CoV
clinical data, we observe that there is a significant relationship in the numerical
simulations resulting from this. Therefore, due to the mathematical model, a good
agreement can be observed between the relation of infected cases with clinical data.
Numerical analysis with various incidence functions only fits clinical data very well
for a certain observation period. Therefore, multiple mathematical models with
generalized incidence functions are suitable to represent the disease under study.

The behavior of the infection was examined for the Λ = 2.34, β1 = 0.01, β2 =
0.01, β3 = 0.01, γ1 = 0.14, γ2 = 0.5, γ3 = 0.2, µ1 = 0.01, µ2 = 0.08, µ3 = 0.087,
δ = 0.2, w1 = 0.4, w2 = 0.5, w3 = 1.5, w4 = 2.8, x1 = 1.5, x2 = 2, x3 =
2.5, x4 = 3, α1 = 2, α2 = 2.5, α3 = 3 parameter values. We observe that the
solution of the model converges to the disease-free equilibrium point εf for different
incidence functions. In this case, the disease disappears, susceptible individuals
reach their maximum value and other parameters are lost. We can simply calculate
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the basic reproduction number within the given numerical values. Therefore, the
basic reproduction number of the Bilineer incidence function is R0 = 0.29846;
The base reproduction number of the Beddington-DeAngelis incidence function is
R0 = 0.05254; Basic reproduction number of Crowley-Martin incidence function
R0 = 0.20892; The basic reproduction number of the Non-monotonous incidence
function is calculated as R0 = 0.29846.

The behavior of the infection was examined for the Λ = 2.34, β1 = 7.54,
β2 = 7.25, β3 = 11.6, γ1 = 0.5, γ2 = 0.4, γ3 = 0.1, µ1 = 2.8, µ2 = 2.5, µ3 = 2,
δ = 0.2, w1 = 1.2, w2 = 0.05, w3 = 1.2, w4 = 0.05, x1 = 0.4, x2 = 0.05, x3 = 0.4,
x4 = 0.05, α1 = 0.14, α2 = 0.145, α3 = 0.150 parameter values. We draw at-
tention to the convergence of the solution to the endemic balance for all incidence
functions taken. As a matter of fact, the basic reproduction number of the Bi-
lineer incidence function is R0 = 2.963344; The base reproduction number of the
Beddington-DeAngelis incidence function is R0 = 1.03051; Basic reproduction num-
ber of Crowley-Martin incidence function R0 = 1.904111; The base reproduction
number of the Non-monotonous incidence function is calculated as R0 =1.776946
and is greater than 1. As a result of numerical simulations with clinical data of
COVID-19, MERS-CoV and SARS-CoV, we can reach a conclusion in harmony.
Our numerical simulations can evolve into two situations for this epidemic. In the
first case, the extinction of the disease and the other event occurs when the basic
reproduction number is greater than one; The disease will continue in this event.
It will be important whether strict measures such as quarantine, isolation, wearing
a mask, and disinfection will significantly reduce the spread of the epidemic during
this period of the disease.

6. Results and Discussion

In this study, we examined the overall incidence function of n and the global
stability of the multifarious epidemic model. The model consists of 4 parts: The
category of susceptible (S), exposed (E), infected (I), and recovered individuals (R),
this type of model is called SEIR abbreviation. We have established the presence,
positivity and limitation of the solution results that guarantee that our SEIR model
is well defined. Disease-free equilibrium point, endemic equilibrium point accord-
ing to Type-i and endemic equilibrium point according to each species. Using an
appropriate Lyapunov function, the global stability of the balance is determined
depending on the basic reproduction number R0 and the Type-i reproduction num-
ber Ri0. Numerical simulations are made to verify our different theoretical results.
Comparisons have been made between our model results and the numerical results
of the new coronavirus disease. There is a good correlation between numerical sim-
ulations and the numerical results of the new coronavirus disease, suggesting that
our multiple mathematical models can adapt and predict the evolution of the epi-
demic. We can suggest that strict measures such as quarantine, isolation, wearing
a mask, and disinfection can significantly reduce the spread of the epidemic during
this period of the disease.
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Abstract. Recently, the concept of picture fuzzy sets (pf -sets) has pro-
pounded as a generalization of intuitionistic fuzzy sets to overcome further

uncertainties than intuitionistic fuzzy uncertainties. In this paper, this concept

and some of its operations are modified to ensure its consistency. Afterwards,
some of the basic properties of the modified pf -sets are investigated. Finally,

the need for further research is discussed.

1. Introduction

Many problems in daily life contain various uncertainty. Since existing standard
mathematical tools may not model such uncertainties, new ones are needed. Fuzzy
sets [1], introduced to deal with uncertainty, are one of the well-known mathemat-
ical tools for the aforesaid purpose. The concept of fuzzy sets has been applied
many different fields from algebra to computer science [2]. In the fuzzy sets, the
element has a membership degree denoted by µ(x). We can easily calculate the
non-membership degree by subtracting the membership degree from 1 since the
sum of membership and non-membership degrees is equal to 1. However, this sum
may be less than 1 when the problems containing different uncertainty comes into
question. Shortly after the definition of fuzzy sets, intuitionistic fuzzy sets [3] have
been introduced as a generalisation of fuzzy sets to model such an uncertainty. In
the intuitionistic fuzzy sets, the membership degree is denoted by µ(x) similar to
those in fuzzy sets and the non-membership degree is denoted by ν(x). Thus, intu-
itionistic fuzzy sets can model the problems where µ(x) + ν(x) ≤ 1. Moreover, the
indeterminacy degree is 1 − (µ(x) + ν(x)) therein. Although fuzzy sets and intu-
itionistic fuzzy sets can model many problems [4], there is much more problems and
uncertainties in the real-life. For instance, in voting for an election, decisions of the
electorate may split into three types: Yes, no, and abstain. To model this problem
and the problems similar to this, Cuong has put forward the concept of picture
fuzzy sets (pf -sets) [5]. In the pf -sets, the membership, neutral membership, and
non-membership degrees are denoted by µ(x), η(x), and ν(x), respectively. Here,
the indeterminacy results from the refusal of the voting or non-participating in the

Date: May 25, 2021.
Key words and phrases. Fuzzy sets, Intuitionistic fuzzy sets, Picture fuzzy sets, Set theory.
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voting, and the indeterminacy degree is denoted by 1− (µ(x) + η(x) + ν(x)). De-
spite of the modelling success of pf -sets, Cuong’s definitions and operations have
theoretical inconsistencies. Therefore, this paper aims to redefine the concept of
pf -sets and their operations to ensure their consistency.

In Section 2 of the present study, concepts of fuzzy sets, intuitionistic fuzzy sets,
pf -sets, and basic operations of pf -sets are presented. In Section 3, the counter-
examples concerning Cuong’s definitions and operations are provided. In Section
4, the concept of pf -sets and some of its basic operations are redefined, and their
properties are investigated. Finally, the need for further research related to the new
definitions and operations of pf -sets is discussed.

2. Preliminaries

In this section, we present the concepts of fuzzy sets [1], intuitionistic fuzzy sets [3],
and picture fuzzy sets (pf -sets) [5] and some of pf -sets’ operators and properties
provided in [5] by considering the notations used throughout this paper.

Across this paper, let E be a parameter set, F (E) be the set of all fuzzy sets
over E, and µ ∈ F (E). Here, a fuzzy set is denoted by {µ(x)x : x ∈ E} instead of
{(x, µ(x)) : x ∈ E}.
Definition 2.1. [3] Let f is a function from E to [0, 1] × [0, 1]. Then, the set{
µ(x)
ν(x)x : x ∈ E

}
being the graphic of f is called an intuitionistic fuzzy set (if -set)

over E.
Here, for all x ∈ E, µ(x)+ν(x) ≤ 1. Moreover, µ and ν are called the membership

function and non-membership function, respectively, and π(x) = 1−(µ(x)+ν(x)) is
called the degree of indeterminacy of the element x ∈ E. Obviously, each ordinary

fuzzy set can be written as
{
µ(x)
1−µ(x)x : x ∈ E

}
.

Definition 2.2. [5] Let f is a function from E to [0, 1] × [0, 1] × [0, 1]. Then, the
set {(x, µ(x), η(x), ν(x)) : x ∈ E} being the graphic of f is called a picture fuzzy
set (pf -set) over E. Here, for all x ∈ E, µ(x) + η(x) + ν(x) ≤ 1 and a pf -set is

denoted by

{〈
µ(x)
η(x)
ν(x)

〉
x : x ∈ E

}
instead of {(x, µ(x), η(x), ν(x)) : x ∈ E}.

Moreover, µ, η, and ν are called the membership function, neutral membership
function, and non-membership function, respectively, and π(x) = 1−(µ(x)+η(x)+
ν(x)) is called the degree of indeterminacy of the element x ∈ E.

In the present paper, the set of all pf -sets over E is denoted by PF (E).

Definition 2.3. [5] Let f1, f2 ∈ PF (E). For all x ∈ E, if µ1(x) ≤ µ2(x), η1(x) ≤
η2(x), and ν1(x) ≥ ν2(x), then f1 is called a subset of f2 and is denoted by f1⊆̃f2.

Definition 2.4. [5] Let f1, f2 ∈ PF (E). If f1⊆̃f2 and f2⊆̃f1, then f1 and f2 are
called equal pf -sets and is denoted by f1 = f2.

Definition 2.5. [5] Let f1, f2, f3 ∈ PF (E). For all x ∈ E, if µ3(x) =
max{µ1(x), µ2(x)}, η3(x) = min{η1(x), η2(x)}, and ν3(x) = min{ν1(x), ν2(x)},
then f3 is called union of f1 and f2, and is denoted by f3 = f1∪̃f2.

Definition 2.6. [5] Let f1, f2, f3 ∈ PF (E). For all x ∈ E, if mu3(x) =
min{µ1(x), µ2(x)}, η3(x) = min{η1(x), η2(x)}, and ν3(x) = max{ν1(x), ν2(x)},
then f3 is called intersection of f1 and f2, and is denoted by f3 = f1∩̃f2.
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Definition 2.7. [5] Let f1, f2 ∈ PF (E). For all x ∈ E, if µ2(x) = ν1(x), η2(x) =
η1(x), and ν2(x) = µ1(x), then f2 is called complement of f1 and is denoted by
f2 = f c̃1 .

3. Motivations of the Redefining of Picture Fuzzy Sets

In this section, several counter-examples concerning Cuong’s definition of pf -sets
[5] and their inclusion, complement, and union definitions are presented. According
to Definition 2.3, the definitions of empty and universal pf -sets should be as in
Definition 3.1 and Definition 3.2, respectively, to be held the following conditions:

• Empty pf -set over E is a subset of all the pf -set over E.
• All pf -sets over E are the subset of universal pf -set over E.

Definition 3.1. Let f ∈ PF (E). For all x ∈ E, if µ(x) = 0, η(x) = 0, and

ν(x) = 1, then f is called empty pf -set and is denoted by

〈
0
0
1

〉
E or 0E .

Definition 3.2. Let f ∈ PF (E). For all x ∈ E, if µ(x) = 1, η(x) = 1, and

ν(x) = 0, then f is called universal pf -set and is denoted by

〈
1
1
0

〉
E or 1E .

Example 3.3. There is a contradiction in Definition 3.2 since 1 + 1 + 0 � 1, i.e.,
1E /∈ PF (E). On the other hand, even if 1E ∈ PF (E), (1E)c̃ 6= 0E .

Example 3.4. Let f ∈ PF (E) such that f =

{〈
0.1
0.2
0.3

〉
x

}
. Then, f ∪̃0E 6= f and

f ∪̃1E 6= 1E .

The concept of pf -sets and their operations should be redefined to overcome the
inconsistencies in Example 3.3 and 3.4.

4. Picture Fuzzy Sets and Some of Their Properties

In this section, we redefine the concepts of pf -sets and investigate some of their
properties according to new definition herein by considering the notations used
across this study.

Definition 4.1. Let f is a function from E to [0, 1]× [0, 1]× [0, 1]. Then, the set
{(x, µ(x), η(x), ν(x)) : x ∈ E} being the graphic of f is called a picture fuzzy set
(pf -set) over E. Here, for all x ∈ E, µ(x) + η(x) + ν(x) ≤ 2 and a pf -set is denoted

by

{〈
µ(x)
η(x)
ν(x)

〉
x : x ∈ E

}
instead of {(x, µ(x), η(x), ν(x)) : x ∈ E}.

Moreover, µ, η, and ν are called the membership function, neutral membership
function, and non-membership function, respectively, and π(x) = 2−(µ(x)+η(x)+
ν(x)) is called the degree of indeterminacy-membership of the element x ∈ E.

Manifestly, each ordinary fuzzy set can be written as

{〈
µ(x)

1
1− µ(x)

〉
x : x ∈ E

}
and

each intuitionistic fuzzy set can be written as

{〈
µ(x)

1
ν(x)

〉
x : x ∈ E

}
.

In the present paper, the set of all pf -sets over E is denoted by PF (E) and
f ∈ PF (E). In PF (E), since the graph(f) and f have generated each other
uniquely, the notations are interchangeable. Thus, we denote a pf -set graph(f) by
f as long as it does not cause any confusion.
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Example 4.2. Let E = {x1, x2, x3, x4}. Then,

f =

{〈
0.7
0.5
0.3

〉
x1,

〈
0.4
1

0.5

〉
x2,

〈
0.8
0

0.1

〉
x3,

〈
0
0
1

〉
x4

}
and

g =

{〈
0.6
0.8
0.2

〉
x1,

〈
0.2
0.1
1

〉
x2,

〈
0.3
0.9
0.4

〉
x3,

〈
0.9
1
0

〉
x4

}
are two pf -sets over E.

Definition 4.3. Let f ∈ PF (E). For all x ∈ E, if µ(x) = λ, η(x) = ε, and

ν(x) = ω, then f is called (λ, ε, ω)-pf -set and is denoted by

〈
λ
ε
ω

〉
E.

Definition 4.4. Let f ∈ PF (E). For all x ∈ E, if µ(x) = 0, η(x) = 1, and

ν(x) = 1, then f is called empty pf -set and is denoted by

〈
0
1
1

〉
E or 0E .

Definition 4.5. Let f ∈ PF (E). For all x ∈ E, if µ(x) = 1, η(x) = 0, and

ν(x) = 0, then f is called universal pf -set and is denoted by

〈
1
0
0

〉
E or 1E .

Definition 4.6. Let f1, f2 ∈ PF (E). For all x ∈ E, if µ1(x) ≤ µ2(x), η1(x) ≥ η2(x)
and ν1(x) ≥ ν2(x), then f1 is called a subset of f2 and is denoted by f1⊆̃f2.

Proposition 4.7. Let f, f1, f2, f3 ∈ PF (E). Then,

i. f⊆̃1E
ii. 0E⊆̃f
iii. f⊆̃f
iv.
[
f1⊆̃f2 ∧ f2⊆̃f3

]
⇒ f1⊆̃f3

Remark 4.8. From Proposition 4.7, it can be seen that the inclusion relation is a
partial ordering relation in PF (E).

Definition 4.9. Let f1, f2 ∈ PF (E). For all x ∈ E, if µ1(x) = µ2(x), η1(x) = η2(x)
and ν2(x) = ν1(x), then f1 and f2 are called equal pf -sets and is denoted by f1 = f2.

Definition 4.10. Let f1, f2 ∈ PF (E). if f1⊆̃f2 and f1 6= f2, then f1 is called a
proper subset of f2 and is denoted by f1(̃f2.

Proposition 4.11. Let f1, f2, f3 ∈ PF (E). Then,

i.
[
f1⊆̃f2 ∧ f2⊆̃f1

]
⇒ f1 = f2

ii. [f1 = f2 ∧ f2 = f3]⇒ f1 = f3

Definition 4.12. Let f1, f2, f3 ∈ PF (E). For all x ∈ E, if µ3(x) =
max{µ1(x), µ2(x)}, η3(x) = min{η1(x), η2(x)}, and ν3(x) = min{ν1(x), ν2(x)},
then f3 is called union of f1 and f2, and is denoted by f3 = f1∪̃f2.

Proposition 4.13. Let f, f1, f2, f3 ∈ PF (E). Then,

i. f ∪̃f = f
ii. f ∪̃1E = 1E
iii. f ∪̃0E = f
iv. f1∪̃f2 = f2∪̃f1

v. f1∪̃ (f2∪̃f3) = (f1∪̃f2) ∪̃f3

vi.
[
f1⊆̃f2 ⇒ f1∪̃f2 = f2

]
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Definition 4.14. Let f1, f2, f3 ∈ PF (E). For all x ∈ E, if µ3(x) =
min{µ1(x), µ2(x)}, η3(x) = max{η1(x), η2(x)}, and ν3(x) = max{ν1(x), ν2(x)},
then f3 is called intersection of f1 and f2, and is denoted by f3 = f1∩̃f2.

Proposition 4.15. Let f, f1, f2, f3 ∈ PF (E). Then,

i. f ∩̃f = f
ii. f ∩̃1E = f
iii. f ∩̃0E = 0E
iv. f1∩̃f2 = f2∩̃f1

v. f1∩̃ (f2∩̃f3) = (f1∩̃f2) ∩̃f3

vi.
[
f1⊆̃f2 ⇒ f1∩̃f2 = f1

]
Proposition 4.16. Let f, f1, f2, f3 ∈ PF (E). Then,

i. f1∪̃ (f2∩̃f3) = (f1∪̃f2) ∩̃ (f1∪̃f3)
ii. f1∩̃ (f2∪̃f3) = (f1∩̃f2) ∪̃ (f1∪̃f3)

Proof. i. Let f1, f2, f3 ∈ PF (E). Then, for all x ∈ E,

f1∪̃(f2∩̃f3) = f1∪̃
{〈

min {µ2(x), µ3(x)}
max {η2(x), η3(x)}
max {ν2(x), ν3(x)}

〉
x

}
=

{〈
max {µ1(x),min {µ2(x), µ3(x)}}
min {η1(x),max {η2(x), η3(x)}}
min {ν1(x),max {ν2(x), ν3(x)}}

〉
x

}
=

{〈
min {max {µ1(x), µ2(x)} ,max {µ1(x), µ3(x)}}
max {min {η1(x), η2(x)} ,min {η1(x), η3(x)}}
max {min {ν1(x), ν2(x)} ,min {ν1(x), ν3(x)}}

〉
x

}
=

{〈
max {µ1(x), µ2(x)}
min {η1(x), η2(x)}
min {ν1(x), ν2(x)}

〉
x

}
∩̃
{〈

max {µ1(x), µ3(x)}
min {η1(x), η3(x)}
min {ν1(x), ν3(x)}

〉
x

}
= (f1∪̃f2)∩̃(f1∪̃f3) �

Definition 4.17. Let f1, f2 ∈ PF (E). For all x ∈ E, if µ2(x) = ν1(x), η2(x) =
1− η1(x), and ν2(x) = µ1(x), then f2 is called complement of f1 and is denoted by
f2 = f c̃1 .

Proposition 4.18. Let f, f1, f2 ∈ PF (E).

i.
(
f c̃
)c̃

= f

ii. 0c̃E = 1E
iii. 1c̃E = 0E
iv. f1⊆̃f2 = f c̃2⊆̃f c̃1
Definition 4.19. Let f1, f2, f3 ∈ PF (E). For all x ∈ E, if µ3(x) =
min{µ1(x), ν2(x)}, η3(x) = max{η1(x), 1− η2(x)}, and ν3(x) = max{ν1(x), µ2(x)},
then f3 is called difference between f1 and f2, and is denoted by f3 = f1\̃f2.

Proposition 4.20. Let f, f1, f2 ∈ PF (E).

i. f \̃0E = f

ii. f \̃1E = 0E
iii. f1\̃f2 = f1∩̃f c̃2



130 S. MEMİŞ

Remark 4.21. It must be noted that the difference is non-commutative and non-

associative. For example, Let f1 =

{〈
0.3
0.2
0.4

〉
x

}
, f2 =

{〈
0.7
0.6
0.1

〉
x

}
, and f3 ={〈

0.5
0.8
0.2

〉
x

}
. Then,

i. f1\̃f2 =

{〈
0.1
0.4
0.7

〉
x

}
and f2\̃f1 =

{〈
0.4
0.8
0.3

〉
x

}
⇒ f1\̃f2 6= f2\̃f1

ii. f1\̃
(
f2\̃f3

)
=

{〈
0.3
0.4
0.4

〉
x

}
and

(
f1\̃f2

)
\̃f3 =

{〈
0.1
0.4
0.7

〉
x

}
⇒ f1\̃

(
f2\̃f3

)
6=(

f1\̃f2

)
\̃f3

Proposition 4.22. Let f1, f2 ∈ PF (E). Then, the De Morgan’s Laws are valid,

i. (f1∪̃f2)
c̃

= f c̃1 ∩̃f c̃2
ii. (f1∩̃f2)

c̃
= f c̃1 ∪̃f c̃2

Proof. i. Let f1, f2, f3 ∈ PF (E). Then,

(f1∪̃f2)
c̃

=

({〈
µ1(x)
η1(x)
ν1(x)

〉
x

}
∪̃
{〈

µ2(x)
η2(x)
ν2(x)

〉
x

})c̃
=

({〈
max {µ1(x), µ2(x)}
min {η1(x), η2(x)}
min {ν1(x), ν2(x)}

〉
x

})c̃
=

{〈
min {ν1(x), ν2(x)}

1−min {η1(x), η2(x)}
max {µ1(x), µ2(x)}

〉
x

}

=

{〈
min {ν1(x), ν2(x)}

max {1− η1(x), 1− η2(x)}
max {µ1(x), µ2(x)}

〉
x

}

=

{〈
ν1(x)

1− η1(x)
µ1(x)

〉
x

}
∩̃
{〈

ν2(x)
1− η2(x)
µ2(x)

〉
x

}

=

({〈
µ1(x)
η1(x)
ν1(x)

〉
x

})c̃
∩̃
({〈

µ2(x)
η2(x)
ν2(x)

〉
x

})c̃
= f c̃1 ∩̃f c̃2 �

Definition 4.23. Let f1, f2, f3 ∈ PF (E). For all x ∈ E,
if µ3(x) = max{min{µ1(x), ν2(x)},min{µ2(x), ν1(x)}}, η3(x) =
min{max{η1(x), 1 − η2(x)},max{η2(x), 1 − η1(x)}}, and ν3(x) =
min{max{ν1(x), µ2(x)},max{ν2(x), µ1(x)}}, then f3 is called symmetric dif-

ference between f1 and f2, and is denoted by f3 = f14̃f2.

Proposition 4.24. Let f, f1, f2 ∈ PF (E).

i. f4̃0E = f
ii. f4̃1E = f c̃

iii. f14̃f2 = f24̃f1

iv. f14̃f2 = (f1\̃f2)∪̃(f2\̃f1)
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Remark 4.25. It must be noted that the symmetric difference is non-associative.

For example, Let f1 =

{〈
0.3
0.2
0.4

〉
x

}
, f2 =

{〈
0.7
0.6
0.1

〉
x

}
, and f3 =

{〈
0.5
0.8
0.2

〉
x

}
. Since

f14̃
(
f24̃f3

)
=

{〈
0.3
0.4
0.5

〉
x

}
and

(
f14̃f2

)
4̃f3 =

{〈
0.3
0.4
0.4

〉
x

}
, then f14̃

(
f24̃f3

)
6=(

f14̃f2

)
4̃f3.

Definition 4.26. Let f1, f2 ∈ PF (E). If f1∩̃f2 = 0E , then f1 and f2 are called
disjoint pf -sets.

5. Conclusion

In this study, concept of pf -sets was redefined for its theoretical consistency.
Then, some of their basic properties were investigated and it was corroborated that
pf -sets became more functional.

Cuong has also offered the concept of pfs-sets [5], a hybrid version of pf -sets and
soft sets [6], immediately afterwards his defining of pf -sets in the same study. After
a while,pfs-sets have been redefined [7] without mentioned the Cuong’s defining
of pfs-sets and studied the properties of them. Yet, in these two study, concept
of pfs-sets has been introduced based on Cuong’s definition of pf -sets and they
have some inconsistencies just as pf -sets have. Therefore, examining the aforesaid
studies, redefining the concept of pfs-sets, and investigating their properties are
worthwhile to study.

6. Appendix

In the present study, the latex command utilised for the picture fuzzy environ-
ments, an example, and its output are as follows:

Command

\newcommand{\pfe}[3]{{\scriptsize\arraycolsep=3pt\def\arraystretch{1}
\left<\begin{array}{c}
\hspace{-0.1cm}#1\\
\hspace{-0.1cm}#2\\
\hspace{-0.1cm}#3
\end{array}\hspace{-0.1cm}\right>}\hspace{-0.025cm}}

Example Output

$f=\left\{\pfe{0.8}{0.1}{0.5}x\right\}$ f =


〈

0.8
0.1
0.5

〉
x


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Abstract. In this study firstly, we prove an identity for twice partially dif-

ferentiable mappings involving the double generalized fractional integral. By

using the this obtained identity, we establish some midpoint type inequalities
for differentiable co-ordinated convex functions. Furthermore, by special cases

of our main results, we obtain several new inequalities for Riemann-Liouville
fractional integrals and k-Riemann-Liouville fractional integrals.

1. Introduction

The inequalities, introduced by C. Hermite and J. Hadamard for convex func-
tions, are considerable topic in the literature. These inequalities state that if
σ : I → R is a convex function on the interval I of real numbers and ρ1, ρ2 ∈ I with
ρ1 < ρ2, then

(1.1) σ

(
ρ1 + ρ2

2

)
≤ 1

ρ2 − ρ1

ρ2∫
ρ1

σ(κ)dκ ≤ σ (ρ1) + σ (ρ2)

2
.

if σ is concave, then both inequalities in (1.1) hold to the reverse direction.
Over the years, considerable number of studies have been focused on obtaining

trapezoid and midpoint type inequalities which give bounds for the right-hand side
and left-hand side of the inequality (1.1), respectively. For example, Dragomir and
Agarwal first obtained trapezoid inequalities for convex functions in [6] and Kirmacı
first established midpoint inequalities for convex functions in [12]. In [18], Sarikaya
et al. generalized the inequalities (1.1) for fractional integrals and the authors
also proved some corresponding trapezoid type inequalities. Iqbal et al. presented
some fractional midpoint type inequalities for convex functions in [9]. On the other
hand, Dragomir proved Hermite-Hadamard inequalities for co-ordinated convex
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mappings in [5]. The midpoint and trapezoid type inequalities for co-ordinated
convex functions were established in the papers [13] and [17], respectively. More-
over, Sarikaya obtained fractional Hermite-Hadamard inequalities and fractional
trapezoid for functions with two variables in [20]. Tunç et al. presented some frac-
tional midpoint type inequalities for co-ordinated convex functions in [22]. In [16],
Sarikaya and Ertuğral first introduced new fractional integrals which are called gen-
eralized fractional integrals. In addition, they proved Hermite-Hadamard inequali-
ties and several trapezoids and midpoint type inequalities for generalized fractional
integrals. Furthermore, Turkay et al. described the generalized fractional integrals
for functions with two variables. These authors presented Hermite-Hadamard and
trapezoid type inequalities for this kind of fractional integrals in [23]. For the other
similar inequalities, please refer to [3, 4, 11, 14, 15, 19, 21].

2. Generalized fractional Integrals

In this section, we summarize the generalized fractional integrals defined by
Sarikaya and Ertuğral in [16].

Let us define a function ϕ : [0,∞)→ [0,∞) satisfying the following condition:∫ 1

0

ϕ (τ)

τ
dτ <∞.

We consider the following left-sided and right-sided generalized fractional integral
operators

(2.1) ρ1+Iϕσ(κ) =

∫ κ

ρ1

ϕ (κ− τ)

κ− τ
σ(τ)dτ, κ > ρ1

and

(2.2) ρ2−Iϕσ(κ) =

∫ ρ2

κ

ϕ (τ − κ)

τ − κ
σ(τ)dτ, κ < ρ2,

respectively.
Some forms of fractional integrals, namely, Riemann-Liouville fractional integral,

k-Riemann-Liouville fractional integral, Katugampola fractional integrals, conformable
fractional integral, Hadamard fractional integrals, etc are generalized as the most
significant feature of generalized fractional integrals. These important special cases
of the integral operators (2.1) and (2.2) are mentioned below:

(1) If we choose ϕ (τ) = τ, the operators (2.1) and (2.2) reduce to the Riemann
integral.

(2) Considering ϕ (τ) = τα

Γ(α) and α > 0, the operators (2.1) and (2.2) re-

duce to the Riemann-Liouville fractional integrals Jα
ρ1+

σ(κ) and Jαρ2−σ(κ),

respectively. Here, Γ is Gamma function.
(3) For ϕ (τ) = 1

kΓk(α)τ
α
k and α, k > 0, the operators (2.1) and (2.2) reduce

to the k-Riemann-Liouville fractional integrals Jα
ρ1+,k

σ(κ) and Jαρ2−,kσ(κ),

respectively. Here, Γk is k-Gamma function.

There are several papers on inequalities for generalized fractional integrals in the
literature. In [16], Sarikaya and Ertuğral also proved Hermite-Hadamard inequali-
ties for generalized fractional integrals. In addition, Budak et al. proved Midpoint
type inequalities and extensions of Hermite-Hadamard inequalities in the papers [1]
and [2], respectively. In [7], Ertuğral and Sarikaya presented some Simpson type
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inequalities for these fractional integral operators. For some of other papers on
inequalities for generalized fractional integrals, please refer to [7, 8, 10, 24, 25].

Generalized double fractional integrals are given by Turkay et al. in [23], as
follows:

Definition 2.1. The Generalized double fractional integrals ρ1+,ρ3+Iϕ,ψ, ρ1+,ρ4−Iϕ,ψ,

ρ2−,ρ3+Iϕ,ψ, ρ2−,ρ4−Iϕ,ψ are defined by
(2.3)

ρ1+,ρ3+Iϕ,ψσ (κ, γ) =

∫ κ

ρ1

∫ γ

ρ3

ϕ (κ− τ)

κ− τ
ψ (γ − ξ)
γ − ξ

σ (τ, ξ) dξdτ, κ > ρ1, γ > ρ3,

(2.4)

ρ1+,ρ4−Iϕ,ψσ (κ, γ) =

∫ κ

ρ1

∫ ρ4

γ

ϕ (κ− τ)

κ− τ
ψ (ξ − γ)

ξ − γ
σ (τ, ξ) dξdτ, κ > ρ1, γ < ρ4,

(2.5)

ρ2−,ρ3+Iϕ,ψσ (κ, γ) =

∫ ρ2

κ

∫ γ

ρ3

ϕ (τ − κ)

τ − κ
ψ (γ − ξ)
γ − ξ

σ (τ, ξ) dξdτ, κ < ρ2, γ > ρ3,

and
(2.6)

ρ2−,ρ4−Iϕ,ψσ (κ, γ) =

∫ ρ2

κ

∫ ρ4

γ

ϕ (τ − κ)

τ − κ
ψ (ξ − γ)

ξ − γ
σ (τ, ξ) dξdτ, κ < ρ2, γ < ρ4.

Here, σ ∈ L1([ρ1, ρ2] × [ρ3, ρ4]) and the functions ϕ,ψ : [0,∞) → [0,∞) satisfy∫ 1

0

ϕ (τ)

τ
dτ <∞ and

∫ 1

0

ψ (ξ)

ξ
dξ <∞, respectively.

By using Definition 2.1, well-known fractional integrals can be obtained by some
special choices. For example;

(1) If we choose ϕ (τ) = τ and ψ (ξ) = ξ, the operators (2.3), (2.4), (2.5) and
(2.6) reduce to the double Riemann integral.

(2) Considering ϕ (τ) = τα

Γ(α) , ψ (ξ) = ξβ

Γ(β) , then for α, β > 0, the operators

(2.3), (2.4), (2.5) and (2.6) reduce to the Riemann-Liouville fractional inte-

grals Jα,βρ1+,ρ3+σ (κ, γ), Jα,βρ1+,ρ4−σ (κ, γ) Jα,βρ2−,ρ3+σ (κ, γ) and Jα,βρ2−,ρ4−σ (κ, γ),
respectively.

(3) For ϕ (τ) = τ
α
k

kΓk(α) and ψ (ξ) = ξ
β
k

kΓk(β) , for α, β, k > 0, the operators (2.3),

(2.4), (2.5) and (2.6) reduce to the k-Riemann-Liouville fractional integrals

Jα,β,kρ1+,ρ3+σ (κ, γ) , Jα,β,kρ1+,ρ4−σ (κ, γ) , Jα,β,kρ2−,ρ3+σ (κ, γ) and Jα,β,kρ2−,ρ4−σ (κ, γ), re-
spectively.

3. An identity for Generalized double fractional integrals

Throughout this study for brevity, we define

(3.1) Λ1(κ, τ) =

1∫
τ

ϕ ((ρ2 − κ)u)

u
du, ∆1(κ, τ) =

1∫
τ

ϕ ((κ− ρ1)u)

u
du,
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and

(3.2) Λ2(γ, ξ) =

1∫
ξ

ψ ((ρ4 − γ)u)

u
du, ∆2(γ, ξ) =

1∫
ξ

ψ ((γ − ρ3)u)

u
du.

Moreover, we denote

Ξ1(κ) = Λ1(κ, 0) + ∆1(κ, 0)

Ξ2(γ) = Λ2(γ, 0) + ∆2(γ, 0)

Υ(κ, γ) = Ξ1(κ)Ξ2(γ).

Lemma 3.1. Let σ : ∆ := [ρ1, ρ2] × [ρ3, ρ4] → R be an absolutely continuous

function on ∆ such that the partial derivative of order ∂2σ(τ,ξ)
∂τ∂ξ exist for all (τ, ξ) ∈

∆. Then, the following equality for generalized fractional integrals holds:

Ω(ρ1, ρ2, κ; ρ3, ρ4, γ)

=
(κ− ρ1) (γ − ρ3)

Υ(κ, γ)

1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ

− (κ− ρ1) (ρ4 − γ)

Υ(κ, γ)

1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ

− (ρ2 − κ) (γ − ρ3)

Υ(κ, γ)

1∫
0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ

+
(ρ2 − κ) (ρ4 − γ)

Υ(κ, γ)

1∫
0

1∫
0

∆1(κ, τ)∆2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ,

where

Ω(ρ1, ρ2, κ; ρ3, ρ4, γ)

= σ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

− 1

Ξ2(γ)
[ ρ4−Iψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ) + ρ3+Iψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)]

− 1

Ξ1(κ)
[ ρ2−Iϕσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ) + ρ1+Iϕσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)]
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+
1

Υ(κ, γ)
[ ρ2−,ρ4−Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ) + ρ2−,ρ3+Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

+ ρ1+,ρ4−Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ) + ρ1+,ρ3+Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)] .

Proof. By using integration by parts, we have

H1 =

1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ

=
Λ1(κ, 0)Λ2(γ, 0)

(κ− ρ1) (γ − ρ3)
σ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

− Λ1(κ, 0)

(κ− ρ1) (γ − ρ3)
ρ4−Iψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

− Λ2(γ, 0)

(κ− ρ1) (γ − ρ3)
ρ2−Iϕσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)(3.3)

+
1

(κ− ρ1) (γ − ρ3)
ρ2−,ρ4−Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ),

H2 =

1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ

= − Λ1(κ, 0)∆2(γ, 0)

(κ− ρ1) (ρ4 − γ)
σ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

+
Λ1(κ, 0)

(κ− ρ1) (ρ4 − γ)
ρ3+Iψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)(3.4)

+
∆2(γ, 0)

(κ− ρ1) (ρ4 − γ)
ρ2−Iϕσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

− 1

(κ− ρ1) (ρ4 − γ)
ρ2−,ρ3+Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ),

H3 =

1∫
0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ

= −∆1(κ, 0)Λ2(γ, 0)

(ρ2 − κ) (γ − ρ3)
σ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

+
∆1(κ, 0)

(ρ2 − κ) (γ − ρ3)
ρ4−Iψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)
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+
Λ2(γ, 0)

(ρ2 − κ) (γ − ρ3)
ρ1+Iϕσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)(3.5)

− 1

(ρ2 − κ) (γ − ρ3)
ρ1+,ρ4−Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ),

and

H4 =

1∫
0

1∫
0

∆1(κ, τ)∆2(γ, ξ)

× ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ)) dξdτ

=
∆1(κ, 0)∆2(γ, 0)

(ρ2 − κ) (ρ4 − γ)
σ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

− ∆1(κ, 0)

(ρ2 − κ) (ρ4 − γ)
ρ3+Iψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)(3.6)

− ∆2(γ, 0)

(ρ2 − κ) (ρ4 − γ)
ρ1+Iϕσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

+
1

(ρ2 − κ) (ρ4 − γ)
ρ1+,ρ3+Iϕ,ψσ(ρ1 + ρ2 − κ, ρ3 + ρ4 − γ).

By using the Equations (3.3)-(3.6), we have

(κ− ρ1) (γ − ρ3)

Υ(κ, γ)
H1 −

(κ− ρ1) (ρ4 − γ)

Υ(κ, γ)
H2

− (ρ2 − κ) (γ − ρ3)

Υ(κ, γ)
H3 +

(ρ2 − κ) (ρ4 − γ)

Υ(κ, γ)
H4

= Ω(ρ1, ρ2, κ; ρ3, ρ4, γ)

which completes the proof of Lemma 3.1. �

4. New midpoint type inequalities for Generalized Fractional
Integrals

Theorem 4.1. Assume that the assumptions of Lemma 3.1 hold. Assume also

that the mapping
∣∣∣ ∂2σ
∂τ∂ξ

∣∣∣ is co-ordinated convex on ∆. Then, we obtain the following

inequality for generalized fractional integrals

|Ω(ρ1, ρ2, κ; ρ3, ρ4, γ)|

≤ (κ− ρ1) (γ − ρ3)

Υ(κ, γ)

[
A1B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣+A1B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣
+A2B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣+A2B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣]

+
(κ− ρ1) (ρ4 − γ)

Υ(κ, γ)

[
A1B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣+A1B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣
+A2B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣+A2B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣]
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+
(ρ2 − κ) (γ − ρ3)

Υ(κ, γ)

[
A4B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣+A4B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣
+A3B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣+A3B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣]

+
(ρ2 − κ) (ρ4 − γ)

Υ(κ, γ)

[
A4B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣+A4B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣
+A3B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣+A3B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣] .
Here,

(4.1)


A1 =

1∫
0

τΛ1(κ, τ)dτ, A2 =
1∫
0

(1− τ) Λ1(κ, τ)dτ,

A3 =
1∫
0

(1− τ) ∆1(κ, τ)dτ, A4 =
1∫
0

τ∆1(κ, τ)dτ,

and

(4.2)


B1 =

1∫
0

ξΛ2(γ, ξ)dξ, B2 =
1∫
0

(1− ξ) Λ2(γ, ξ)dξ,

B3 =
1∫
0

(1− ξ) ∆2(γ, ξ)dξ, B4 =
1∫
0

ξ∆2(γ, ξ)dξ.

Proof. By taking modulus in Lemma 3.1, we have

|Ω(ρ1, ρ2, κ; ρ3, ρ4, γ)|(4.3)

≤ (κ− ρ1) (γ − ρ3)

Υ(κ, γ)

1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
+

(κ− ρ1) (ρ4 − γ)

Υ(κ, γ)

1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
+

(ρ2 − κ) (γ − ρ3)

Υ(κ, γ)

1∫
0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
+

(ρ2 − κ) (ρ4 − γ)

Υ(κ, γ)

1∫
0

1∫
0

∆1(κ, τ)∆2(γ, ξ)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ.
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Since
∣∣∣ ∂2σ
∂τ∂ξ

∣∣∣ is co-ordinated convex, we get

1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)(4.4)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤

1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)

(
τξ

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣+ τ (1− ξ)
∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣
+ (1− τ) ξ

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣
+ (1− τ) (1− ξ)

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣) dξdτ
= A1B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣+A1B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣
+A2B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣+A2B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣ .
Similarly, we have

1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)(4.5)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤ A1B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣+A1B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣
+A2B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣+A2B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣ ,
1∫

0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)(4.6)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤ A4B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣+A4B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣
+A3B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣+A3B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣ ,
and

1∫
0

1∫
0

∆1(κ, τ)∆2(γ, ξ)(4.7)
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×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤ A4B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣+A4B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣
+A3B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣+A3B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣ .
If we substitute the inequalities (4.4)-(4.7) in (4.3), we obtain the desired result.
This ends the proof of Theorem 4.1. �

Remark 4.2. In Theorem 4.1, if we assign ϕ(τ) = τ and ψ(ξ) = ξ for all (τ, ξ) ∈ 4
and if we choose κ = ρ1+ρ2

2 and γ = ρ3+ρ4
2 , then Theorem 4.1 reduces to [13,

Theorem 2].

Corollary 1. In Theorem 4.1, if we assign ϕ(τ) = τα

Γ(α) and ψ(ξ) = ξβ

Γ(β) for all

(τ, ξ) ∈ 4 and if we choose κ = ρ1+ρ2
2 and γ = ρ3+ρ4

2 , then we have the following
midpoint type inequality for Riemann-Liouville fractional integrals∣∣∣∣σ(ρ1 + ρ2

2
,
ρ3 + ρ4

2

)

−2β−1Γ (β + 1)

(ρ4 − ρ3)
β

[
Jβρ4−σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jβρ3+σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)]

−2α−1Γ (α+ 1)

(ρ2 − ρ1)
α

[
Jαρ2−σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jαρ1+σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)]

+
2α+β−2Γ (α+ 1) Γ (β + 1)

(ρ2 − ρ1)
α

(ρ4 − ρ3)
β

×
[
Jα,βρ2−,ρ4−σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jα,βρ2−,ρ3+σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)

+Jα,βρ1+,ρ4−σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jα,βρ1+,ρ3+σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)]∣∣∣∣
≤ αβ (ρ2 − ρ1) (ρ4 − ρ3)

16 (α+ 1) (β + 1)

×
[∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣] .
Corollary 2. In Theorem 4.1, if we assign ϕ(τ) = τ

α
k

kΓk(α) and ψ(ξ) = ξ
β
k

kΓk(β) for all

(τ, ξ) ∈ 4 and if we choose κ = ρ1+ρ2
2 and γ = ρ3+ρ4

2 , then we have the following
midpoint type inequality for k-Riemann-Liouville fractional integrals∣∣∣∣σ(ρ1 + ρ2

2
,
ρ3 + ρ4

2

)

−2
β
k−1Γk (β + k)

(ρ4 − ρ3)
β
k

[
Jβρ4−,kσ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jβρ3+,kσ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)]
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−2
α
k−1Γk (α+ k)

(ρ2 − ρ1)
α
k

[
Jαρ2−,kσ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jαρ1+,kσ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)]

+
2
α+β
k −2Γk (α+ k) Γk (β + k)

(ρ2 − ρ1)
α
k (ρ4 − ρ3)

β
k

×
[
Jα,β,kρ2−,ρ4−σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jα,β,kρ2−,ρ3+σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)

+Jα,β,kρ1+,ρ4−σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)
+ Jα,β,kρ1+,ρ3+σ

(
ρ1 + ρ2

2
,
ρ3 + ρ4

2

)]∣∣∣∣
≤ αβ (ρ2 − ρ1) (ρ4 − ρ3)

16 (α+ k) (β + k)

×
[∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣] .
Theorem 4.3. Suppose that the assumptions of Lemma 3.1 hold. Suppose also

that the mapping
∣∣∣ ∂2σ
∂τ∂ξ

∣∣∣q , q > 1 is co-ordinated convex on ∆. Then, we get the

following inequality for generalized fractional integrals,

|Ω(ρ1, ρ2, κ; ρ3, ρ4, γ)|

≤ (κ− ρ1) (γ − ρ3)

2
2
q Υ(κ, γ)

 1∫
0

1∫
0

[Λ1(κ, τ)Λ2(γ, ξ)]
p
dξdτ


1
p

×
(∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

+
(κ− ρ1) (ρ4 − γ)

2
2
q Υ(κ, γ)

 1∫
0

1∫
0

[Λ1(κ, τ)∆2(γ, ξ)]
p
dξdτ


1
p

×
(∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

+
(ρ2 − κ) (γ − ρ3)

2
2
q Υ(κ, γ)

 1∫
0

1∫
0

[∆1(κ, τ)Λ2(γ, ξ)]
p
dξdτ


1
p

×
(∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q
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+
(ρ2 − κ) (ρ4 − γ)

2
2
q Υ(κ, γ)

 1∫
0

1∫
0

[∆1(κ, τ)∆2(γ, ξ)]
p
dξdτ


1
p

×
(∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

where 1
p + 1

q = 1 and Ω(ρ1, ρ2, κ; ρ3, ρ4, γ) are defined as in Lemma 3.1.

Proof. With the help of Hölder inequality and co-ordinated convexity of
∣∣∣ ∂2σ
∂τ∂ξ

∣∣∣q,
we have

1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)(4.8)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤

 1∫
0

1∫
0

[Λ1(κ, τ)Λ2(γ, ξ)]
p
dξdτ


1
p

×

 1∫
0

1∫
0

∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣q dξdτ


1
q

≤ 1

2
2
q

 1∫
0

1∫
0

[Λ1(κ, τ)Λ2(γ, ξ)]
p
dξdτ


1
p

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q)
+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

.

Similarly, we get

1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)(4.9)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤ 1

2
2
q

 1∫
0

1∫
0

[Λ1(κ, τ)∆2(γ, ξ)]
p
dξdτ


1
p

×
(∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
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+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

,

1∫
0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)(4.10)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤ 1

2
2
q

 1∫
0

1∫
0

[∆1(κ, τ)Λ2(γ, ξ)]
p
dξdτ


1
p

×
(∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

,

and

1∫
0

1∫
0

∆1(κ, τ)∆2(γ, ξ)(4.11)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤ 1

2
2
q

 1∫
0

1∫
0

[∆1(κ, τ)∆2(γ, ξ)]
p
dξdτ


1
p

×
(∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

.

By substituting the inequalities (4.8)-(4.11) in (4.3), we establish required result.
This is the end of the proof of Theorem 4.3. �

Theorem 4.4. Assume that the assumptions of Lemma 3.1 hold. If the mapping∣∣∣ ∂2σ
∂τ∂ξ

∣∣∣q , q ≥ 1 is co-ordinated convex on ∆, then we get the following inequality for

generalized fractional integrals

|Ω(ρ1, ρ2, κ; ρ3, ρ4, γ)|

≤ (κ− ρ1) (γ − ρ3)

Υ(κ, γ)

 1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)dξdτ

1− 1
q

×
[
A1B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣q +A1B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
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+A2B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +A2B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q]
1
q

+
(κ− ρ1) (ρ4 − γ)

Υ(κ, γ)

 1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)dξdτ

1− 1
q

×
[
A1B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣q +A1B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
+A2B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +A2B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q]
1
q

+
(ρ2 − κ) (γ − ρ3)

Υ(κ, γ)

 1∫
0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)dξdτ

1− 1
q

×
[
A4B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣q +A4B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+A3B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +A3B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q]
1
q

+
(ρ2 − κ) (ρ4 − γ)

Υ(κ, γ)

 1∫
0

1∫
0

∆1(κ, τ)∆2(γ, ξ)dξdτ

1− 1
q

×
[
A4B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣q +A4B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+A3B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +A3B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q]
1
q

.

Here, Ω(ρ1, ρ2, κ; ρ3, ρ4, γ) is defined as in Lemma 3.1, Ai, i = 1, 2, 3, 4 are defined
as in (4.1) and Bi, i = 1, 2, 3, 4 are defined as in (4.2).

Proof. Power mean inequality and co-ordinated convexity of
∣∣∣ ∂2σ
∂τ∂ξ

∣∣∣q yield

1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)(4.12)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤

 1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)dξdτ

1− 1
q
 1∫

0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣q dξdτ)
1
q
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≤

 1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)dξdτ

1− 1
q

 1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)

×
[
τξ

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣q + τ (1− ξ)
∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
+ (1− τ) ξ

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q
+ (1− τ) (1− ξ)

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q] dξdτ)
1
q

=

 1∫
0

1∫
0

Λ1(κ, τ)Λ2(γ, ξ)dξdτ

1− 1
q

×
(
A1B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ4)

∣∣∣∣q +A1B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
+A2B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +A2B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

.

Similarly, we have

1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)(4.13)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ2 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤

 1∫
0

1∫
0

Λ1(κ, τ)∆2(γ, ξ)dξdτ

1− 1
q

×
(
A1B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3)

∣∣∣∣q +A1B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ2, ρ3 + ρ4 − γ)

∣∣∣∣q
+A2B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +A2B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

,

1∫
0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)(4.14)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ4 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤

 1∫
0

1∫
0

∆1(κ, τ)Λ2(γ, ξ)dξdτ

1− 1
q
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A4B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ4)

∣∣∣∣q +A4B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+A3B1

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ4)

∣∣∣∣q +A3B2

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

,

and
1∫

0

1∫
0

∆1(κ, τ)∆2(γ, ξ)(4.15)

×
∣∣∣∣ ∂2

∂τ∂ξ
σ (τρ1 + (1− τ) (ρ1 + ρ2 − κ) , ξρ3 + (1− ξ) (ρ3 + ρ4 − γ))

∣∣∣∣ dξdτ
≤

 1∫
0

1∫
0

∆1(κ, τ)∆2(γ, ξ)dξdτ

1− 1
q

(
A4B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3)

∣∣∣∣q +A4B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1, ρ3 + ρ4 − γ)

∣∣∣∣q
+A3B4

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3)

∣∣∣∣q +A3B3

∣∣∣∣ ∂2

∂τ∂ξ
σ (ρ1 + ρ2 − κ, ρ3 + ρ4 − γ)

∣∣∣∣q)
1
q

.

If we substitute the inequalities (4.12)-(4.15) in (4.3), then we establish desired
result. This ends the proof of Theorem 4.4. �

5. Conclusions

We proved an identity for twice partially differentiable mappings involving the
double generalized fractional integral. This will lead to new research. The special
cases obtained show how valuable this study is. The new identity here can be
used in different studies. Researchers can do new studies with different types of
convexity.
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Abstract. In the present paper, we prove a new version of the Hermite-
Hadamard inequality for generalized fractional integrals. We also establish a

new identity for generalized fractional integrals. Furthermore, the fractional

integral operators have been applied to Hermite Hadamard type integral in-
equalities to provide their generalized properties.

1. Introduction & Preliminaries

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very significant in the literature (see, e.g.,[11, p.137], [5]). These inequalities
state that if ϕ : I → R is a convex function on the interval I of real numbers and
κ1, κ2 ∈ I with κ1 < κ2, then

ϕ

(
κ1 + κ2

2

)
≤ 1

κ2 − κ1

∫ κ2

κ1

ϕ(τ)dτ ≤ ϕ (κ1) + ϕ (κ2)

2
.

if ϕ is concave, then both inequalities hold in the reversed direction. Let us note
that Hadamard’s inequality may be regarded as a refinement of the concept of
convexity and it follows easily from Jensen’s inequality. Moreover, Hadamard’s
inequality for convex functions has been received considerable attention in recent
years and a remarkable variety of refinements and generalizations have been studied
extensively (see, for example, [1, 2, 5, 6, 11, 15, 16]).

On the other hand, a number of mathematicians have studied the fractional
integral inequalities and their applications using Riemann–Liouville fractional inte-
grals. For more information and result about Hermite–Hadamard type inequalities
involving fractional integrals, we refer the reader to [3, 4, 8, 12, 13, 14, 17, 19, 20]
and the references therein. In the following, we will give a brief synopsis of all nec-
essary definitions and results that will be required. More details, one can consult
[7, 9, 10].

Date: May 25, 2021.
Key words and phrases. Hermite-Hadamard’s inequalities, generalized fractional integral, in-

tegral inequalities.
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Definition 1.1. Let us consider ϕ ∈ L1[κ1, κ2]. The Riemann-Liouville fractional
integrals Jακ1+ϕ and Jακ2−ϕ of order α > 0 with κ1 ≥ 0 are defined by

Jακ1+ϕ(τ) =
1

Γ(α)

∫ τ

κ1

(τ − t)α−1
ϕ(t)dt, τ > κ1

and

Jακ2−ϕ(τ) =
1

Γ(α)

∫ κ2

τ

(t− τ)
α−1

ϕ(t)dt, τ < κ2,

respectively. Here, Γ(α) is the Gamma function and J0
κ1+ϕ(τ) = J0

κ2−ϕ(τ) = ϕ(τ).

In [13], Sarikaya et al. proved a variant of Hermite–Hadamard’s inequalities in
Riemann-Liouville fractional integral forms as follows:

Theorem 1.2. Let ϕ : [κ1, κ2] → R be a positive function with 0 ≤ κ1 < κ2 and
ϕ ∈ L1 [κ1, κ2] . If ϕ is a convex function on [κ1, κ2], then the following inequalities
for fractional integrals

ϕ

(
κ1 + κ2

2

)
≤ Γ(α+ 1)

2 (κ2 − κ1)
α

[
Jακ1+ϕ(κ2) + Jακ2−ϕ(κ1)

]
≤ ϕ (κ1) + ϕ (κ2)

2

is valid with α > 0.

Sarikaya et al. introduce the following generalized fractional integrals and they
also prove the corresponding Hermite-Hadamard inequality in [18].

Definition 1.3. [18] Let u : [κ1, κ2] → R be an increasing and positive monotone
function on (κ1, κ2) and ϕ, u ∈ L [κ1, κ2] with κ1 < κ2. The generalized Riemann-

Liouville fractional integrals Jα,kκ1+,uϕ and Jα,kκ2−,uϕ of order α > 0 with κ1 ≥ 0 are
defined by

Jα,kκ1+,u (ϕ) (τ) =
1

Γ(α)

∫ τ

κ1

(τ − t)α−1
(u(τ)− u(t))

k
ϕ(t)dt, τ > κ1

and

Jα,kκ2−,u (ϕ) (τ) =
1

Γ(α)

∫ κ2

τ

(t− τ)
α−1

(u(t)− u(τ))
k
ϕ(t)dt, τ < κ2

provided that the integrals exist, respectively, k ∈ N ∪ {0}.

Theorem 1.4. [18] Let ϕ : [κ1, κ2] → R be a convex function on [κ1, κ2] and u :
[κ1, κ2]→ R be an increasing and positive monotone function on (κ1, κ2) and ϕ, u ∈
L [κ1, κ2] with κ1 < κ2. Then, Θ is also integrable and the following inequalities for
fractional integral operators

ϕ

(
κ1 + κ2

2

)[
Jα,kκ1+,u (1) (κ2) + Jα,kκ2−,u (1) (κ1)

]
(1.1)

≤ 1

2

[
Jα,kκ1+,u (Θ) (κ2) + Jα,kκ2−,u (Θ) (κ1)

]
≤

[
Jα,kκ1+,u (1) (κ2) + Jα,kκ2−,u (1) (κ1)

] ϕ(κ1) + ϕ(κ2)

2

is valid with α > 0 and k ∈ N ∪ {0}.

The aim of this paper is to establish new variant of the inequality (1.1) and to
obtaint some corresponding midpoint type inequalities.
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2. New Hermite-Hadamard type inequalities

Let us start with some notations given in [8] for obtaining our results. Let
ϕ : I◦ → R be a function such that κ1, κ2 ∈ I◦ and 0 < κ1 < κ2 <∞. Throughout
this article, we suppose that Θ(τ) = ϕ(τ) +ϕ(κ1 + κ2 − τ) for τ ∈ [κ1, κ2]. Then it
is easy to show that if ϕ is a convex function, then Θ is also convex function.

Now, we prove a new version of the Hermite-Hadamard inequality (1.1).

Theorem 2.1. Suppose ϕ : [κ1, κ2] → R is a convex function on [κ1, κ2] and u :
[κ1, κ2]→ R is an increasing, positive monotone function on (κ1, κ2) . Suppose also
ϕ, u ∈ L [κ1, κ2] with κ1 < κ2. Then, Θ is also integrable and we have the following
Hermite-Hadamard inequalities for generalized fractional integral operators

ϕ

(
κ1 + κ2

2

)[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
(2.1)

≤ 1

2

[
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]

≤
[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
ϕ(κ1) + ϕ(κ2)

2

for α > 0 and k ∈ N ∪ {0}.

Proof. Since ϕ is an convex mapping on [κ1, κ2] , we have

ϕ

(
τ + y

2

)
≤ ϕ(τ) + ϕ(y)

2

for τ, y ∈ [κ1, κ2] . Now, for t ∈ [0, 1] , let us note that τ = t
2κ1 + 2−t

2 κ2 and

y = 2−t
2 κ1 + t

2κ2. Then, we find that

(2.2) 2ϕ

(
κ1 + κ2

2

)
≤ ϕ

(
t

2
κ1 +

2− t
2

κ2

)
+ ϕ

(
2− t

2
κ1 +

t

2
κ2

)
.

If we multiply both sides of inequality (2.2) by tα−1
(
u(κ2)− u

(
t
2κ1 + 2−t

2 κ2

))k
and

integrate the resulting inequality with respect to t over [0, 1] , then the following
inequality holds:

ϕ

(
κ1 + κ2

2

) 1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
dt

≤ 1

2

 1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
ϕ

(
t

2
κ1 +

2− t
2

κ2

)
dt

+

1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
ϕ

(
2− t

2
κ1 +

t

2
κ2

)
dt

 .
Using the change of variable y = t

2κ1 + 2−t
2 κ2, we obtain

ϕ

(
κ1 + κ2

2

)(
2

κ2 − κ1

)α κ2∫
κ1+κ2

2

(κ2 − y)
α−1

(u(κ2)− u (y))
k
dy
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≤ 1

2

( 2

κ2 − κ1

)α κ2∫
κ1+κ2

2

(κ2 − y)
α−1

(u(κ2)− u (y))
k
ϕ (y) dy

+

(
2

κ2 − κ1

)α κ2∫
κ1+κ2

2

(κ2 − y)
α−1

(u(κ2)− u (y))
k
ϕ (κ1 + κ2 − y) dy


=

1

2

(
2

κ2 − κ1

)α κ2∫
κ1+κ2

2

(κ2 − y)
α−1

(u(κ2)− u (y))
k

[ϕ (y) + ϕ (κ1 + κ2 − y)] dy.

That is

(2.3) ϕ

(
κ1 + κ2

2

)
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) ≤ 1

2
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2).

Similarly, if we multiply both sides of (2.2) by tα−1
(
u
(

2−t
2 κ1 + t

2κ2

)
− u(κ1)

)k
and

integrate the resulting inequality with respect to t over [0, 1] , we have

ϕ

(
κ1 + κ2

2

) 1∫
0

tα−1

(
u

(
2− t

2
κ1 +

t

2
κ2

)
− u(κ1)

)k
dt

≤ 1

2

 1∫
0

tα−1

(
u

(
2− t

2
κ1 +

t

2
κ2

)
− u(κ1)

)k
ϕ

(
t

2
κ1 +

2− t
2

κ2

)
dt

+

1∫
0

tα−1

(
u

(
2− t

2
κ1 +

t

2
κ2

)
− u(κ1)

)k
ϕ

(
2− t

2
κ1 +

t

2
κ2

)
dt

 .
Using the change of variable y = 2−t

2 κ1 + t
2κ2, we get

(2.4) ϕ

(
κ1 + κ2

2

)
Jα,k
(κ1+κ2

2 )−,u
(1) (κ1) ≤ 1

2
Jα,k
(κ1+κ2

2 )−,u
(Θ) (κ1).

If we collect the inequalities (2.3) and (2.4), then the following inequality holds:

ϕ

(
κ1 + κ2

2

)[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
≤ 1

2

[
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]
.

This completes the proof of first part of inequality in (2.1).
For the proof of the second part of inequality in (2.1), since ϕ is convex, we have

(2.5) ϕ

(
t

2
κ1 +

2− t
2

κ2

)
+ ϕ

(
2− t

2
κ1 +

t

2
κ2

)
≤ [ϕ(κ1) + ϕ(κ2)] .
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If we multiply both sides of inequality (2.5) by tα−1
(
u(κ2)− u

(
t
2κ1 + 2−t

2 κ2

))k
and integrate the resulting inequality with respect to t over [0, 1] , then we obtain

1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
ϕ

(
t

2
κ1 +

2− t
2

κ2

)
dt

+

1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
ϕ

(
2− t

2
κ1 +

t

2
κ2

)
dt

≤ [ϕ(κ1) + ϕ(κ2)]

1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
dt.

Then, we get

(2.6) Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) ≤ [ϕ(κ1) + ϕ(κ2)] Jα,k

(κ1+κ2
2 )+,u

(1) (κ2).

Similarly, multiplying both sides of (2.5) by tα−1
(
u
(

2−t
2 κ1 + t

2κ2

)
− u(κ1)

)k
and

integrating the resulting inequality with respect to t over [0, 1] , we get

(2.7) Jα,k
(κ1+κ2

2 )−,u
(Θ) (κ1) ≤ [ϕ(κ1) + ϕ(κ2)] Jα,k

(κ1+κ2
2 )−,u

(1) (κ1).

By adding the inequalities (2.6) and (2.7), we have

1

2

[
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]
≤

[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
ϕ(κ1) + ϕ(κ2)

2
.

This is the end of the proof of Theorem 2.1. �

Remark 2.2. If we choose k = 0 in Theorem 2.1, then we have the inequality

ϕ

(
κ1 + κ2

2

)
≤ 2α−1Γ (α+ 1)

(κ2 − κ1)
α

[
Jα
(κ1+κ2

2 )+
ϕ(κ2) + Jα

(κ1+κ2
2 )−

ϕ(κ1)

]
≤ ϕ(κ1) + ϕ(κ2)

2

which is proved by Sarikaya and Yıldırım in [12].

Corollary 1. Let us consider u(t) = t in Theorem 2.1. Then, we have the following
inequality for Riemann-Liouville fractional integrals

ϕ

(
κ1 + κ2

2

)
≤ 2α+k−1Γ(α+ k + 1)

(κ2 − κ1)
α+k

[
Jα+k

(κ1+κ2
2 )+

ϕ(κ2) + Jα+k

(κ1+κ2
2 )−

ϕ (κ1)

]
≤ ϕ(κ1) + ϕ(κ2)

2
.

Proof. From Definition 1.3 with u(t) = t, we have

Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) =

1

Γ(α)

κ2∫
κ1+κ2

2

(κ2 − y)
α+k−1

Θ (y) dy

=
1

Γ(α)

κ2∫
κ1+κ2

2

(κ2 − y)
α+k−1

ϕ (y) dy
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+
1

Γ(α)

κ1+κ2
2∫

κ1

(t− κ1)
α+k−1

ϕ (t) dy

=
Γ(α+ k)

Γ(α)

[
Jα+k

(κ1+κ2
2 )+

ϕ(κ2) + Jα+k

(κ1+κ2
2 )−

ϕ(κ1)

]
and similarly,

(2.8) Jα,k
(κ1+κ2

2 )−,u
(Θ) (κ1) =

Γ(α+ k)

Γ(α)

[
Jα+k

(κ1+κ2
2 )+

ϕ(κ2) + Jα+k

(κ1+κ2
2 )−

ϕ(κ1)

]
.

On the other hand, we get

(2.9) Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) =

1

(α+ k) Γ(α)

(
κ2 − κ1

2

)α+k

and

(2.10) Jα,k
(κ1+κ2

2 )−,u
(1) (κ1) =

1

(α+ k) Γ(α)

(
κ2 − κ1

2

)α+k

.

By using the equalities (2.8)-(2.10), we obtain the desired result. �

3. New Midpoint type inequalities

Now, we give a new identity for generalized fractional integrals and we present
some new midpoint type inequalities.

Lemma 3.1. Assume ϕ : [κ1, κ2] → R is a differentiable function on (κ1, κ2)
and assume also u : [κ1, κ2] → R is an increasing and positive monotone function
on (κ1, κ2) with κ1 < κ2. If ϕ′, u ∈ L [κ1, κ2] , then Θ is also differentiable and
Θ ∈ L [κ1, κ2] . Then the following equality

1

2

[
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]
−
[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
ϕ

(
κ1 + κ2

2

)

=
(κ2 − κ1)

α+1

2α+2Γ(α)

1∫
0

Gk(u; t)Θ′
(
t

2
κ1 +

2− t
2

κ2

)
dt

is valid. Here, Θ′(y) = ϕ′(y)− ϕ′(κ1 + κ2 − y) and

Gk(u; t) =

t∫
0

sα−1

[(
u(κ2)− u

(
s

2
κ1 +

2− s
2

κ2

))k
(3.1)

+

(
u

(
2− s

2
κ1 +

s

2
κ2

)
− u (κ1)

)k]
ds.

Proof. With the help of the integration by parts, we have

1∫
0

Gk(u; t)Θ′
(
t

2
κ1 +

2− t
2

κ2

)
dt(3.2)
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= − 2

κ2 − κ1
Gk(u; t)Θ

(
t

2
κ1 +

2− t
2

κ2

)∣∣∣∣1
0

+
2

κ2 − κ1

1∫
0

tα−1

[(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k

+

(
u

(
2− t

2
κ1 +

t

2
κ2

)
− u (κ1)

)k]
Θ

(
t

2
κ1 +

2− t
2

κ2

)
dt

= − 2

κ2 − κ1
Gk(u; 1)Θ

(
κ1 + κ2

2

)

+
2

κ2 − κ1

1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
Θ

(
t

2
κ1 +

2− t
2

κ2

)
dt

+
2

κ2 − κ1

1∫
0

tα−1

(
u

(
2− t

2
κ1 +

t

2
κ2

)
− u (κ1)

)k
Θ

(
t

2
κ1 +

2− t
2

κ2

)
dt.

By Definition 1.3, we obtain

Gk(u; 1) =

1∫
0

sα−1

(
u(κ2)− u

(
s

2
κ1 +

2− s
2

κ2

))k
ds(3.3)

+

1∫
0

sα−1

(
u

(
2− s

2
κ1 +

s

2
κ2

)
− u (κ1)

)k
ds

=

(
2

κ2 − κ1

)α κ2∫
κ1+κ2

2

(κ2 − t)α−1
(u(κ2)− u (t))

k
dt

+

(
2

κ2 − κ1

)α κ1+κ2
2∫

κ1

(t− κ1)
α−1

(u (t)− u (κ1))
k
dt

= Γ (α)

(
2

κ2 − κ1

)α [
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
.

On the other hand, we get

1∫
0

tα−1

(
u(κ2)− u

(
t

2
κ1 +

2− t
2

κ2

))k
Θ

(
t

2
κ1 +

2− t
2

κ2

)
dt(3.4)

=

(
2

κ2 − κ1

)α κ2∫
κ1+κ2

2

(κ2 − t)α−1
(u(κ2)− u (t))

k
Θ(t)dt

= Γ (α)

(
2

κ2 − κ1

)α
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2).
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Similarly, we have

1∫
0

tα−1

(
u

(
2− t

2
κ1 +

t

2
κ2

)
− u (κ1)

)k
Θ

(
t

2
κ1 +

2− t
2

κ2

)
dt(3.5)

= Γ (α)

(
2

κ2 − κ1

)α
Jα,k
(κ1+κ2

2 )−,u
(Θ) (κ1).

If we substitute the equalities (3.3)-(3.5) in (3.2), then we have

1∫
0

Gk(u; t)Θ′
(
t

2
κ1 +

2− t
2

κ2

)
dt(3.6)

= −Γ (α)

(
2

κ2 − κ1

)α+1 [
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
Θ

(
κ1 + κ2

2

)
+Γ (α)

(
2

κ2 − κ1

)α+1 [
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]
.

By using the fact that Θ
(
κ1+κ2

2

)
= 2ϕ

(
κ1+κ2

2

)
and multiplying both sides of

(3.6) by 1
2Γ(α)

(
κ2−κ1

2

)α+1
, we obtain the desired result. �

Theorem 3.2. Let ϕ : [κ1, κ2] → R be a differentiable function on (κ1, κ2) , u :
[κ1, κ2]→ R be an increasing and positive monotone function on (κ1, κ2) and ϕ′, u ∈
L [κ1, κ2] with κ1 < κ2. If |ϕ′| is convex on [κ1, κ2] , then the following inequality
holds: ∣∣∣∣12

[
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]
(3.7)

−
[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
ϕ

(
κ1 + κ2

2

)∣∣∣∣
≤ (κ2 − κ1)

α+1

2α+2Γ(α)
[|ϕ′ (κ1)|+ |ϕ′ (κ2)|]

1∫
0

|Gk(u; t)| dt.

Proof. By taking modulus in Lemma 3.1, we obtain∣∣∣∣12
[
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]
−
[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
ϕ

(
κ1 + κ2

2

)∣∣∣∣
≤ (κ2 − κ1)

α+1

2α+2Γ(α)

1∫
0

|Gk(u; t)|
∣∣∣∣Θ′( t2κ1 +

2− t
2

κ2

)∣∣∣∣ dt.
Since Θ′(y) = ϕ′(y)− ϕ′(κ1 + κ2 − y) and |ϕ′| is convex, we have∣∣∣∣Θ′( t2κ1 +

2− t
2

κ2

)∣∣∣∣ =

∣∣∣∣ϕ′( t2κ1 +
2− t

2
κ2

)
− ϕ′

(
2− t

2
κ1 +

t

2
κ2

)∣∣∣∣(3.8)

≤
∣∣∣∣ϕ′( t2κ1 +

2− t
2

κ2

)∣∣∣∣+

∣∣∣∣ϕ′(2− t
2

κ1 +
t

2
κ2

)∣∣∣∣
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≤ |ϕ′ (κ1)|+ |ϕ′ (κ2)| .

By the inequality (3.8), we get∣∣∣∣12
[
Jα,k
(κ1+κ2

2 )+,u
(Θ) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(Θ) (κ1)

]
−
[
Jα,k
(κ1+κ2

2 )+,u
(1) (κ2) + Jα,k

(κ1+κ2
2 )−,u

(1) (κ1)

]
ϕ

(
κ1 + κ2

2

)∣∣∣∣
≤ (κ2 − κ1)

α+1

2α+2Γ(α)
[|ϕ′ (κ1)|+ |ϕ′ (κ2)|]

1∫
0

|Gk(u; t)| dt.

This finishes the proof of Theorem 3.2. �

Remark 3.3. If we choose k = 0 in Theorem 3.2, then we have∣∣∣∣2α−1Γ(α+ 1)

(κ2 − κ1)
α

[
Jα
(κ1+κ2

2 )+
ϕ(κ2) + Jα

(κ1+κ2
2 )−

ϕ(κ1)

]
− ϕ

(
κ1 + κ2

2

)∣∣∣∣
≤ κ2 − κ1

4 (α+ 1)
[|ϕ′ (κ1)|+ |ϕ′ (κ2)|] ,

which is proved by Sarikaya and Yıldırım in [12].

Corollary 2. If we assign u(t) = t in Theorem 3.2, then we have the inequality
for Riemann-Liouville fractional integrals∣∣∣∣∣2α+k−1Γ(α+ k + 1)

(κ2 − κ1)
α+k

[
Jα+k

(κ1+κ2
2 )+

ϕ(κ2) + Jα+k

(κ1+κ2
2 )−

ϕ(κ1)

]
− ϕ

(
κ1 + κ2

2

)∣∣∣∣∣
≤ (κ2 − κ1)

4 (α+ k + 1)
[|ϕ′ (κ1)|+ |ϕ′ (κ2)|] .

Proof. By using equality (3.1) with u(t) = t, we obtain

Gk(u; t) =

t∫
0

sα−1

[(
s

(
κ2 − κ1

2

))k
+

(
s

(
κ2 − κ1

2

))k]
ds

= 2

(
κ2 − κ1

2

)k t∫
0

sα+k−1ds

=
2

α+ k

(
κ2 − κ1

2

)k
tα+k

and
1∫

0

|Gk(u; t)| dt =
2

(α+ k) (α+ k + 1)

(
κ2 − κ1

2

)k
.

This completes the proof of Corollary 2. �



158 F. HEZENCI, H. BUDAK, AND H. KARA

4. Conclusions

In this research paper, we established new Hermite-Hadamard inequality for
generalized fractional integrals which are defined Sarikaya et al. in [18]. Some
midpoint type inequalities are also presented. In the future works, authors can
provide some corresponding trapezoid type inequalities. It can also be studied to
obtain similar inequalities for the different types of convexities.
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Abstract. In this work, we obtained the spherical images of a curve according
to type-2 Bishop frame in three dimensional Weyl space. We investigated the

relations among type-2 Bishop and Frenet-Serret invariants of these spherical

images. Besides, we expressed the conditions to be general helix, slant helix
and spherical curve of the spherical images. For this reason, we discussed the

equivalents of the above concepts in Weyl space. We have seen that, all of

these concepts are expressed depending on the first and second curvatures of a
curve and hence Bishop curvatures. Also, we gave the definition of circle and

the condition to be circle of a curve in Weyl space, using prolonged covariant
derivative. Finally, the condition to be the Chebyshev net of the first kind

for the net which is generated by Frenet-Serret vector fields of the spherical

images of C was obtained.

1. Introduction

Bishop frame, which is also called alternative or parallel frame of the curves,
was introduced by L.R. Bishop in 1975 by means of parallel vector fields [1]. Many
researchers used this frame in their papers, in the Euclidean space, see [4, 5]; in
Minkowksi space, see [6–11, 20]; in Lorentzian space, see [3]; in Weyl space , see
[13]. Bishop and Frenet-Serret frames have a common vector field, namely the
tangent vector field of the Frenet-Serret frame. Later, Yılmaz and Turgut [19]
have introduced a new version of Bishop frame and they called it as type-2 Bishop
frame. This time, the common vector field of Bishop and Frenet-Serret frames was
binormal vector field of Frenet-Serret frame. Yılmaz and Turgut, by using type-2
Bishop frame, obtained new spherical images of a curve in Euclidean space. This
frame was used in Euclidean space, see [2, 17, 22]; in Minkowski space, see [21, 23];
in Weyl space, see [14].
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Key words and phrases. Weyl space, Spherical image, General helix, Slant helix, Spherical

curve.
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2. Preliminaries

Let C be a curve in three dimensioanl Weyl space W3. Let {v
1
, v

2
, v

3
, κ1, κ2} and

{n
1
, n

2
, v

3
, k1, k2} be the Frenet-Serret and type-2 Bishop apparatus of C, respectively.

Frenet-Serret formulas of C are expressed in the following form:

v
1

k∇̇kv
1

i = κ1v
2

i

v
1

k∇̇kv
2

i = −κ1v
1

i + κ2v
3

i(2.1)

v
1

k∇̇kv
3

i = −κ2v
2

i (i, k = 1, 2, 3)

where κ1 =
2

S
1

and κ2 = − 2
τ
31

[14] and also the derivatives of type-2 Bishop vector

fields are:

v
1

k∇̇kn
1

i = −k1v
3

i

v
1

k∇̇kn
2

i = −k2v
3

i(2.2)

v
1

k∇̇kv
3

i = k1n
1

i + k2n
2

i

where k1 =
1
τ
31

sin θ +
2
τ
31

cos θ(θ = ^(v
2

i, n
1

i)) or k1 =
p
τ
31
v
p

in
1

jgij = gij a
31

in
1

j(j, p =

1, 2, 3) and k2 = − 1
τ
31

cos θ +
2
τ
31

sin θ or k2 =
p
τ
31
v
p

in
2

jgij = gij a
31

in
2

j [14]. The vector

fields a
31

i =
p
τ
31
v
p

i are named as the Chebyshev vector fields of the first kind [15].

Besides k1 = −κ2 cos θ, k2 = −κ2 sin θ, κ1 = v
1

k∇̇kθ(θ = θ(s)) and κ2 =
√
k2

1 + k2
2

[14]. The relation between the vector fields of Frenet-Serret frame and type-2 Bishop
frame can be expressed as

(2.3)


v
1

i

v
2

i

v
3

i

 =

 sin θ − cos θ 0
cos θ sin θ 0

0 0 1




n
1

i

n
2

i

v
3

i

 .

3. Some Special Curves in Weyl Space

Definition 3.1. Let C : xi = xi(s) ( s is the arc length parameter of C ) be a
curve in three dimensional Weyl space. C is called a general helix if the tangent
vector field v

1
of C has constant angle ϕ with some fixed vector field u, i.e.,

(3.1) gijv
1

iuj = cosϕ = constant

where gijv
1

iv
1

j = 1 and giju
iuj = 1.

Theorem 3.2. C is a general helix if and only if

κ2

κ1
= constant

where κ1 and κ2 are the first and second curvatures of C.
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Proof. Let C be a general helix in W3. By means of Definition 3.1, gijv
1

iuj =

cosϕ = constant can be written. Taking prolonged covariant derivative of this
equality in the direction of v

1
, we get

gij(v
1

k∇̇kv
1

i)uj = 0(3.2)

gijv
2

iuj = 0 (κ1 6= 0)(3.3)

where v
2

is the principal normal vector field of C and gijv
2

iv
2

j = 1. From (3.3), we

can write

(3.4) uj = αv
1

j + βv
3

j

where α = gjhu
jv

1

h = cosϕ and β = gjhu
jv

3

h = cos(π2 − ϕ) = sinϕ

(h = 1, 2, 3). Here v
3

is the binormal vector field of C and gijv
3

iv
3

j = 1.

Using α and β in (3.4), we get

(3.5) uj = cosϕv
1

j + sinϕv
3

j .

Taking prolonged covariant derivative of (3.5) in the direction of v
1
, we obtain

(3.6) (κ1 cosϕ− κ2 sinϕ)v
2

j = 0

or

(3.7) κ1 cosϕ− κ2 sinϕ = 0

or

(3.8)
κ2

κ1
=

cosϕ

sinϕ
= cotϕ = constant.

Its converse is also true.
Using [8], the following proposition can be given

Proposition 3.3. If C is a slant helix,

(3.9)
κ2

1

(κ2
1 + κ2

2)3/2

(
v
1

k∇̇k
κ2

κ1

)
= constant

is satisfied.

By means of [18], the following proposition can be expressed:

Proposition 3.4. If C is a spherical curve,

(3.10)
κ2

κ1
+ v

1

l∇̇l
[

1

κ2

(
v
1

k∇̇k
1

κ1

)]
= 0

is satisfied.

With the help of [16], we can express the following definition and proposition:

Definition 3.5. C is called a circle if there exists a vector field zi and a positive
constant k such that

v
1

k∇̇kv
1

i = kzi(3.11)

v
1

k∇̇kzi = −kv
1

i(3.12)

where gijz
izj = 1.



THE SPHERICAL IMAGES OF A CURVE ACCORDING TO TYPE-2 BISHOP FRAME IN WEYL SPACE163

Proposition 3.6. If C is a circle, the equation

(3.13) v
1

l∇̇l
(
v
1

k∇̇kv
1

i
)

+ gij

(
v
1

k∇̇kv
1

i
)(

v
1

k∇̇kv
1

j
)
v
1

i = 0

is satisfied (l = 1, 2, 3). Conversely, if C satisfies (3.13), C is either a geodesic or a
circle.

4. The Spherical Images of a Curve in Weyl Space

Definition 4.1. Let C : xi = xi(s) be a curve in W3. If we translate of the first
vector field of type-2 Bishop frame to the center O of the unit sphere S2, we obtain
a spherical image C̄ : yi = yi(s̄) (s̄ is the arc length parameter of C̄). C̄ is called n

1

Bishop spherical image or indicatrix of the curve C.

Let us investigate the relations between type-2 Bishop and Frenet-Serret invari-
ants:

Taking prolonged covariant derivative of yi in the direction of v
1
, we get

v
1

k∇̇kyi = −k1v
3

i(4.1) (
v̄
1

k ˙̄∇kyi
)
A = −k1v

3

i(4.2)

v̄
1

iA = −k1v
3

i(4.3)

where v̄
1

is the tangent vector field of C̄, gij v̄
1

iv̄
1

j = 1 and A = A(s).

Taking norm of both sides of (4.3), we obtain

(4.4) A = ∓k1.

Let us take A = −k1. Then we get

(4.5) v̄
1

i = v
3

i.

Taking prolonged covariant derivative of (4.5) in the direction of v
1
, we get

v
1

k∇̇kv̄
1

i =
(
v̄
1

k ˙̄∇kv̄
1

i
)
A = v

1

k∇̇kv
3

i(4.6)

κ̄1v̄
2

i(−k1) = k1n
1

i + k2n
2

i(4.7)

κ̄1v̄
2

i = −n
1

i − k2

k1
n
2

i(4.8)

Taking norm of both sides of (4.8), we have

(4.9) κ̄1 =

√
1 +

(
k2

k1

)2

=

√√√√√1 +

[
gij a

31

in
2

j

gij a
31

in
1

j

]2

and

(4.10) v̄
2

i = − 1

κ̄1
n
1

i − 1

κ̄1

k2

k1
n
2

i
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where v̄
2

is the principal normal vector field of C̄, gij v̄
2

iv̄
2

j = 1 and κ̄1 is the first

curvature of C̄.
v̄
3

is the binormal vector field of C̄ and we know that

(4.11) v̄
3

i = εijkv̄
1

j v̄
2

k.

Using (4.5) and (4.10) in (4.11), we have

(4.12) v̄
3

i =
1

κ̄1

k2

k1
n
1

i − 1

κ̄1
n
2

i.

Taking prolonged covariant derivative of (4.12) in the direction of v
1
, we get

v
1

k ˙̄∇kv̄
3

i =
(
v̄
1

k∇̇kv̄
3

i
)

(A) = −κ̄2v̄
2

i(−k1) =

=

(
v
1

k∇̇k
1

κ̄1

)
k2

k1
n
1

i +
1

κ̄1

(
v
1

k∇̇k
k2

k1

)
n
1

i −
(
v
1

k∇̇k
1

κ̄1

)
n
2

i(4.13)

and multiplying (4.13) by gij v̄
2

j , we obtain

(4.14) κ̄2 = −
k1

(
v
1

k∇̇k k2k1
)

k2
1 + k2

2

= −

(
gij a

31

in
1

j
)

(
gij a

31

in
1

j
)2

+
(
gij a

31

in
2

j
)2

v
1

k∇̇k

gij a31

in
2

j

gij a
31

in
1

j


where κ̄2 is the second curvature of C̄.

Corollary 4.2. Let C̄ be n
1

Bishop spherical curve of C. If k2
k1

= constant, then, n
1

Bishop spherical image yi = yi(s̄) is a circle.

Using Proposition 3.3, we get

v
1

l∇̇l
(
v
1

k∇̇kv̄
1

i
)

= v
1

l∇̇l
(
v
1

k∇̇kv
3

i
)

=

=
(
v
1

l∇̇lk1

)
n
1

i +
(
v
1

l∇̇lk2

)
n
2

i −
(
k2

1 + k2
2

)
v
3

i,(4.15)

and on the other hand

(4.16) gij

(
v
1

k∇̇kv̄
1

i
)(

v
1

k∇̇kv̄
1

j
)
v̄
1

i = gij

(
v
1

k∇̇kv
3

i
)(

v
1

k∇̇kv
3

j
)
v
3

i =
(
k2

1 + k2
2

)
v
3

i.

Summing (4.15) and (4.16), we get

(4.17) v
1

l∇̇l
(
v
1

k∇̇kv̄
1

i
)

+ gij

(
v
1

k∇̇kv̄
1

i
)(

v
1

k∇̇kv̄
1

j
)
v̄
1

i =
(
v
1

l∇̇lk1

)
n
1

i +
(
v
1

l∇̇lk2

)
n
2

i.

Using k1 = −κ2 cos θ and k2 = −κ2 sin θ, we get

(4.18) v
1

l∇̇lk1 = v
1

l∇̇l (−κ2 cos θ) = −
(
v
1

l∇̇lκ2

)
cos θ + κ2

(
v
1

k∇̇kθ
)

sin θ

and

(4.19) v
1

l∇̇lk2 = v
1

l∇̇l (−κ2 sin θ) = −
(
v
1

l∇̇lκ2

)
sin θ − κ2

(
v
1

l∇̇lθ
)

cos θ

where θ = θ(s) = arctan k2
k1

and v
1

k∇̇kθ =
v
1

k∇̇k
k2
k1

1+
(

k2
k1

)2 . We know that κ2 =
√
k2

1 + k2
2,

then we have
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v
1

k∇̇kκ2 = v
1

k∇̇k

√√√√k2
1

[
1 +

(
k2

k1

)2
]

=

=
1√

k2
1 + k2

2

{
k1

(
v
1

k∇̇kk1

)[k2
1 + k2

2

k2
1

]
+ k2

1

k2

k1

(
v
1

k∇̇k
k2

k1

)}(4.20)

=
1√

k2
1 + k2

2

−k1

(
v
1

k∇̇kk1

) (
k2

1 + k2
2

) 1(
v
1

k∇̇k k1k2
)
k2

2

(
v
1

k∇̇k
k2

k1

)
+ k2

1

k2

k1

(
v
1

k∇̇k
k2

k1

) .

If k2
k1

= constant, v
1

k∇̇kθ = 0 and v
1

k∇̇kκ2 = 0 are obtained. This means

v
1

l∇̇kk1 = 0 and v
1

l∇̇kk2 = 0. Using these results in (4.17), we obtain

v
1

l∇̇l
(
v
1

k∇̇kv̄
1

i
)

+ gij

(
v
1

k∇̇kv̄
1

i
)(

v
1

k∇̇kv̄
1

j
)
v̄
1

i = 0,

i.e. C̄ : yi = yi(s̄) is a circle. Besides, let us note that κ̄1 = constant and κ̄2 = 0.

Theorem 4.3. Let C̄ : yi = yi(s̄) be n
1

Bishop spherical image of C. If yi = yi(s̄)

is a general helix, then

k2
1

(
v
1

k∇̇k k2k1
)

(k2
1 + k2

2)
3/2

= constant

is satisfied.

Theorem 4.4. Let C̄ : yi = yi(s̄) be n
1

Bishop spherical image of C. If yi = yi(s̄)

is a slant helix, then

k1(k2
1 + k2

2)4

(k2
1 + k2

2)3 + k4
1

[
v
1

k∇̇k k2k1
]2 v1l∇̇l

k2
1

(
v
1

k∇̇k k2k1
)

(k2
1 + k2

2)
3/2

 = constant

Since C̄ : yi = yi(s̄) is a spherical curve, by means of Proposition 3.4, we can
express the following theorem:

Theorem 4.5. Let C̄ : yi = yi(s̄) be n
1

Bishop spherical image of C. The following

equation

k2
1

(
v
1

k∇̇k k2k1
)

(k2
1 + k2

2)
3/2

+ v
1

k∇̇k
k1k2√
k2

1 + k2
2

= constant

is satisfied.

Theorem 4.6. Let C̄ : yi = yi(s̄) be n
1

Bishop spherical image of C. If k2
k1

=

constant, then the the net
(
v̄
1
, v̄

2
, v̄

3

)
is the Chebyshev net of the first kind.

Proof. We know that
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v
1

k∇̇kv̄
3

i =
(
v̄
1

k ˙̄∇kv̄
3

k
)

(−k1) =

=

(
v
1

k∇̇k
k2

k1

)
1

κ̄1
n
1

i +
k2

k1

(
v
1

k∇̇k
1

κ̄1

)
n
1

i −
(
v
1

k∇̇k
1

κ̄1

)
n
2

i(4.21)

or

v̄
1

k ˙̄∇kv̄
3

i = ā
31

i =

= − 1

k1

(
v̄
1

k ˙̄∇k
k2

k1

)
1

κ̄1
n
1

i − k2

k2
1

(
v
1

k∇̇k
1

κ̄1

)
n
1

i − 1

k1

(
v
1

k∇̇k
1

κ̄1

)
n
2

i.(4.22)

Using

(4.23) v
1

k∇̇k
1

κ̄1
= − k1k2

(k2
1 + k2

2)
3/2

(
v
1

k∇̇k
k2

k1

)
,

under the condition k2
k1

= constant, we obtain from (4.22)

(4.24) ā
31

i = 0.

From the equation (4.24), we have seen that the net
(
v̄
1
, v̄

2
, v̄

3

)
is the Chebyshev net

of the first kind.

Definition 4.7. Let C : xi = xi(s) be a curve in W3. If we translate of the second
vector field of type-2 Bishop frame to the center O of the unit sphere S2, we obtain
a spherical image D̄ : zi = zi(s̄) (s̄ is the arc length parameter of D̄). D̄ is called
n
2

Bishop spherical image or indicatrix of the curve C.

Let us investigate the relations between type-2 Bishop and Frenet-Serret invari-
ants:

Taking prolonged covariant derivative of zi in the direction of v
1
, we get

v
1

k ˙̄∇kzi = −k2v
3

i(4.25) (
v̄
1

k ˙̄∇kzi
)
B = −k2v

3

i(4.26)

v̄
1

iB = −k2v
3

i(4.27)

where v̄
1

is the tangent vector field of D̄, gij v̄
1

iv̄
1

j = 1 and B = B(s). Taking norm

of both sides of (4.27), we obtain

(4.28) B = ∓k2.

Let us take B = −k2. Then we get

(4.29) v̄
1

i = v
3

i.
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Taking prolonged covariant derivative of (4.29) in the direction of v
1
, we get

v
1

k∇̇kv̄
1

i =
(
v̄
1

k ˙̄∇kv̄
1

i
)
B = v

1

k∇̇kv
3

i(4.30)

L̄1v̄
2

i(−k2) = k1n
1

i + k2n
2

i(4.31)

L̄1v̄
2

i = −k1

k2
n
1

i − n
2

i.(4.32)

Taking norm of both sides of (4.32), we have

(4.33) L̄1 =

√(
k1

k2

)2

+ 1 =

√√√√√[gij a31

in
1

j

gij a
31

in
2

j

]2

+ 1

and

(4.34) v̄
2

i = − 1

L̄1

k1

k2
n
1

i − 1

L̄1
n
2

i

where v̄
2

is the principal normal vector field of D̄, gij v̄
2

iv̄
2

j = 1 and L̄1 is the first

curvature of D̄.
v̄
3

is the binormal vector field of D̄ and we know that

(4.35) v̄
3

i = εijkv̄
1

j v̄
2

k.

Using (4.29) and (4.34) in (4.35), we have

(4.36) v̄
3

i = − 1

L̄1

k1

k2
n
2

i +
1

L̄1
n
1

i.

Taking prolonged covariant derivative of (4.36) in the direction of v
1
, we get

v
1

k∇̇kv̄
3

i =
(
v̄
1

k ˙̄∇kv̄
3

i
)

(B) = −L̄2v̄
2

i(−k2) =

= −
(
v
1

k∇̇k
1

L̄1

)
k1

k2
n
2

i − 1

L̄1

(
v
1

k∇̇k
k1

k2

)
n
2

i +

(
v
1

k∇̇k
1

L̄1

)
n
1

i(4.37)

and multiplying (4.37) by gij v̄
2

j , we obtain

(4.38) L̄2 =
k2

k2
1 + k2

2

(
v
1

k∇̇k
k1

k2

)
=

gij a
31

in
2

j(
gij a

31

in
1

j
)2

+
(
gij a

31

in
2

j
)2 v1

k∇̇k

gij a31

in
1

j

gij a
31

in
2

j


where L̄2 is the second curvature of D̄.

Corollary 4.8. Let D̄ be n
2

Bishop spherical image of C. If k1
k2

= constant, then,

n
2

Bishop spherical image zi = zi(s̄) is a circle.

Let us note that L̄1 = constant and L̄2 = 0 under the condition k1
k2

= constant.

Theorem 4.9. Let D̄ : zi = zi(s̄) be n
2

Bishop spherical image of C. If zi = zi(s̄)

is a general helix, then

k2
2

(
v
1

k∇̇k k1k2
)

(k2
1 + k2

2)
3/2

= constant
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is satisfied.

Theorem 4.10. Let D̄ : zi = zi(s̄) be n
z

Bishop spherical image of C. If zi = zi(s̄)

is a slant helix, then

k1(k2
1 + k2

2)4

(k2
1 + k2

2)3 + k4
2

[
v
1

k∇̇k k1k2
]2 v1l∇̇l

k2
2

(
v
1

k∇̇k k1k2
)

(k2
1 + k2

2)
3/2

 = constant

is satisfied.

Since D̄ : zi = zi(s̄) is a spherical curve, by means of Proposition 3.4, we can
express the following theorem:

Theorem 4.11. Let D̄ : zi = zi(s̄) be n
2

Bishop spherical image of C. The following

equation

k2
2

(
v
1

k∇̇k k1k2
)

(k2
1 + k2

2)
3/2
− v

1

k∇̇k
k1k2√
k2

1 + k2
2

= constant

is satisfied.

Theorem 4.12. Let D̄ : zi = zi(s̄) be n
2

Bishop spherical image of C. If k1
k2

=

constant, then the net
(
v̄
1
, v̄

2
, v̄

3

)
is the Chebyshev net of the first kind.

Proof. We know that

v
1

k∇̇kv̄
3

i =
(
v̄
1

k ˙̄∇kv̄
3

k
)

(−k2) =

= −
(
v
1

k∇̇k
1

L̄1

)
k1

k2
n
2

i − 1

L̄1

(
v
1

k∇̇k
k1

k2

)
n
2

i +

(
v
1

k∇̇k
1

L̄1

)
n
1

i(4.39)

or

v̄
1

k ˙̄∇kv̄
3

i = ā
31

i =

(4.40)

=
1

k2

(
v
1

k∇̇k
1

L̄1

)
k1

k2
n
2

i +
1

k2

1

L̄1

(
v
1

k∇̇k
k1

k2

)
n
2

i − 1

k2

(
v
1

k∇̇k
1

L̄1

)
n
1

i.

Using

(4.41) v
1

k∇̇k
1

L̄1
= − k1k2

(k2
1 + k2

2)
3/2

(
v
1

k∇̇k
k1

k2

)
,

under the condition k1
k2

= constant, we obtain from (4.40)

(4.42) ā
31

i = 0.

From (4.42), the net
(
v̄
1
, v̄

2
, v̄

3

)
is the Chebyshev net of the first kind.

Definition 4.13. Let C : xi = xi(s) be a curve in W3. If we translate of the third
vector field of type-2 Bishop frame to the center O of the unit sphere S2, we obtain
a spherical image Ē : ωi = ωi(s̄) (s̄ is the arc length parameter of Ē). Ē is called
binormal Bishop spherical image or indicatrix of the curve C.
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Let us investigate the relations between type-2 Bishop and Frenet-Serret invari-
ants:

Taking prolonged covariant derivative of ωi in the direction of v
1
, we get

v
1

k∇̇kωi = k1n
1

i + k2n
2

i(4.43) (
v̄
1

k ˙̄∇kωi
)
F = k1n

1

i + k2n
2

i(4.44)

v̄
1

iF = k1n
1

i + k2n
2

i(4.45)

where v̄
1

is the tangent vector field of Ē, gij v̄
1

iv̄
1

j = 1 and F = F (s).

Taking norm of both sides of (4.45), we obtain

(4.46) F = ∓
√
k2

1 + k2
2.

Let us take F =
√
k2

1 + k2
2. Then we get

(4.47) v̄
1

i =
k1√
k2

1 + k2
2

n
1

i +
k2√
k2

1 + k2
2

n
2

i.

Taking prolonged covariant derivative of (4.47) in the direction of v
1
, we get

(4.48) v
1

k∇̇kv̄
1

i =
k3

2

(
v
1

k∇̇k k1k2
)

(k2
1 + k2

2)3/2
n
1

i +
k3

1

(
v
1

k∇̇k k2k1
)

(k2
1 + k2

2)3/2
n
2

i −
√
k2

1 + k2
2v

3

i

Using v
1

k∇̇kv̄
1

i =
(
v̄
1

k ˙̄∇kv̄
1

i
)
F and F =

√
k2

1 + k2
2, we get from (4.48)

(4.49) v̄
1

k ˙̄∇kv̄
1

i = N̄1v̄
2

i =
k3

2

(
v
1

k∇̇k k1k2
)

(k2
1 + k2

2)2
n
1

i +

(
k3

1v
1

k∇̇k k2k1
)

(k2
1 + k2

2)2
n
2

i − v
3

i

where N̄1 is the first curvature of Ē, v̄
2

is the principal normal vector field of Ē and

gij v̄
2

iv̄
2

i = 1.

Taking norm of both sides of (4.49), we have

(4.50) N̄1 =

√√√√√√
k3

2

(
v
1

k∇̇k k1k2
)

(k2
1 + k2

2)2


2

+

k3
1

(
v
1

k∇̇k k2k1
)

(k2
1 + k2

2)2


2

+ 1

and hence

(4.51) v̄
2

i =
1

N̄1

k3
2

(
v
1

k∇̇k k1k2
)

(k2
1 + k2

2)2
n
1

i +
1

N̄1

k3
1

(
v
1

k∇̇k k2k1
)

(k2
1 + k2

2)2
n
2

i − 1

N̄1
v
3

i.

Since v̄
3

i = εijkv̄
1

j v̄
2

k, we have the binormal vector field of Ē as:

v̄
3

i =
1

N̄1

[
k4

1

(k2
1 + k2

2)5/2

(
v
1

k∇̇k
k2

k1

)
− k4

2

(k2
1 + k2

2)5/2

(
v
1

k∇̇k
k1

k2

)]
v
3

i

+
1

N̄1

k1√
k2

1 + k2
2

n
2

i − 1

N̄1

k2√
k2

1 + k2
2

n
1

i(4.52)
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where gij v̄
3

iv̄
3

j = 1.

Taking prolonged covariant derivative of (4.52) in the direction of v
1

and multi-

plying gij v̄
2

j , we have

N̄2 =
1

k4
1

[
v
1

k∇̇k k2k1
]2

+ (k2
1 + k2

2)3

{
− 3k2

1

(
v
1

k∇̇kk1

)(
v
1

k∇̇kk2

)
+

+ 3k1k2

(
v
1

k∇̇kk1

)(
v
1

k∇̇kk1

)
− 3k2k1

(
v
1

k∇̇kk2

)(
v
1

k∇̇kk2

)
+

+ 3k2
2

(
v
1

k∇̇kk2

)(
v
1

k∇̇kk1

)
+
[
v
1

l∇̇l
(
v
1

k∇̇kk2

)]
k1(k2

1 + k2
2)+

+
[
v
1

l∇̇l
(
v
1

k∇̇kk1

)]
k2(k2

1 + k2
2)
}

(4.53)

where N̄2 is the second curvature of Ē.
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Abstract. In this paper, we prove some fixed-disc results using new contra-
tions. To do this, we define the notions of Jleli-Samet type x0-S-contraction

and Li-Jiang type x0-S-contraction. Also, we obtain an equivalent theorem
using these type contractions Finally, we give an illustrative example.

1. Introduction and preliminaries

Fixed-point theory has been extensively studied with various aspects. One of
these aspects is to generalize the used metric spaces. For example, an S-metric
space are a generalization of a metric space [12]. After the notion of an S-metric
space was introduced, many researchers have proved some fixed-point theorems on
this space (for example, see [5], [6], [7], [13] and the references therein).

Recently, “Fixed-Circle Problem” has been investigated as a geometric general-
ization of the fixed-point theory. This problem was presented in [8]. After then,
fixed-circle problem has been studied on S-metric spaces with different approaches
(for example, see [4], [9], [10], [14] and the references therein).

At first, we recall some necessary notions about S-metric spaces.

Definition 1.1. [12] Let X be a nonempty set and S : X ×X ×X → [0,∞) be a
function satisfying the following conditions for all x, y, z, a ∈ X :

(S1) S(x, y, z) = 0 if and only if x = y = z,
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then S is called an S-metric on X and the pair (X,S) is called an S-metric

space.

Lemma 1.2. [12] Let (X,S) be an S-metric space and x, y ∈ X. Then we have

S(x, x, y) = S(y, y, x).

In [10] and [12], a circle and a disc are defined on an S-metric space as follows,
respectively:

Date: May 25, 2021.
Key words and phrases. Fixed disc, S-metric space, Jleli-Samet type x0-S-contraction, Li-

Jiang type x0-S-contraction.
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CSx0,r = {x ∈ X : S (x, x, x0) = r}
and

DS
x0,r = {x ∈ X : S (x, x, x0) ≤ r} .

Let (X,S) be an S-metric space, CSx0,r be a circle and g : X → X be a self-

mapping. If gx = x for every x ∈ CSx0,r (resp. x ∈ DS
x0,r) then the circle CSx0,r (the

disc DS
x0,r) is called as the fixed circle (the fixed disc) of g (see [4] and [10] for more

details).
In this paper, we define the notions of Jleli-Samet type x0-S-contraction and Li-

Jiang type x0-S-contraction on S-metric spaces modifying some known contractions
(see [2], [3] and [11]). Using these notions, we prove two fixed-disc theorems and
an equivalence theorem. Also, we give an illustrative example to show the validity
of fixed-disc results.

2. Main results

In this section, we introduce some contractions and prove new fixed-disc results.

Definition 2.1. Let (X,S) be an S-metric space and g : X → X a self-mapping.
If there exists x0 ∈ X such that

S(x, x, gx) > 0 =⇒ ϕ (S(x, x, gx)) ≤ [ϕ (S(x, x, x0))]
α

,

for all x ∈ X, where α ∈ (0, 1) and the function ϕ : (0,∞)→ (1,∞) is such that ϕ
is nondecreasing, then g is called Jleli-Samet type x0-S-contraction.

Theorem 2.2. Let (X,S) be an S-metric space, g : X → X Jleli-Samet type
x0-S-contraction with x0 ∈ X and the number r defined as

(2.1) r = inf {S(x, x, gx) : x 6= gx, x ∈ X} .

Then g fixes the disc DS
x0,r.

Proof. Let r = 0. Then we have DS
x0,r = {x0}. To show gx0 = x0, we assume

x0 6= gx0, that is, S (x0, x0, gx0) > 0. Using the Jleli-Samet type x0-S-contraction
hypothesis we get

ϕ (S(x0, x0, gx0)) ≤ [ϕ (S(x0, x0, x0))]
α

= [ϕ(0)]
α

,

a contradiction with the definition of ϕ. So it should be gx0 = x0.
Now, we suppose r > 0 and x ∈ DS

x0,r is an arbitrary point such that S(x, x, gx) >
0. From the hypothesis and the definition of r, we obtain

ϕ (S(x, x, gx)) ≤ [ϕ (S(x, x, x0))]
α ≤ [ϕ(r)]

α ≤ [ϕ(S(x, x, gx))]
α

,

a contradiction with α ∈ (0, 1). Hence it should be x = gx. Consequently, g fixes
the disc DS

x0,r. �

Definition 2.3. Let (X,S) be an S-metric space and g : X → X a self-mapping.
If there exists x0 ∈ X such that

S(x, x, gx) > 0 =⇒ ϕ (S(x, x, gx)) ≤ [ϕ (mS(x, x0))]
α

,
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for all x ∈ X, where α ∈ (0, 1), the function ϕ : (0,∞) → (1,∞) is such that ϕ is
nondecreasing and

mS(x, y) = max

{
S(x, x, y), S(x, x, gx), S(y, y, gy),

S(x, x, gy) + S(y, y, gx)

2

}
,

then g is called Li-Jiang type x0-S-contraction.

Theorem 2.4. Let (X,S) be an S-metric space, g : X → X Li-Jiang type x0-S-
contraction with x0 ∈ X and the number r defined as in (2.1). If S(gx, gx, x0) ≤ r,
then g fixes the disc DS

x0,r.

Proof. At first, we show that x0 is a fixed point of g. To do this, we assume that x0

is not a fixed point of g, that is, x0 6= gx0. Using the Li-Jiang type x0-S-contraction
property, we find

ϕ (S(x0, x0, gx0)) ≤ [ϕ (mS(x0, x0))]
α

= [ϕ (S(x0, x0, gx0))]
α

,

a contradiction with α ∈ (0, 1). So it should be

(2.2) gx0 = x0.

Let r = 0. Then we have DS
x0,r = {x0}. From the equality (2.2), we say that g

fixes the disc DS
x0,r.

Now, we suppose r > 0 and x ∈ DS
x0,r is an arbitrary point such that S(x, x, gx) >

0. Using the hypothesis, the definition of r, Lemma 1.2 and the equality (2.2), we
get

ϕ (S(x, x, gx)) ≤ [ϕ (mS(x, x0))]
α ≤ [ϕ (S(x, x, gx))]

α
,

a contradiction. Thereby, it should be x = gx. Consequently, g fixes the disc
DS
x0,r. �

In the following theorem, we see some equivalence of contractions.

Theorem 2.5. Let X 6= ∅, the functions S1, S2 : X ×X ×X → R+ be such that
(i) x = y = z implies S1(x, y, z) = 0,
(ii) S2(x, y, z) = 0 implies x = y = z,

and g is a self-mapping on X. Then the followings are equivalent:
(a) There exist x0 ∈ X, a function ϕ : (0,∞)→ (0,∞) and λ ∈ [0, 1) such that

S1(x, x, gx) > 0 =⇒ ϕ (S1(x, x, gx)) ≤ λϕ (S2(x, x, x0)) ,

for all x ∈ X.
(b) There exist x0 ∈ X, a function ϕ : (0,∞)→ (1,∞) and α ∈ [0, 1) such that

S1(x, x, gx) > 0 =⇒ ϕ (S1(x, x, gx)) ≤ [ϕ (S2(x, x, x0))]
α

,

for all x ∈ X.
(c) There exist x0 ∈ X, a function ϕ : (0,∞)→ R and t > 0 such that

S1(x, x, gx) > 0 =⇒ t+ ϕ (S1(x, x, gx)) ≤ ϕ (S2(x, x, x0)) ,

for all x ∈ X.

Proof. Let S1(x, x, gx) > 0 for all x ∈ X.
(a) =⇒ (b) : Assume that the condition (a) is satisfied. Then using this condition,

we have

(2.3) exp [ϕ (S1(x, x, gx))] ≤ exp [λϕ (S2(x, x, x0))] = exp [ϕ (S2(x, x, x0))]
λ

.
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If we define α ∈ [0, 1) by α = λ and the function ϕ1 : (0,∞) → (1,∞) by ϕ1(t) =
exp [ϕ(t)], then using the inequality (2.3), we find

ϕ1 (S1(x, x, gx)) ≤ [ϕ1 (S2(x, x, x0))]
α

,

which proves the condition (b).
(b) =⇒ (c) : Suppose that the condition (b) is satisfied. Then using this condi-

tion, we get

ln [ln (ϕ (S1(x, x, gx)))] ≤ ln [ln ([ϕ (S2(x, x, x0))]
α

)]

= ln [ln (ϕ (S2(x, x, x0)))] + ln(α).(2.4)

If we define t > 0 by t = − ln(α) and the function ϕ2 : (0,∞) → R by ϕ2(t) =
ln(ln(ϕ(t))), then using the inequality (2.4), we obtain

t+ ϕ2 (S1(x, x, gx)) ≤ ϕ2 (S2(x, x, x0)) ,

which proves the condition (c).
(c) =⇒ (a) : Assume that the condition (c) is satisfied. Then using this condition,

we find
(2.5)

exp [ϕ (S1(x, x, gx))] ≤ exp [ϕ (S2(x, x, x0))− t] = exp [ϕ (S2(x, x, x0))] exp [−t] .

If we define λ ∈ [0, 1) by λ = exp [−t] and the function ϕ3 : (0,∞) → (0,∞) by
ϕ3(t) = exp [ϕ(t)], then using the inequality (2.5), we get

ϕ3 (S1(x, x, gx)) ≤ λϕ3 (S2(x, x, x0)) ,

which proves the condition (a). �

Then we obtain the following consequences.

Remark 2.6. (1) Theorem 2.2 and Theorem 2.4 can be considered as fixed-circle
theorems. Also, they can be considered as fixed-point results in case r = 0.

(2) Theorem 2.5 can be consider as the equivalence of some fixed-disc or fixed-
circle contractive conditions.

(3) The condition (a) of Theorem 2.5 can be considered as the Banach type
contractive condition [1]. Similarly, the condition (b) can be considered as the Jleli-
Samet type contractive condition [3] and finally, the condition (c) can be considered
as Wardowski type contractive condition [15].

Now, we give the following example.

Example 2.7. Let X = R and the S-metric defined as

S(x, y, z) = |x− z|+ |x+ z − 2y| ,

for all x, y, z ∈ R . Let us define the function g : R→ R as

g(x) =

{
x , x ∈ [−3, 3]

x+ 1 , x ∈ (−∞,−3) ∪ (3,∞)
,

for all x ∈ R. Then the function g is Jleli-Samet type x0-S-contraction with x0 = 0,
α = 0.6 and the function ϕ : (0,∞) → (1,∞) defined by ϕ(t) = t + 1. Also, the
function g is Li-Jiang type x0-S-contraction with x0 = 0, α = 0.7 and the function
ϕ : (0,∞)→ (1,∞) defined by ϕ(t) = t+ 1. Consequently, we have r = 2 and so g
fixes the disc DS

0,2 = [−1, 1].
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3. Conclusion

In this paper, we obtain new fixed-disc results as some solutions to the “Fixed-
Circle Problem”. The obtained results will contribute to the literature on this
subject. Some applications of these results can be investigated to the various ap-
plicable areas.
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Abstract. This study is concerned with obtaining a numerical solution of

third order MHD Jeffery–Hamel nonlinear differential equation arising in fluid

dynamics, by constructing a matrix-collocation method involving the Nörlund
polynomial, matrix expansions of linear and nonlinear terms, and collocation

points. The method runs easily on a computer programme, which is devised

specifically for the model, after gathering its all matrix compounds into a
unique matrix equation. Hence, the precise numerical and graphical results are

demonstrated in table and figures, respectively. These comparable tools allow
us to discriminate the efficiency and accuracy of the method. One can thus

observe that the method is eligible scheme to treat the equation in question.

1. Introduction

Nonlinear differential equations govern many physical phenomena occurring in
mathematics, engineering, physics, fluid dynamics etc. [1]

The magneto-hydro-dynamic (MHD) Jeffery–Hamel nonlinear differential equa-
tion (JHE) appears in a cylindrical polar coordinate system in which two dimen-
sional steady flow of a viscous incompressible fluid through a source or sink at
channel walls lying on the plane and intersecting at z-axis [2, 3, 4, 5, 6]. Some
details of JHE on cylindrical polar coordinate system can be viewed in [4, 5, 6]. In
this study, we focus on JHE of ordinary type as the following (see [4, 5, 6]):

(1.1) y′′′(x) + (4−H)α2y′(x) + 2αRe y(x)y′(x) = 0, 0 ≤ x ≤ 1,

subject to the initial and boundary conditions

(1.2) y(0) = 1, y′(0) = 0, y(1) = 0,

where α is the angle between two rigid plane walls, Re and H denote Reynolds
and Hartman numbers, respectively [6].
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Key words and phrases. Collocation points, Jeffery–Hamel flow, Matrix-collocation method,

Nonlinear differential equation.
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The numerical solution for Eq. (1.1) turns out to be the Nörlund polynomial
form (see [7]):

(1.3) yN (x) =

N∑
n=0

ynB
(x)
n ,

where yn’s are the unknown coefficients to be acquired by the proposed method

and B
(x)
n is the Nörlund polynomial, which is defined to be (see [7, 8])

∞∑
n=0

B(x)
n

tn

n!
=

[
t

et − 1

]x
,

and its first four bases yield{
B

(x)
0 , B

(x)
1 , B

(x)
2 , B

(x)
3

}
=

{
1,
−x
2
,
x2

4
− x

12
, −x

3

8
+
x2

8

}
.

Notice that one can refer to [7, 8] for further information about the Nörlund poly-
nomial.

Our goal in this study is to obtain the Nörlund polynomial solution of JHE, im-
plementing consistently matrix-collocation method at the high level of computation
limit.

2. Matrix–collocation method and its outcome: Nörlund polynomial
solution

In this section, the matrix–collocation method is constructed under the Nörlund
polynomial base and its outcome holds the numerical solution as given in Eq. (1.3).
Next, the matrix relation of solution form (1.3) is of the form (see [7])

(2.1) y (x) = B (x)Y ,

where

B(x) =
[
B

(x)
0 B

(x)
1 B

(x)
2 · · · B

(x)
N

]
,

and

Y =
[
y0 y1 · · · yN

]T
.

In view of the matrix relation (2.1), the differentiated parts of Eq. (1.1) can be
expanded as the matrix relations

(2.2)

y′′′ (x) =
(
B(x)

)(3)

Y ,

y′ (x) =
(
B(x)

)(1)

Y ,

where (
B(x)

)(3)

=

[ (
B

(x)
0

)(3) (
B

(x)
1

)(3)

· · ·
(
B

(x)
N

)(3)
]
,

and
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(
B(x)

)(1)

=

[ (
B

(x)
0

)(1) (
B

(x)
1

)(1)

· · ·
(
B

(x)
N

)(1)
]
.

When the Chebyshev-Lobatto collocation points, which are defined to be

(2.3) ti =
1

2
+
−1

2
cos

(
πi

N

)
, i = 0, 1, 2, . . . , N, t0 = 0 < t1 < . . . < tN = 1,

on [0,1], are inserted into the matrix relations (2.2), it follows that

(2.4)

y′′′ (xi) =
(
B(xi)

)(3)

Y = B(3)Y ,

y′ (xi) =
(
B(xi)

)(1)

Y = B(1)Y ,

where

B (3) =



(
B(x0)

)(3)

(
B(x1)

)(3)

...(
B(xN )

)(3)


=



(
B

(x0)
0

)(3) (
B

(x0)
1

)(3)

· · ·
(
B

(x0)
N

)(3)

(
B

(x1)
0

)(3) (
B

(x1)
1

)(3)

· · ·
(
B

(x1)
N

)(3)

...
...

. . .
...(

B
(xN )
0

)(3) (
B

(xN )
1

)(3)

· · ·
(
B

(xN )
N

)(3)


,

and B (1) is similarly obtained.

Now, the matrix form of linear part of Eq. (1.1) can be stated using the matrix
relations (2.4) as

(2.5) L =
[
B(3) + (4−H)α2B(1)

]
Y .

As a next construction, we shall build the matrix relation of the nonlinear term in
Eq. (1.1). By the matrix relation (2.1) and the collocation points (2.3), the matrix
relation of the nonlinear term admits

y′ (xi) y (xi) =
(
B(xi)

)(1) (
B(xi)

)
Y ,

or, equivalently,

(2.6) y′ (xi) y (xi) = B(1)
(
B
)
Y ,

where

B =


B

(x0)
0 B

(x0)
1 · · · B

(x0)
N

B
(x1)
0 B

(x1)
1 · · · B

(x1)
N

...
...

...
...

B
(xN )
0 B

(xN )
1 · · · B

(xN )
N

 , B = diag[B](N+1)×(N+1)2 ,

and
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Y =
[
y0Y y1Y · · · yNY

]T
1×(N+1)2

.

Then, the matrix form of the nonlinear term is implied using the matrix relation
(2.6) as

(2.7) N = B(1)
(
B
)
Y .

By (2.5) and (2.7), we are now ready to reveal the fundamental matrix form as

(2.8) L + N = G⇒WY + ZY = G or [W ; Z : G] ,

where

W =
[
B(3) + (4−H)α2B(1)

]
, Z =

[
B(1)

(
B
)]
,

and

G =
[

0 0 · · · 0
]T
1×(N+1)

.

The matrix expansions of the initial and boundary conditions (1.2) are formed using
the matrix relations (2.1) and (2.2) as

(2.9)

y (0) = B(0)Y ⇒
[
B

(0)
0 B

(0)
1 · · · B

(0)
N : 1

]
,

y′ (0) =
(
B(0)

)(1)

Y ⇒
[ (

B
(0)
0

)(1) (
B

(0)
1

)(1)

· · ·
(
B

(0)
N

)(1)

: 0

]
,

y (1) = B(1)Y ⇒
[
B

(1)
0 B

(1)
1 · · · B

(1)
N : 0

]
.

The augmented matrix system, which is ready to be treated by Solve command on
Mathematica, after replacing the condition matrices (2.9) by the last three rows of
W in the matrix form (2.8), then takes its final form[

Ŵ ; Ẑ : Ĝ
]
.

We thus obtain the unknown Nörlund coefficients, which are later inserted into Eq.
(1.3), eventually, the Nörlund polynomial numerical solution is appeared.

3. A MHD Jeffery–Hamel model

In this section, a MHD Jeffery–Hamel model is numerically solved by the pro-
posed method for different values of Re, H and α. In doing so, a computer pro-
gramme, which was devised to treat JHE, is deployed. Numerical and graphical
results are shown in table and figures. Note that since the exact solution of JHE
(1.1)-(1.2) is unknown, the present results are compared according to Mathematica
solution.

An Example
Consider JHE (1.1)-(1.2) for different values of Re, H and α. After deploying the
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proposed method and NDSolve module on Mathematica, the Nörlund polynomial
solutions are illustrated along with the Mathematica solution in Figs. 1 and 2, in
which {Re, H, α} take their values as {0.1, 3, 2} and {0.5, 15, 1.5}, respectively.
Fig. 3 emphasises that the physical behaviours of Nörlund polynomial solutions
y6(x) are modified in proportion to Hartmann number H = 5, 7, 9, 10. Also, Table
1 indicates the absolute error values, which are obtained by the Nörlund polynomial
and Mathematica solutions, at the Chebyshev-Lobatto collocation points.

Figure 1. Comparison history of the Nörlund polynomial and
Mathematica solutions incurred to Re = 0.1, H = 3 and α = 2.

Figure 2. Comparison history of the Nörlund polynomial and
Mathematica solutions incurred to Re = 0.5, H = 15 and α = 1.5.

4. Concluding Remarks

A matrix-collocation method based on the Nörlund rational polynomial has been
properly established to obtain the numerical solution of JHE. In doing so, the
suitable and simple matrix forms at the Chebyshev-Lobatto collocation points have
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Figure 3. Comparison history of the Nörlund polynomial solu-
tions y6(x) with Re = 2 and α = 2 versus H.

Table 1. Absolute error computations at the Chebyshev-Lobatto
collocation points for Re = 0.01, H = 3 and α = 0.1.

xi N = 8
0.000000 0.00e–00
0.038060 3.80e–08
0.146447 6.80e–07
0.308658 3.00e–06
0.500000 7.43e–06
0.691342 1.17e–05
0.853553 1.09e–05
0.961940 4.29e–06
1.000000 2.37e–08

been easily coupled with a polynomial method. Upon the investigations of Figs.
1 and 2, the numerical solutions coincide suitably with Mathematica solutions.
Fluctuation of Hartmann number changes the physical response of the solutions, as
seen in Fig. 3. Furthermore, it can be overseen from Table 1 that the method takes
six-seven decimal places precision for N = 8, which means that highly remarkable
numerical values are obtained via the proposed method.
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NUMERICAL EXPERIMENTS WITH AN INFEASIBLE

PRIMAL-DUAL ALGORITHM

FOR SOLVING THE SEMIDEFINITE LEAST SQUARES

PROBLEMS

CH. DAILI AND M. ACHACHE

Abstract. This paper focuses on the numerical resolution of a Semi-definite
least squares problems (SDLS) by an infeasible primal-dual type interior-

point method based on the directions of Alizadeh-Haeberly-Overton (AHO)

(Monteiro, 1997). Moreover, we also present some numerical experiments to
illustrate the efficiency of this algorithm and a conclusion that ends the article

is stated.

1. Introduction

Path-following interior-point methods of primal-dual type are the most attrac-
tive for solving linear optimization[1,7]. Their corresponding algorithms enjoy im-
portant theoretical and numerical properties such as the polynomial complexity
and numerical efficiency. Thus motivated researches to extend it to more gen-
eral optimization and mathematical problems, namely, complementarity problems,
convex optimization, semidefinite optimization and convex quadratic semidefinite
optimization. Interior-point methods are divided into two classes, namely, feasi-
ble and infeasible primal-dual interior point methods. Feasible primal-dual interior
point algorithms require that the primal-dual starting point must be feasible i.e.,
it lies in the feasible set. This task is very hard to release in numerical practice.
In order to eliminate this handicap, we shall use any starting point not necessarily
lies in the feasible set of the considered problem. This type of methods is named
as the infeasible interior-point methods.

We consider the following semidefinite least-squares problem (SDLS):

(1.1) (SDLS )

 min f(x) = 1
2 ‖X − C‖

2
F

〈Ai, X〉 = bi, i = 1, . . . ,m
X ∈ Sn+

Date: May 25, 2021.
Key words and phrases. Semidefinite programming, Interior point method, semidefinite least-

squares problem, Primal-dual interior point algorithm.
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and it’s dual :

(1.2) (DSDLS )


max bT y − 1

2 ‖X‖
2
F + 1

2 ‖C‖
2
F

m∑
i=1

yiAi −X + Z = −C

X,Z ∈ Sn+, y ∈ Rm

where the vector b ∈ Rm, the matrices C ∈ Rn×n and Ai, i = 1, · · · ,m, are given
and belong to the linear space of n×n symmetric matrices Sn. I denotes the identity
matrix in Rn.The 〈, 〉 operation is the inner product on Sn of two matrices X and
Y , which is the trace of their product, i.e., 〈X,Y 〉 = tr(XY ) =

∑
i,j xijyij . The

inequality constraint X � 0 indicates that the matrix X , belong to the cone of
positive semidefinite matrices Sn+. We denote by Sn++ the cone of positive definite
matrices of Sn and ‖‖F denotes the Frobenius norm, i.e.,

‖X‖F =
(
tr(XTX)

) 1
2 =

 n∑
i,j=1

X2
ij

 1
2

, X = (xij)

We denote by

F(SDLS ) =
{
X ∈ Sn+ : 〈Ai, X〉 = bi, i = 1, . . . ,m

}
and

F0
(SDLS ) =

{
X ∈ Sn++ : 〈Ai, X〉 = bi, i = 1, . . . ,m

}
the set of feasible and strictly feasible primal solutions for (SDLS), respectively.

F(DSDLS ) =

{
(y, Z) ∈ Rm × Sn+ :

m∑
i=1

yiAi −X + Z = −C

}
and

F0
(DSDLS ) =

{
(y, Z) ∈ Rm × Sn++ :

m∑
i=1

yiAi −X + Z = −C

}
the sets of feasible and strictly feasible dual solutions for (DSDLS), respectively.

The SDLSs problem have recently attracted considerable attention because it
has a lot of applications in the domain of the applied mathematics and numerical
linear algebra such as the nearest correlation matrix (NCM) and in preconditioning
of linear system and error analysis of such iterative methods [12]. Many methods
have been proposed to solve this problem. Alternating projections method is pro-
posed by Higham in [11] to solve particular instances of semidefinite least-squares
(and it could be generalized to any semidefinite least-squares). J. Malick propose
a Lagrangian dualization of this least-squares problem, then he propose to solve
the latter problem with a quasi-Newton algorithm [9]. Our aim is to propose an
efficient primal dual interior point algorithm to solve the SDLSs problem.We are
particularly interested by the infeasible primal dual path-following interior point
algorithm. These methods enjoy best results such as polynomial complexity and
numerical efficiency. This paper is organized as follows. In Section 2, we associate
to the (SDLS) problem the (SDLS)µ perturbed problem by introducing the log-
arithmic barrier function followed by the optimal conditions for the (SDLS), then
we briefly present the primal-dual method of trajectory central. In section 3, we
give a description of the interior-point algorithms obtained. In section 4, we present
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some numerical tests on several different examples to illustrate the effectiveness of
this algorithm in solving the (SDLS) problem.

2. Barrier penalization problems

In the rest of this document, we assume that the (SDLS) problem meets the
following conditions:

• Interior point Condition : (IPC) The set F0
(SDLS ) × F

0
(DSDLS ) is non-

empty.
• The matrix Ai i = 1, . . . ,m are linearly independent.

We associate to the (SDLS) problem the following perturbed problem:

(2.1) (SDLS)µ

{
min fµ(X)
〈Ai, X〉 = bi, i = 1, . . . ,m

where

fµ(X) =

{
f(x)− µ ln detX si X � 0
+∞ si non

The function − ln detX is called the logarithmic barrier function associated with
the cone Sn+ and µ > 0,is the barrier parameter. It is shown if the IPC condition
holds, that the problem (2.2) has a unique solution (X(µ), y(µ)), that the solution
of (2.1) as a function of µ. The problem (2.1) is convex and differentiable. So the
necessary and sufficient conditions for X(µ) to be an optimal for (SDLS)µ, is the
existence of a vector y(µ) such as:

(2.2)

 ∇fµ(X)−
m∑
i=1

yi(µ)Ai = 0

Ai •X = bi, i = 1, . . . ,m

where

∇fµ(X) = X − C − µX−1

Letting

Z(µ) = µX−1

then

X(µ)Z(µ) = µI,

and the system (2.2) can be rewritten as

(2.3)


X(µ)− Z(µ)−

m∑
i=1

yi(µ)Ai = C, X � 0, Z � 0

Ai •X(µ) = bi, i = 1, . . . ,m
X(µ)Z(µ) = µI, µ > 0.

We set (X(µ), y(µ), Z(µ))as a solution of the system (2.3). The set

C = {(X(µ), y(µ), Z(µ)) : µ > 0}
is called the central-path of the problem (SDLS). If µ tends to zero then the
limit of the system (2.2) exists and therefore it yields an optimal solution of (1.1)
and (1.2). The infeasible primal-dual path-following interior point algorithms aim
to trace approximately the central-path C by using at each iteration a damped
Newton step while the initial starting point is not necessarily feasible i.e., it does
not lie in D and get closer to the optimal solution of (1.1) as µ goes to zero.
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Now we proceed to describe a damped Newton step produced by the algorithm
for a given µ > 0. Applying the Newton’s method for (2.3) for a given infeasible
point (X, y, Z) i.e., X � 0, y ∈ Rm and Z � 0 not necessarily in F(SDLS ).Then the
Newton direction at this point is the unique solution of the following linear system:

(2.4)


∆X −∆Z −

m∑
i=1

∆yiAi = C − (X − Z −
m∑
i=1

yiAi), X � 0, Z � 0

Ai •∆X = bi −Ai •X, i = 1, . . . ,m,
∆XZ +X∆Z = σµI −XZ, µ > 0,

where σ ∈ (0, 1) the centrality parameter.
However, the resulting system may yields as a solution a search direction which

is not symmetric. Since we want X and Y to be symmetric matrices, one must
“symmetrizing”the perturbed complementary equation XZ = µI. Based on differ-
ent symmetrization schemes, several search directions have been proposed in the
literature of semidefinite optimization problems such as Kojima et all [19], Helm-
berg et all [21], Monteiro [20] and Nesterov and Todd (NT) [17],[18]. In this paper,
we use the direction determined by the following system:

(2.5)


X − Z −

m∑
i=1

yiAi = C, X � 0, Z � 0

Ai •X = bi, i = 1, . . . ,m
XY + Y X

2
= σµI, µ > 0.

This symmetrization is introduced by Alizadeh–Haeberly–Overton [23] and is called
AHO-direction. Therefore the AHO direction is determined by the solution of the
system:

(2.6)


∆X −∆Z −

m∑
i=1

∆yiAi = C − (X − Z −
m∑
i=1

yiAi), X � 0, Z � 0

Ai •∆X = bi −Ai •X, i = 1, . . . ,m,
∆XZ +X∆Z + ∆ZX + Z∆X = 2σµI − (XZ + ZX), µ > 0.

The system (2.6) has a unique symmetric solution (∆X, ∆y, ∆Y ). We will refer
to the assignment:

X+ = X + α∆X, y+ = y + α∆y, Z+ = Z + α∆Z

as the damped Newton step with α > 0, is the step-size.

3. An infeasible path-following algorithm for SDLS

We present an infeasible path-following interior-point algorithm for computing
an optimal solution of (SDLS) that uses the primal-dual interior-point framework
proposed by many authors. In each iteration the algorithm starts with guesses
(matrices) X0, Z0 � 0, y0 ∈ Rm, not necessarily feasible. We would like to update
these matrices until we are within our desired tolerance of satisfying equations .
We will stop our algorithm when the

max

(∥∥∥∥∥C − (X − Z −
m∑
i=1

yiAi)

∥∥∥∥∥
F

, ‖b−AX‖F , ‖XZ‖F

)
is small enough. In order to implement our algorithm we need to compute a direc-
tion from and a suitable step size α > 0 in each iteration such that X + α∆X �
0, and Z + α∆Z � 0.For computing the step-size α > 0, so that X = X + α∆X �
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0, and Z = Z + α∆Z � 0,we need to determine the maximum step-size αmax so
that if 0 < α ≤ αmax then X = X +α∆X � 0 and Z = Z +α∆Z � 0. Let αX and
αZ be the maximum possible step-size on the direction ∆X and ∆Z, respectively.
It is known that the condition X+α∆X � 0 is equivalent to I−αX−1∆X � 0. In
the other words, we must have 1 − αλmax(X−1∆X) > 0 where λmax(X−1∆X) is
the maximum eigenvalue of X−1∆X. Thus

αX =


1

λmax(X−1∆X)
if λmax(X−1∆X) > 0

∞ Otherwise.

Similarly for Z + α∆Z, we have

αZ =


1

λmax(Z−1∆Z)
if λmax(Z−1∆Z) > 0

∞ Otherwise.

Once these two allowed maximum step-sizes are determined, then the setep size
α is taken as:

α = min(1, ρmin(αX , αY )) : ρ ∈ ]0, 1[ .

The outline of the generic infeasible primal-dual IP algorithm is presented in Figure
1.

4. The algorithm

Input
(1) An accuracy parameter ε > 0;
(2) initial guesses X0, Z0 � 0, y0 ∈ Rm and µ > 0;
(3) matrices Ai, C, a vector b ; i = 1, . . . ,m;

While max

(∥∥∥∥C − (X − Z −
m∑
i=1

yiAi)

∥∥∥∥
F

, ‖b−AX‖F , ‖XZ‖F

)
> ε do

begin
(1) Solve the system to obtain (∆X, ∆y, ∆Z);
(2) Determine a step size α > 0 s.t. X + α∆X � 0 and Z + α∆Z � 0;
(3) Update X := X + α∆X � 0, Z =: Z + α∆Z � 0;

end

Fig.1. Infeasible interior-point algorithms for solving (SDLS).

5. Computational experiments

We consider some problems of differents sizes, each problem is followed by a
table containing the results obtained by our method. we implement the algorithm
in Matlab (R2013b) and the experiments were conducted on a Pentium 4 3.0GHz
PC with 2GB of RAM. In the implementation, we use ε = 10−6, we start wilth a
point (X0, y0, Z0) not necessarily feasible. The number of iterations required and
the time executed by the algorithm are denoted by “Iter” and “CPU” respectivly.

Exemple 1[5](Nearest correlation matrix problems (NCM)). This example of
SDLS, is constructed from the following nearest correlation matrix problem:

min
X

1

2
‖X − C‖2F s.t. Ai •X = bi, i = 1, . . . ,m, X � 0,
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with

C =

 1 0.5 1
0.5 1 0.25
1 0.25 1

 , A1 =

 1 0 0
0 0 0
0 0 0

 , A2 =

 0 0 0
0 1 0
0 0 0

 , A3 =

 0 0 0
0 0 0
0 0 1

 , b = e.

In this example the triplet starting point is taken as

X0 = 2 ∗ I, Z0 = I, y0 = [2, 2, 2]T .

The obtained numerical results are summarized in Table 1.

µ 0.5 0.05 0.005
Iter 19 16 13
CPU 0.0374 0.0353 0.0338

Table 1. Numerical results for Example 1.

The obtained approximate primal-dual optimal solution is:

X∗ =

 1 0.4910 0.9684
0.4910 1 0.2582
0.9684 0.2582 1

 , Z∗ =

 0.0351 −0.0090 −0.0316
−0.0090 0.0023 0.0082
−0.0316 0.0082 0.0285

 ,
y∗ = [−0.0350,−0.0023,−0.0285]T .

The optimal values for both problems are p∗ = d∗ = 0.0011.

6. Conclusion

In this paper, we introduced a primal-dual infeasible interior point algorithm to
solve a semidefinite least-squares problem using the directions of Alizadeh-Hueber-
Overtion (AHO). The obtained algorithm gives a strictly feasible solution of
(SDLS) and a primal-dual solution of (SDLS) and (DSDLS). Moreover, the
numerical tests show that when the size becomes large the system becomes unsta-
ble and that is the disadvantage of this approach.

References

[1] M. Achache, A new parameterized kernel function for LO yielding the best known iteration
boundfor a large-update interior point algorithm, Afrika Matematika, Vol.27,No.03, pp.591-60

(2016).
[2] M. Achache, Complexity analysis of an interior point algorithm for the semidefinite optimiza-

tion based on a kernel function with a double barrier term, Acta Mathematica Sinica, English

Series, Vol.31,No.03, pp.543-556 (2015).
[3] M. Achache, L. Guerra, A full Nesterov-Todd-step feasible primal-dual interior point algo-
rithm for convex quadratic semi-definite optimization, Applied Mathematics and Computation,

Vol.231,No.03, pp.581-590 (2014).
[4] M. Achache, N. Boudiaf. Complexity analysis of primal-dual algorithms for the semidefinite

linear complementarity problem. Rev. Anal. Numér. Théor. Approx, vol.40,No.02, pp.95-106
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Abstract. In this paper, we construct and study timelike special ruled sur-

faces, which are generated by S- Curves, in Minkoswki 3- Space. We investigate

different properties of the constructed ruled surface.

1. Introduction

In differential geometry, surface theory is an important working area in differ-
ential geometry. It has been carefully studied by for researchers. A ruled surface
is one of the special surfaces and it is thinkable as a geometric set of lines. [2, 4,
9, 10]. It is defined by the moving of a straightline (ruling) along a curve (base
curve). This entrancing special surface is of great interest to many applications
and has contribution in several areas, such as mathematical physics, kinematics
and Computer Aided Geometric Design (CAGD) [11, 12].

Nowadays, a good deal of research on ruled surface theory has been conducted
about ruled surfaces in Euclidean and Minkowski space [5, 15, 16]. In [3], the
authors studied the ruled surface whose rulings are linear combinations of Frenet
frame vectors of its base curve. They gave its position vector in the case of the
base curve as general helix [1] and slant helix [7], respectively. Furthermore, in [13]
the authors were interested in the study of ruled surface with alternative moving
frame of its base curve. They investigated its most important properties and gave
characterizations. Then, in [ ], the authors introduced ruled surfaces generated
from any vector X,Bishop Darboux vector and Bishop vectors. Finally, in [8] they
studied special ruled surfaces, whose rulings are linear combinations of Darboux
frame vectors of its base curve relative to an arbitrary regular surface in Euclidean
3-space.

In [6], they construct a new coordinate system by rotating the axes of space
system about the time one. We should care that the axis of time rotates differently
than the axes of space. Therefore, the rotation of the Frenet frame of (t) which lies
on a surface in E3

1 should be depend on the types of the curve, surface and axis of

Date: May 25, 2021.
Key words and phrases. Ruled surface, S- frame, Gaussian curvature, mean curvature.
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rotation. They called this frame ”Shonoda-Saad frame” or simply S-frame. This
frame gives us a relative differential geometry between Euclidean and Minkowski
invariants of a chosen curve on a regular timelike surface . They investigated this
special frame according to a regular spacelike curve α (t) on the surface in E3

1 .
In this paper, we deal with timelike special ruled surfaces, which is generated by

S- Curves, in Minkoswki 3- Space. We obtain some properties of these surfaces.

2. Some Properties of S-curves and Ruled Surfaces

Definition 2.1. Let ϕ (u, v) be a timelike surface in E3
1 and α(s) be a regular

spacelike curve lies on ϕ with timelike principal normal vector U. The curve α(s)

is called a spacelike S-curve of first or second type, if
τg
κg

= tanh Ψ or
κg
τg

= tanh Ψ,

Ψ = γ or β, Ψ 6= 0, respectively. Then, we have T′M
N′M
B′M

 =

 0 κ1
g − τ2

g −κn
τ2
g − κ1

g 0 τ1
g − κ2

g

−κn τ1
g − κ2

g 0

 TM

NM

BM

 .
Here, κg = κ sinh θ, κn = κ cosh θ and τg = τ − dθ

ds
, θ = ∠H (N,G) , G =

−T×MNM , κ
1
g = κg cosh γ, κ2

g = κg sinh γ, τ1
g = τg cosh γ, τ2

g = τg sinh γ and

−κn = κn −
dγ

ds
, γ = ∠H (T,TM ) , [see 6].

The standard unit normal vector on a regular surface ϕ (u, v) is identified by

U =
ϕu × ϕv

‖ϕu × ϕv‖
.

The Gauss curvature and mean curvature of the surface ϕ (u, v) defined by

K =
h11h2 − h2

12

EG− F 2
, H =

Eh22 − 2Fh12 +Gh11

EG− F 2
,

respectively.
On the other hand, a ruled surface in E3

1 is generated by a one-parameter family
of straight lines and has the parametric representation

ϕ : I × R→ E3
1, ϕ (u, v) = α (u) + vX (u)

where I is an open interval of the real line R.α (u) is called the base curve of the
ruled surface and X (u) are the unit vectors representing the direction of straight
lines (rulings), [14].

3. Ruled Surfaces with S- Curves

In this section, we deal with ruled surfaces, which are generated by spacelike S-
Curves with timelike unit normal vector field, in Minkoswki 3- Space.

Theorem 3.1. Let ϕ (u, v) = α (u) + vTM (u) be ruled surface, where α (u) is
a unit spacelike S- Curves with timelike unit normal vector field in Minkoswki 3-
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Space. Then, principal curvatures are

κmax = H +
√
H2 −K

=
1

2
(
κ2
n + (κ1

g − τ2
g )2
)3/2

[v[κn(−(κ1
g − τ2

g )2 + κ2
n)

+(κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g )] +
√
A

κmin = H −
√
H2 −K

=
1

2
(
κ2
n + (κ1

g − τ2
g )2
)3/2

[v[κn(−(κ1
g − τ2

g )2 + κ2
n)

+(κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g )]−
√
A

where

A = v2(κ2
n(−(κ1

g − τ2
g )2 + κ2

n)2 + 2(κn(−(κ1
g − τ2

g )2 + κ2
n))

((κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g ))

+((κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g ))2

−κ2
n(κ1

g − τ2
g )2
(
κ2
n + (κ1

g − τ2
g )2
)

Proof. First derivatives of the surface ϕ (u, v) are

ϕu (u, v) = TM + v[(κ1
g − τ2

g )NM − κnBM ],

ϕv (u, v) = TM .

The unit normal vector field of the surface is

U = −
κnTM + (κ1

g − τ2
g )BM√

κ2
n + (κ1

g − τ2
g )2

Components of the First fundamental form are

E = 1 + v2(−(κ1
g − τ2

g )2 − κ2
n),

F = G = 1.

Second derivatives of the surface ϕ (u, v) are

ϕuu (u, v) = v(−(κ1
g − τ2

g )2 + κ2
n)TM

+[(κ1
g − τ2

g ) + v((κ1
g − τ2

g )′ − κn(τ1
g − κ2

g))]NM

+(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n])BM ,

ϕuv (u, v) = (κ1
g − τ2

g )NM − κnBM ,

ϕvv (u, v) = 0.

Second fundamental form of the surface ϕ (u, v) are

h11 = − v√
κ2
n + (κ1

g − τ2
g )2

[κn(−(κ1
g − τ2

g )2 + κ2
n)

+(κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n])],
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h12 = −
κnv(κ1

g − τ2
g )√

κ2
n + (κ1

g − τ2
g )2

,

h22 = 0.

Then, the Gauss curvature of ϕ (u, v) is

K =
κ2
n(κ1

g − τ2
g )2(

κ2
n + (κ1

g − τ2
g )2
)2 ,

H =
v

2
(
κ2
n + (κ1

g − τ2
g )2
)3/2

[κn(−(κ1
g − τ2

g )2 + κ2
n)

+(κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g )].

Then, principal curvatures of this surface are

κmax = H +
√
H2 −K

=
1

2
(
κ2
n + (κ1

g − τ2
g )2
)3/2

[v[κn(−(κ1
g − τ2

g )2 + κ2
n)

+(κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g )] +
√
A

κmin = H −
√
H2 −K

=
1

2
(
κ2
n + (κ1

g − τ2
g )2
)3/2

[v[κn(−(κ1
g − τ2

g )2 + κ2
n)

+(κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g )]−
√
A

where

A = v2(κ2
n(−(κ1

g − τ2
g )2 + κ2

n)2 + 2(κn(−(κ1
g − τ2

g )2 + κ2
n))

((κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g ))

+((κ1
g − τ2

g )(−κn + v[(κ1
g − τ2

g )(τ1
g − κ2

g)− κ′n]) + 2κn(κ1
g − τ2

g ))2

−κ2
n(κ1

g − τ2
g )2
(
κ2
n + (κ1

g − τ2
g )2
)

Conclusion 3.2 Let Ω (u, v) = α (u) + vNM (u) be ruled surface, where α (u) is a
unit S- curve in Minkoswki 3- Space. Then Gauss curvature and mean curvature
of the surface Ω (u, v) are

K =
(τ1

g − κ2
g)2(

(τ1
g − κ2

g)2 + (−1 + v((κ1
g − τ2

g ))2
)2 [(τ2

g − κ1
g)− (1 + v(τ2

g − κ1
g))]2,

H = − 1(
(τ1

g − κ2
g)2 + (−1 + v((κ1

g − τ2
g ))2

)3/2
[v((τ1

g − κ2
g)(τ2

g − κ1
g)′ − κn(τ1

g − κ2
g))

−(1 + v(τ2
g − κ1

g))(−κn(1 + v(τ2
g − κ1

g)) + v(τ1
g − κ2

g)′)].

Conclusion 3.3 Let Ω (u, v) = α (u) + vNM (u) be ruled surface, where α (u) is
a unit S- curve in Minkoswki 3- Space. Then principal curvatures of the surface
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Ω (u, v) are

κmax = − 1(
(τ1

g − κ2
g)2 + (−1 + v((κ1

g − τ2
g ))2

)3/2
([v((τ1

g − κ2
g)(τ2

g − κ1
g)′ − κn(τ1

g − κ2
g))

−(1 + v(τ2
g − κ1

g))(−κn(1 + v(τ2
g − κ1

g)) + v(τ1
g − κ2

g)′)] +
√
A∗,

κmin = − 1(
(τ1

g − κ2
g)2 + (−1 + v((κ1

g − τ2
g ))2

)3/2
([v((τ1

g − κ2
g)(τ2

g − κ1
g)′ − κn(τ1

g − κ2
g))

−(1 + v(τ2
g − κ1

g))(−κn(1 + v(τ2
g − κ1

g)) + v(τ1
g − κ2

g)′)]−
√
A∗.

where

A∗ = [v((τ1
g − κ2

g)(τ2
g − κ1

g)′ − κn(τ1
g − κ2

g))− (1 + v(τ2
g − κ1

g))

(−κn(1 + v(τ2
g − κ1

g)) + v(τ1
g − κ2

g)′)]2 + (τ1
g − κ2

g)2[(τ2
g − κ1

g)− (1 + v(τ2
g − κ1

g))]2)

Conclusion 3.4 Let Γ (u, v) = α (u) + vBM (u) be ruled surface, where α (u) is a
unit S- curve in Minkoswki 3- Space. Then Gauss curvature and mean curvature
of the surface Γ (u, v) are

K = 0,

H =
1

((1− vκn)− v2(τ1
g − κ2

g))3/2
(v2(τ1

g − κ2
g)2(τ2

g − κ1
g)

+(1− vκn)2(τ2
g − κ1

g).

Conclusion 3.5 Let Γ (u, v) = α (u) + vNM (u) be ruled surface, where α (u) is
a unit S- curve in Minkoswki 3- Space. Then principal curvatures of the surface
Γ (u, v) are

κmax =
1

((1− vκn)− v2(τ1
g − κ2

g))3/2
(v2(τ1

g − κ2
g)2(τ2

g − κ1
g)

+(1− vκn)2(τ2
g − κ1

g),

κmin = 0.
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1. Introduction 

For many years, classical sets have been used for real life problems and are still in use. But these 
problems also contain uncertain information which cannot be expressed by crisp numbers. Zadeh 
(1965) have paved the way for researchers by defining fuzzy sets which can use uncertain data while 
expressing the information. Zadeh expanded the characteristic function of classical set to interval of 
[0,1] and defined it as membership function to measure the belonging of an element in this set. This 
work has drawn great attention and fuzzy sets have started to be studying extensively. Atanassov (1986) 
defined intuitionistic fuzzy sets (IFSs) by adding a non-membership function to FSs and limited the 
sum of these two functions as 1. This approach was very important in terms of information expression 
since it was the first time that an information was presented as pairs. Yager (2013) extended the values 
of the membership and the non-membership functions of IFSs while the sum of them stayed in the 
interval [0,1] and called it Pythagorean fuzzy sets (PFSs). In PFSs sum of squares of membership 
functions is limited with 1 and thus, the pairs whose sums is greater than 1 can be processed in 
decision making problems. PFSs are in development (Biswas and Sarkar 2018; Garg 2016, 2017a, 
2017b; Khan et al. 2019; Peng and Garg 2019; Peng and Selvachandran 2019; Rahman et al. 2017; 
Rani, Mishra, and Mardani 2020) and widely applied to real life problems with  MCDM methods 
(Bolturk 2018; Liang et al. 2018; Pérez-Domínguez et al. 2018; Ren, Xu, and Gou 2016; Wu et al. 
2019).   
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Tourism has always been an important part of economic revenue for growing countries to 
balance their foreign trade. But with the pandemic, there has been an incredible decline in these 
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Among MCDM methods, COPRAS (Complex Proportional Assessment) method proposed by Zavadskas 
et al. (1994) is known with its simplicity and practicability. It evaluates the alternatives considering 
the minimization and maximization of the criteria. The power of this method comes from the 
comparing of the alternatives with each other and reveal how good or bad they are from the other 
alternatives as a percentage. COPRAS method was applied to fuzzy sets by Zavadskas and 
Antucheviciene (2007) and then it was extended to intuitionistic fuzzy sets by Razavi Hajiagha, et al. 
(2013). With the definition of the PFS, COPRAS method has recently applied to PFSs (Buyukozkan 
and Gocer 2019; Dorfeshan and Meysam Mousavi 2019). 

Tourism management has become a significant sector in economy due to pandemic conditions. 
Governments have granted some privileges to visitors that coming their countries. Turkey is one of the 
best tourism locations in the world and excuse tourists from restrictions such as lockdown and trip. 
These advantages make Turkey attractive for a travel location. In this work, PF-COPRAS method is 
simplified from hybrid models and applied to choose the best possible trip location for a tourism 
management problem which has not been studied before. Then, results are compared with basic 
aggregation operators to show the effect of PF-COPRAS method. 

 

2. Pythagorean Fuzzy Sets 

 

In this section, PFSs are presented which will be used on farther sections. 

 

Definition 1. (Atanassov 1986) Let 𝑋𝑋 be a non-empty set, then an IFS 𝐴𝐴 in 𝑋𝑋 is defined as 

 

𝐴𝐴 = {〈𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜈𝜈𝐴𝐴(𝑥𝑥)〉|𝑥𝑥 ∈ 𝑋𝑋}                                                                                                                                    (1) 

  

where  𝜇𝜇𝐴𝐴, 𝜈𝜈𝐴𝐴 ∶ 𝑋𝑋 → [0,1] represents the degree of membership and the degree of non-membership of 
the element 𝑥𝑥 such that for any 𝑥𝑥 ∈ 𝑋𝑋,  

 

0 ≤ 𝜇𝜇𝐴𝐴(𝑥𝑥) + 𝜈𝜈𝐴𝐴(𝑥𝑥) ≤ 1.                                                                                                                                   (2) 

  

Here, 𝜋𝜋𝐴𝐴 = 1 − (𝜇𝜇𝐴𝐴(𝑥𝑥) + 𝜈𝜈𝐴𝐴(𝑥𝑥)) is called hesitancy degree of the element 𝑥𝑥 in the set 𝐴𝐴. Moreover, 
the pair of �𝜇𝜇𝐴𝐴(𝑥𝑥), 𝜈𝜈𝐴𝐴(𝑥𝑥)� is called intuitionistic fuzzy number (IFS) and denoted as 𝑎𝑎 = (𝜇𝜇𝐴𝐴, 𝜈𝜈𝐴𝐴). 

 

Definition 2. (Yager 2013) Let 𝑋𝑋 be a universe of discourse. A PFS 𝑃𝑃 in 𝑋𝑋 is given by 

 

𝑃𝑃 = {〈𝑥𝑥, 𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜈𝜈𝑃𝑃(𝑥𝑥)〉|𝑥𝑥 ∈ 𝑋𝑋}                                                                                                                                     (3) 

  

where  𝜇𝜇𝑃𝑃 ∶ 𝑋𝑋 → [0,1] represents the degree of membership and 𝜈𝜈𝑃𝑃:𝑋𝑋 → [0,1]  the degree of non-
membership of the element 𝑥𝑥 such that for any 𝑥𝑥 ∈ 𝑋𝑋,  
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0 ≤ �𝜇𝜇𝑃𝑃(𝑥𝑥)�2 + �𝜈𝜈𝑃𝑃(𝑥𝑥)�2 ≤ 1.                                                                                                                                   (4) 

 

The degree of indeterminacy is 𝜋𝜋𝑃𝑃 = �1 − ��𝜇𝜇𝑃𝑃(𝑥𝑥)�2 + �𝜈𝜈𝑃𝑃(𝑥𝑥)�2�. For convenience in decision 

making problems 𝜇𝜇𝑃𝑃(𝑥𝑥), 𝜈𝜈𝑃𝑃(𝑥𝑥) a Pythagorean fuzzy number (PFN) denoted as 𝑝𝑝 = (𝜇𝜇𝑃𝑃 , 𝜈𝜈𝑃𝑃). 

 

The effect of PFS comes from its corresponding constrain conditions. The information can be stated 
more in depth. In other words, all IFNs are PFNs but not all PFNs are the IFNs. The representation 
of the membership functions of IFS and PFS is given in Fig. 1.  

 

 

Fig. 1 Comparison of IFS and PFS membership functions. 

Definition 3. (Zhang and Xu 2014) Let 𝑝𝑝1 = �𝜇𝜇𝑃𝑃1 , 𝜈𝜈𝑃𝑃1�,𝑝𝑝2 = �𝜇𝜇𝑃𝑃2 , 𝜈𝜈𝑃𝑃2� and 𝑝𝑝 = (𝜇𝜇𝑃𝑃 , 𝜈𝜈𝑃𝑃) be three 

PFNs. Then, for 𝜆𝜆 > 0 the corresponding operations are defined as follows: 

 

1) 𝑝𝑝1 ⊕ 𝑝𝑝2 = ��𝜇𝜇𝑝𝑝1
2 + 𝜇𝜇𝑝𝑝2

2 − 𝜇𝜇𝑝𝑝1
2 𝜇𝜇𝑝𝑝2

2 , 𝜈𝜈𝑃𝑃1𝜈𝜈𝑃𝑃2� 

2) 𝑝𝑝1 ⊗ 𝑝𝑝2 = �𝜇𝜇𝑃𝑃1𝜇𝜇𝑃𝑃2 ,�𝜈𝜈𝑝𝑝1
2 + 𝜈𝜈𝑝𝑝2

2 − 𝜈𝜈𝑝𝑝1
2 𝜈𝜈𝑝𝑝2

2 � 

3) 𝜆𝜆𝑝𝑝 = ��1 − �1 − 𝜇𝜇𝑝𝑝2�
𝜆𝜆, 𝜈𝜈𝑝𝑝𝜆𝜆� 

4) 𝑝𝑝𝜆𝜆 = �𝜇𝜇𝑝𝑝𝜆𝜆 ,�1 − �1 − 𝜈𝜈𝑝𝑝2�
𝜆𝜆� 

(5) 

Definition 4. (Zhang and Xu 2014) For any PFN 𝑝𝑝 = (𝜇𝜇𝑃𝑃 , 𝜈𝜈𝑃𝑃), the score and the accuracy functions of 
𝑝𝑝 is defined as 

 

𝑠𝑠(𝑝𝑝) = (𝜇𝜇𝑃𝑃)2 − (𝜈𝜈𝑃𝑃)2 and 𝑎𝑎(𝑝𝑝) = (𝜇𝜇𝑃𝑃)2 + (𝜈𝜈𝑃𝑃)2 (6) 
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where 𝑠𝑠(𝑝𝑝) ∈ [−1,1] and 𝑎𝑎(𝑝𝑝) ∈ [0,1]. For any PFNs 𝑝𝑝1 and 𝑝𝑝2  

 

1. If 𝑠𝑠(𝑝𝑝1) > 𝑠𝑠(𝑝𝑝2), then 𝑝𝑝1 > 𝑝𝑝2. 
2. If 𝑠𝑠(𝑝𝑝1) = 𝑠𝑠(𝑝𝑝2), then  

i. If 𝑎𝑎(𝑝𝑝1) > 𝑎𝑎(𝑝𝑝2) ⇒  𝑝𝑝1 > 𝑝𝑝2 
ii. If 𝑎𝑎(𝑝𝑝1) = 𝑎𝑎(𝑝𝑝2), then 𝑝𝑝1 ≈ 𝑝𝑝2 

 

Definition 5. (Zhang 2016) Let 𝑝𝑝𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑛𝑛) be a collection of PFNs, a Pythagorean fuzzy 
weighted averaging (PFWA) operatoris defined as follows: 

 

PFWA(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) =⊕𝑖𝑖=1
𝑛𝑛 (𝑤𝑤𝑖𝑖𝑝𝑝𝑖𝑖) 

 

which can be described as 

 

PFWA(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) = ��1 −�(1 − (𝜇𝜇𝑖𝑖)2)𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,�(𝜈𝜈𝑖𝑖)𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� (7) 

 

where 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, …𝑤𝑤𝑛𝑛)⊺ is the weight vector of 𝑝𝑝𝑖𝑖 with 𝑤𝑤𝑖𝑖 ∈ [0,1] and ∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 1. 

 

Definition 6. (Zhang 2016) Let 𝑝𝑝𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑛𝑛) be a collection of PFNs, a Pythagorean fuzzy 
weighted geometric (PFWG) operatoris defined as follows: 

 

PFWG(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) =⊗𝑖𝑖=1
𝑛𝑛 (𝑝𝑝𝑖𝑖𝑤𝑤𝑖𝑖) 

 

which can be written as 

 

PFWG(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) = ��(𝜇𝜇𝑖𝑖)𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,�1 −�(1 − (𝜈𝜈𝑖𝑖)2)𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� (8) 

 

where 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, …𝑤𝑤𝑛𝑛) is the weight vector of 𝑝𝑝𝑖𝑖 with 𝑤𝑤𝑖𝑖 ∈ [0,1] and ∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 1. 

 

Definition 7. (Zhang and Xu 2014) Let 𝐴𝐴 and 𝐵𝐵 be two PFSs, then the distance between these two sets 
defined as: 
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d(A, B) =
1

2𝑛𝑛
���𝜇𝜇𝐴𝐴2(𝑥𝑥𝑖𝑖) − 𝜇𝜇𝐵𝐵2(𝑥𝑥𝑖𝑖)� + �𝜈𝜈𝐴𝐴2(𝑥𝑥𝑖𝑖) − 𝜈𝜈𝐵𝐵2(𝑥𝑥𝑖𝑖)� + �𝜋𝜋𝐴𝐴2(𝑥𝑥𝑖𝑖) − 𝜋𝜋𝐵𝐵2(𝑥𝑥𝑖𝑖)� �
𝑛𝑛

𝑖𝑖=1

 (9) 

 

3. Pythagorean Fuzzy COPRAS Method 

 

The proposed method is adapted from AHP integrated COPRAS method which was proposed in 
(Buyukozkan and Gocer 2019).   

 

Let 𝐴𝐴 = {𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑚𝑚} be a set of alternatives, 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛} be a set of criteria and 𝑤𝑤 =
[𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛] be a weight vector with respect to criteria where ∑ 𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗=1 = 1 and 𝑤𝑤𝑗𝑗 ≥ 0. Then, the 
steps of PFS-based COPRAS method are given as follows: 

 

Step 1. Construct decision making matrix 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑗𝑗�𝑚𝑚×𝑛𝑛
= �〈𝜇𝜇𝑖𝑖𝑗𝑗 , 𝜈𝜈𝑖𝑖𝑗𝑗〉�𝑚𝑚×𝑛𝑛

: 

 

𝐴𝐴 =

      𝐶𝐶1                 𝐶𝐶2         …         𝐶𝐶𝑛𝑛
𝐴𝐴1
𝐴𝐴2
…
𝐴𝐴𝑚𝑚

�

〈𝜇𝜇11, 𝜈𝜈11〉 〈𝜇𝜇12, 𝜈𝜈12〉 ⋯ 〈𝜇𝜇1𝑛𝑛, 𝜈𝜈1𝑛𝑛〉
〈𝜇𝜇21, 𝜈𝜈21〉 〈𝜇𝜇22, 𝜈𝜈22〉 ⋯ 〈𝜇𝜇2𝑛𝑛, 𝜈𝜈2𝑛𝑛〉

⋮ ⋮ ⋱ ⋮
〈𝜇𝜇𝑚𝑚1, 𝜈𝜈𝑚𝑚1〉 〈𝜇𝜇𝑚𝑚2, 𝜈𝜈𝑚𝑚2〉 ⋯ 〈𝜇𝜇𝑚𝑚𝑛𝑛, 𝜈𝜈𝑚𝑚𝑛𝑛〉

� (10) 

 

Step 2. Obtain weighted normalized decision matrix 𝐷𝐷:  

 

𝐷𝐷𝑚𝑚𝑛𝑛 = 𝐴𝐴𝑚𝑚𝑛𝑛 ⊗𝑤𝑤𝑛𝑛 = �
𝑎𝑎11𝑤𝑤1 ⋯ 𝑎𝑎𝑤𝑤𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1𝑤𝑤1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛𝑤𝑤𝑛𝑛
� (11) 

 

where 𝑤𝑤𝑖𝑖 = (𝑤𝑤1,𝑤𝑤2, …𝑤𝑤𝑛𝑛)T is the weight vector and ∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 1. 

 

Step 3. Determine the sum of criteria values for benefit and cost: 

 

Let 𝐽𝐽1 = {1,2, … , 𝑙𝑙} be a benefit criterion set and 𝐽𝐽2 = {𝑙𝑙 + 1, 𝑙𝑙 + 2, … ,𝑛𝑛} be a cost criterion set, then 
𝑆𝑆𝑖𝑖+ is the sum of benefit criteria values and 𝑆𝑆𝑖𝑖− is the sum of cost criteria values which are formulated 
as  
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𝑆𝑆𝑖𝑖+ =⊕𝑗𝑗=1
𝑙𝑙 𝑑𝑑𝑖𝑖𝑗𝑗 

    𝑆𝑆𝑖𝑖− =⊕𝑗𝑗=𝑙𝑙+1
𝑛𝑛 𝑑𝑑𝑖𝑖𝑗𝑗 

(12) 

 

Step 4. Defuzzify 𝑆𝑆𝑖𝑖+ and 𝑆𝑆𝑖𝑖− using the following equation which is suggested by (Kahraman et al. 
2018): 

  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜇𝜇𝑖𝑖, 𝜈𝜈𝑖𝑖) =
�𝜇𝜇𝑖𝑖 − (𝜈𝜈𝑖𝑖)2

2
 (13) 

 

Step 5. Calculate the degree of relative importance: 

 

𝑄𝑄𝑖𝑖 = 𝑆𝑆𝑖𝑖+ +
𝑆𝑆−𝑚𝑚𝑖𝑖𝑛𝑛 × ∑     𝑆𝑆𝑖𝑖−𝑚𝑚

𝑖𝑖=1

    𝑆𝑆𝑖𝑖− × ∑ 𝑆𝑆−𝑚𝑚𝑖𝑖𝑛𝑛
    𝑆𝑆𝑖𝑖−

𝑚𝑚
𝑖𝑖=1

, 𝑖𝑖 = 1,2, … ,𝑚𝑚 (14) 

 

where 𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛
−  is the minimum value of     𝑆𝑆𝑖𝑖−. The bigger 𝑄𝑄𝑖𝑖 is, the better alternative is. 

 

Step 6. Rank the alternatives with performance index: 

 

𝑃𝑃𝑖𝑖 = �
𝑄𝑄𝑖𝑖

𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚
� × 100% (15) 

 

After the performance of each alternative is determined, alternatives are ranked according to 
descending order of 𝑃𝑃𝑖𝑖. 

                                                                                                              

4. Numerical Application and Results 

 

Tourism has become an important part of economic income for countries during the pandemic. 
Especially, the growing countries need that revenues for keep their foreign trade in balance. Therefore, 
governments provide convenience to tourists and ease the restrictions for travels. For example, tourists 
coming to Turkey are exempt from the lockdown. Recently, Turkish government has announced that 
the CPR test will not be requested from the tourists coming to Turkey. These eases make Turkey 
attractive for tourists. In the following, we develop a numerical example of tourism management 
adapted from (Merigó et al. 2012) using PFNs.  
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Assume that a group of tourists are planning a travel to Turkey. Since Turkey can be considered as 
tourism attraction centre, there are lots of options to decide for a trip. After a general evaluation for 
different alternatives, 7 trip locations are chosen for alternatives. 

 

𝐴𝐴1: Ayvalık 

𝐴𝐴2: Kuşadası 

𝐴𝐴3: Didim 

𝐴𝐴4: Bodrum 

𝐴𝐴5: Marmaris 

𝐴𝐴6: Datça 

𝐴𝐴7: Alanya 

 

Each of them suggests criteria to evaluate these alternatives and choose the best option. After each 
one’s wishes is considered thoroughly, 8 criteria are selected for assessment.   

 

𝐶𝐶1: Price of trip 

𝐶𝐶2: Tourist activities 

𝐶𝐶3: Beaches 

𝐶𝐶4: Road length to destination 

𝐶𝐶5: Bars and restaurants close to the destination 

𝐶𝐶6: Peace and stability. 

𝐶𝐶7: Shopping opportunities 

𝐶𝐶8: Night entertainments 

 

The weights of criteria are determined by the tourist group as 𝑤𝑤 =
[0.13 0.10 0.12 0.11 0.16 0.17 0.10 0.11 ]. The decision matrix 𝐴𝐴 is constructed as Table 1 according 
to their preferences with respect to criteria. The steps of Pythagorean fuzzy COPRAS Method are 
performed in MATLAB.  

 

Step 1. Decision making matrix 𝐴𝐴 = �𝑎𝑎𝑖𝑖𝑗𝑗�7×8
 is constructed according to given information by tourists 

which is given by Table 1: 
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Table 1. Decision Matrix 𝐴𝐴 
 

 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 𝑪𝑪𝟑𝟑 𝑪𝑪𝟒𝟒 𝑪𝑪𝟓𝟓 𝑪𝑪𝟔𝟔 𝑪𝑪𝟕𝟕 𝑪𝑪𝟖𝟖 

𝑨𝑨𝟏𝟏 〈0.7, 0.3〉 〈0.3, 0.5〉 〈0.1, 0.9〉 〈0.7, 0.3〉 〈0.6, 0.1〉 〈0.6, 0.6〉 〈0.7, 0.4〉 〈0.1, 0.5〉 

𝑨𝑨𝟐𝟐 〈0.1, 0.8〉 〈0.6, 0.3〉 〈0.3, 0.8〉 〈0.8, 0.2〉 〈0.6, 0.5〉 〈0.8, 0.3〉 〈0.1, 0.5〉 〈0.7, 0.2〉 

𝑨𝑨𝟑𝟑 〈0.5, 0.7〉 〈0.9, 0.4〉 〈0.8, 0.3〉 〈0.8, 0.3〉 〈0.3, 0.1〉 〈0.4, 0.5〉 〈0.4, 0.3〉 〈0.9, 0.4〉 

𝑨𝑨𝟒𝟒 〈0.5, 0.6〉 〈0.5, 0.3〉 〈0.9, 0.1〉 〈0.4, 0.8〉 〈0.7, 0.2〉 〈0.3, 0.6〉 〈0.5, 0.5〉 〈0.4, 0.1〉 

𝑨𝑨𝟓𝟓 〈0.8, 0.2〉 〈0.4, 0.4〉 〈0.9, 0.1〉 〈0.9, 0.3〉 〈0.3, 0.5〉 〈0.8, 0.3〉 〈0.6, 0.4〉 〈0.2, 0.1〉 

𝑨𝑨𝟔𝟔 〈0.2, 0.1〉 〈0.6, 0.7〉 〈0.6, 0.1〉 〈0.9, 0.2〉 〈0.4, 0.3〉 〈0.6, 0.7〉 〈0.4, 0.8〉 〈0.4, 0.1〉 

𝑨𝑨𝟕𝟕 〈0.2, 0.2〉 〈0.2, 0.3〉 〈0.1, 0.7〉 〈0.8, 0.6〉 〈0.6, 0.4〉 〈0.2, 0.7〉 〈0.6, 0.8〉 〈0.2, 0.4〉 

 

Step 2. Weighted normalized decision matrix 𝐷𝐷 is obtained using Eq. (11): 

 

𝐷𝐷

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
〈0.29, 0.88〉 〈0.10, 0.93〉 〈0.03, 0.99〉 〈0.27, 0.88〉 〈0.26, 0.69〉 〈0.27, 0.92〉 〈0.26, 0.91〉 〈0.03, 0.93〉
〈0.04, 0.97〉 〈0.21, 0.89〉 〈0.12, 0.97〉 〈0.33, 0.84〉 〈0.26, 0.90〉 〈0.40, 0.81〉 〈0.03, 0.93〉 〈0.27, 0.84〉
〈0.19, 0.95〉 〈0.39, 0.91〉 〈0.34, 0.87〉 〈0.33, 0.88〉 〈0.12, 0.69〉 〈0.17, 0.89〉 〈0.13, 0.89〉 〈0.41, 0.90〉
〈0.19, 0.94〉 〈0.17, 0.89〉 〈0.43, 0.76〉 〈0.14, 0.98〉 〈0.32, 0.77〉 〈0.13, 0.92〉 〈0.17, 0.93〉 〈0.14, 0.78〉
〈0.35, 0.81〉 〈0.13, 0.91〉 〈0.43, 0.76〉 〈0.41, 0.88〉 〈0.12, 0.90〉 〈0.40, 0.81〉 〈0.21, 0.91〉 〈0.07, 0.78〉
〈0.07, 0.74〉 〈0.21, 0.97〉 〈0.23, 0.76〉 〈0.41, 0.84〉 〈0.17, 0.82〉 〈0.27, 0.94〉 〈0.13, 0.98〉 〈0.14, 0.78〉
〈0.07, 0.81〉 〈0.06, 0.89〉 〈0.03, 0.96〉 〈0.33, 0.95〉 〈0.26, 0.86〉 〈0.08, 0.94〉 〈0.21, 0.98〉 〈0.07, 0.90〉⎦

⎤

 

 

Step 3. Sum of criteria values for benefit and cost are determined using Eq. (12): 

 

𝑆𝑆𝑖𝑖+ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
〈0.4501, 0.4941〉
〈0.5599, 0.4921〉
〈0.6430, 0.3892〉
〈0.5740, 0.3452〉
〈0.6044, 0.3576〉
〈0.4607, 0.4313〉
〈0.3526, 0.6105〉⎦

⎥
⎥
⎥
⎥
⎥
⎤

 and 𝑆𝑆𝑖𝑖− =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
〈0.3863, 0.7490〉
〈0.3278, 0.8138〉
〈0.3730, 0.8363〉
〈0.2345, 0.9131〉
〈0.5202, 0.7106〉
〈0.4140, 0.6210〉
〈0.3332,0.7669〉⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

Here, 𝐶𝐶1 and 𝐶𝐶4 are the cost criteria, others are benefit criteria. 
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Step 4. 𝑆𝑆𝑖𝑖+ and 𝑆𝑆𝑖𝑖− are defuzzified using Eq. (13): 

 

𝑆𝑆𝑖𝑖+ = [0.2134    0.2531    0.3252    0.3192    0.3248    0.2463    0.1106] 

𝑆𝑆𝑖𝑖− = [0.0302   − 0.0449   − 0.0443   − 0.1747    0.1081    0.1289   − 0.0054] 

 

Step 5. The degree of relative importance is calculated using Eq. (14): 

 

𝑄𝑄 = [0.2138    0.2528    0.3249    0.3192    0.3249    0.2464    0.1085] 

 

Step 6. The alternatives are ranked with performance index using Eq. (15): 

 

𝑃𝑃 = [65.7855   77.8025  100.0000   98.2321   99.9890   75.8411   33.3926] 

 

According to the performance index, the alternatives are ordered as 

 

𝐴𝐴3 > 𝐴𝐴5 > 𝐴𝐴4 > 𝐴𝐴2 > 𝐴𝐴6 > 𝐴𝐴1 > 𝐴𝐴7. 

 

Then, 𝐴𝐴3 (Didim) is the best location to travel. 

 

Comparison of results 

In order to compare this result with the existing aggregation operators given in Eq. (7) and Eq. (8), an 
analysis is conducted to calculate results with score function given in Eq. (6). Using tourists’ 
preferences from Table 1, first PFWA operator is used to aggregate the decision matrix and then score 
function is used to rank the alternatives. Same operations are conducted for PFWG operator. The 
results are given as follow: 

 

i. If PFWA operator is applied to decision matrix 𝐴𝐴, aggregated values are evaluated as: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴(A) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
〈0.5671, 0.3701〉
〈0.6223, 0.4005〉
〈0.7036, 0.3255〉
〈0.6053, 0.3152〉
〈0.7328, 0.2541〉
〈0.5893, 0.2679〉
〈0.4707, 0.4682〉⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

Then, the score values are obtained as: 
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𝑠𝑠�𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴(𝐴𝐴)� = [0.1846    0.2269    0.3891    0.2671    0.4725    0.2755    0.0024] 
 
According to score values, ranking of the alternatives are ordered as 
 
𝐴𝐴5 > 𝐴𝐴3 > 𝐴𝐴6 > 𝐴𝐴4 > 𝐴𝐴2 > 𝐴𝐴1 > 𝐴𝐴7 

 

Then, 𝐴𝐴5 (Marmaris) is the best location to travel. 
 

ii. If PFWG operator is applied to decision matrix 𝐴𝐴, aggregated values are evaluated as: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(A) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
〈0.3907, 0.5606〉
〈0.4031, 0.5528〉
〈0.5468, 0.4313〉
〈0.4943, 0.5042〉
〈0.5469, 0.3295〉
〈0.4681, 0.5143〉
〈0.2852, 0.5790〉⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

Then, the score values are obtained as: 
 
𝑠𝑠�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐴𝐴)� = [−0.1616   − 0.1431    0.1130   − 0.0099    0.1905   − 0.0454   

− 0.2539] 
 
According to score values, ranking of the alternatives are ordered as 
 
𝐴𝐴5 > 𝐴𝐴3 > 𝐴𝐴4 > 𝐴𝐴6 > 𝐴𝐴2 > 𝐴𝐴1 > 𝐴𝐴7 
 
Then, 𝐴𝐴5 (Marmaris) is the best location to travel. 
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       Figure 1. Ranking comparison of the alternatives with COPRAS, PFWA and PFWG. 

Table 2. Ranking comparison 
 

Methods Rankings 

PF COPRAS 𝐴𝐴3 > 𝐴𝐴5 > 𝐴𝐴4 > 𝐴𝐴2 > 𝐴𝐴6 > 𝐴𝐴1 > 𝐴𝐴7 

PFWA Operator 𝐴𝐴5 > 𝐴𝐴3 > 𝐴𝐴6 > 𝐴𝐴4 > 𝐴𝐴2 > 𝐴𝐴1 > 𝐴𝐴7 

PFWG Operator 𝐴𝐴5 > 𝐴𝐴3 > 𝐴𝐴4 > 𝐴𝐴6 > 𝐴𝐴2 > 𝐴𝐴1 > 𝐴𝐴7 

 

As can be seen in the Figure 1 and Table 2, PF COPRAS method affect the results. Although 𝐴𝐴5 is the 
best option for aggregation operators, 𝐴𝐴3 is the best option for PF COPRAS method. MCDM method 
have a great effect on selecting alternatives when compared to aggregation operators.  

5. Conclusion 

In this study, Pythagorean fuzzy COPRAS method is applied to a decision-making problem 
considering all countries tourism incomes worldwide. The tourism management area is picked for 
numerical example and the selection of the best trip option problem is examined. Seven travel locations 
are selected with respect to eight criteria. First, a decision matrix is created in accordance with a group 
of tourists’ requests and the importance of each criteria is identified. Then, the best possible trip 
location is acquired with PF COPRAS method. To compare results, same decision matrix is aggregated 
with PFWA and PFWG operators. Then alternatives are ranked with score function. The results 
obtained with aggregation operators are quite similar while the best option changes with PF COPRAS 
method. These results show the power of the MCDM methods. 
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In future studies, this problem can be adapted to other MCDM methods such as TOPSIS, TODIM, etc. 
Furthermore, picture fuzzy set, spherical fuzzy set and neutrosophic set extensions of these MCDM 
methods can also be applied to this kind of problems. 
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Abstract. Quaternions and split quaternions are not commutative by mul-
tiplication. A split triplet is obtained when the coefficient of one element of

the vector part of split quaternions is zero. In some special cases, triplets are

commutative. In this study, partial derivatives of split triplet functions are
obtained.

1. Introduction

A real quaternion Q is defined by

Q = a+ bi+ cj + dk

where w, x, y, z are reel numbers and

i2 = j2 = k2 = ijk = −1

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.

The conjugate of a real quaternion Q

Q̄ = a− bi− cj − dk
and the norm of Q is

|Q| =

√
|Q|2

=

√
QQ

=
√
a2 + b2 + c2 + d2.

The set of quaternions is denoted by H [1].

If one of the coefficients of i, j or k is zero, then quaternion Q is defined as
a triplet. The triplets are components of three-dimensional space. They can be
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obtained from quaternions which are four-dimensional space components [5].

A split quaternion q is defined by

q = t+ xi+ yj + zk

where t, x, y, z are reel numbers and

i2 = −1, j2 = k2 = ijk = 1

ij = k, jk = −i, ki = j.

The set of split quaternions is denoted by Ĥ [2]. Similarly, the norm of q is

|q| =

√
|q|2

=
√
qq

=
√
w2 + x2 − y2 − z2.

If one of the coefficients of i, j or k is zero, then quaternion q is defined as a
split triplet. If the coefficient of k is zero than q = t + xi + yj + 0.k is a triplet.
The split triplets are components of three-dimensional Lorentzian space. They can
be obtained from split quaternions which are four-dimensional Lorentzian space
components.

2. Preliminaries

Consider the split quaternionic function f = f1 + if2 + jf3 + kf4, whose compo-
nents are real valued functions. If one of the coefficients of i, j or k is zero, then
quaternion f is defined as a triplet function. Let’s coefficient of k is zero. Then,
f = f1 + if2 + jf3 + k.0 is a triplet function.

We can give the definition of derivative that

f ′(q) =
df

dq
= lim

∆q→0
[f(q + ∆q)− f(q)](∆q)(−1)

where q = t+ xi+ yj + 0k is a triplet. Then, f(q) = f1(q) + if2(q) + jf3(q) + k.0.
In complex numbers algebra,

df/dz =

[
∂f1/∂x ∂f2/∂x
∂f1/∂y ∂f2/∂y

]
where z = x+ iy complex number and f = f1 + if2 complex function. So, f(z) =
f1(z) + if2(z) is wrtten.

∂f

∂x
=

∂f

∂z

∂z

∂x
=
∂f

∂z
1 = f ′(z)

=⇒ f ′(z) =
∂f1

∂x
+
∂f2

∂x
i

∂f

∂y
=

∂f

∂z

∂z

∂y
=
∂f

∂z
i = f ′(z)i

=⇒ f ′(z) = −∂f
∂y
i =

∂f2

∂y
− ∂f1

∂y
i
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Real parts and the coefficient of i are equal. Also,

Tz =

[
x y
−y x

]
is the matrix representation of z complex number and

∂f

∂x
=
∂f1

∂x
+ i

∂f2

∂x

is complex derivative. We can write that

Tz ′ =

[
∂f1/∂x ∂f2/∂x
−∂f2/∂x ∂f1/∂x

]
=

[
∂f1/∂x ∂f2/∂x
∂f1/∂y ∂f2/∂y

]
by considering the matrix representation of z. Here,

∂f1/∂x = ∂f2/∂y, ∂f2/∂x = −∂f1/∂y

are Cauchy-Riemann terms [4].

3. Partial Derivatives of Split Triplet Functions

We can give the following theorem similar to the case with complex numbers
and by considering the theorem given in [6].

Theorem 3.1. We can write that

df

dq
=


∂f1/∂t ∂f2/∂t ∂f3/∂t 0
∂f1/∂x ∂f2/∂x 0 0
∂f1/∂y 0 ∂f3/∂y 0

0 0 0 0


f = f1 + if2 + jf3 + k.0 is a split triplet function whose components are real

valued functions and q = t+ ix+ jy + k.0 is a split triplet.

Proof. We can write

∂f

∂t
=

∂f

∂q

∂q

∂t
=
∂f

∂q
1 = f ′(q)

=⇒ f ′(q) =
∂f1

∂t
+ i

∂f2

∂t
+ j

∂f3

∂t
+ k.0

∂f

∂x
=

∂f

∂q

∂q

∂x
=
∂f

∂q
i = f ′(q)i

=⇒ f ′(q) =
−∂f
∂x

i =
∂f2

∂x
− i∂f1

∂x
− j.0 + k

∂f3

∂x

∂f

∂y
=

∂f

∂q

∂q

∂y
=
∂f

∂q
j = f ′(q)j

=⇒ f ′(q) =
∂f

∂y
j =

∂f3

∂y
+ i.0 + j

∂f1

∂y
+ k

∂f2

∂y
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equations. Here, coefficients are equal. Also,

Tq =


t x y 0
−x t 0 −y
y 0 t x
0 −y −x t


is the matrix representation of split triplet and

∂f

∂t
=
∂f1

∂t
+ i

∂f2

∂t
+ j

∂f3

∂t
+ k.0

is split triplet derivative. We can write that

Tf ′ =


∂f1/∂t ∂f2/∂t ∂f3/∂t 0
−∂f2/∂t ∂f1/∂t 0 −∂f3/∂t
∂f3/∂t 0 ∂f1/∂t ∂f2/∂t

0 −∂f3/∂t −∂f2/∂t ∂f1/∂t



=


∂f1/∂t ∂f2/∂t ∂f3/∂t 0
∂f1/∂x ∂f2/∂x 0 0
∂f1/∂y 0 ∂f3/∂y 0

0 0 0 0


(See [3] for similar operations). Thus, proof is complete. �
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Abstract. A triplet is the special case of a quaternion. Likewise, a split
triplet is the special case of a split quaternion. In general, they are not com-

mutative according to the multiplication process. In this paper, the gradient

of split triplet functions are obtained.

1. Introduction

A real quaternion Q is defined by

Q = a+ bi+ cj + dk

where w, x, y, z are reel numbers and

i2 = j2 = k2 = ijk = −1

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.
The norm of a real quaternion q is

|Q|2 = QQ = a2 + b2 + c2 + d2.

The set of quaternions is denoted by H [1].

If one of the coefficients of i, j or k is zero, then quaternion Q is defined as
a triplet. The triplets are components of three-dimensional space. They can be
obtained from quaternions which are four-dimensional space components [5].

A split quaternion q is defined by

q = t+ xi+ yj + zk

where t, x, y and z are reel numbers and

i2 = −1, j2 = k2 = ijk = 1
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ij = k, jk = −i, ki = j.

The set of split quaternions is denoted by Ĥ [2].

If one of the coefficients of i, j or k is zero, then quaternion q is defined as a
split triplet. If the coefficient of k is zero than q = t + xi + yj + 0.k is a triplet.
The split triplets are components of three-dimensional Lorentzian space. They can
be obtained from split quaternions which are four-dimensional Lorentzian space
components.

2. Preliminaries

For split quaternions q1 and q2

q1 = µq2µ
−1

considering that the split quaternions q1 and q2 are similar if there is at least one µ
split quaternion satisfying the equation. We can apply this feature for split triplet,
which is the special case of split quaternion. Similar calculates are in [3] for split
quaternion. Hence,

qi = −iqi = −i(t+ ix+ jy + 0z)i

= −i(ti− x− ky + 0z)

= t+ ix− jy
qj = −jqj = −j(t+ ix+ jy + 0z)j

= −j(tj + kx+ y + 0z)

= −t+ ix− jy
qk = −kqk = −k(t+ ix+ jy + 0z)k

= −k(tk − jx− iy + 0z)

= −t+ ix+ jy

involutions are obtained. Then, it is written

q = t+ ix+ jy

qi = t+ ix− jy
qj = −t+ ix− jy
qk = −t+ ix+ jy

equation system. So,

t =
1

4
(q + qi − qj − qk)

x =
1

4i
(q + qi + qj + qk)

y =
1

4j
(q − qi − qj + qk)

are obtained. Hence,
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dt =
1

4
(dq + dqi − dqj − dqk)

dx =
−i
4

(dq + dqi + dqj + dqk)

dy =
j

4
(dq − dqi − dqj + dqk)

are written.

3. The Gradient of Split Triplet Functions

Now let’s replace these values in partial derivatives of the function f . Using
these values in the partial derivatives of the function f ,

df

dq
=

∂f

∂t

∂t

∂q
+
∂f

∂x

∂x

∂q
+
∂f

∂y

∂y

∂q

=
∂f

∂t

1

4
+
∂f

∂x

(−i)
4

+
∂f

∂y

j

4

=
1

4
(
∂f

∂t
− i∂f

∂x
+ j

∂f

∂y
)

df

dqi
=

∂f

∂t

∂t

∂qi
+
∂f

∂x

∂x

∂qi
+
∂f

∂y

∂y

∂qi

=
∂f

∂t

1

4
+
∂f

∂x

1

4i
+
∂f

∂y

(−1)

4j

=
1

4
(
∂f

∂t
− i∂f

∂x
− j ∂f

∂y
)

df

dqj
=

∂f

∂t

∂t

∂qj
+
∂f

∂x

∂x

∂qj
+
∂f

∂y

∂y

∂qj

=
∂f

∂t

1

4
+
∂f

∂x

1

4i
+
∂f

∂y

(−1)

4j

=
1

4
(−∂f

∂t
− i∂f

∂x
− j ∂f

∂y
)

df

dqk
=

∂f

∂t

∂t

∂qk
+
∂f

∂x

∂x

∂qk
+
∂f

∂y

∂y

∂qk

=
∂f

∂t

(−1)

4
+
∂f

∂x

1

4i
+
∂f

∂y

1

4j

=
1

4
(−∂f

∂t
− i∂f

∂x
+ j

∂f

∂y
)

equations can be written.It is obtained that
∂f(q,qi,qj ,qk)

∂q
∂f(q,qi,qj ,qk)

∂qi

∂f(q,qi,qj ,qk)
∂qj

∂f(q,qi,qj ,qk)
∂qk

 =
1

4


1 −i j
1 −i −j
−1 −i −j
−1 −i j


 df

dt
df
dx
df
dy


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in matrix form. It can be written that
∂f(q,qi,qj ,qk)

∂q∗

∂f(q,qi,qj ,qk)
∂qi∗

∂f(q,qi,qj ,qk)
∂qj∗

∂f(q,qi,qj ,qk)
∂qk∗

 =
1

4


1 i −j
1 i j
−1 i j
−1 i −j


 df

dt
df
dx
df
dy


for conjugate. Here,

∇f =

 df
dt
df
dx
df
dy


is the gradient of f .
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