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Abstract. Dynamics of the non-relativistic and relativistic charged spinless
particles subjected to space-dependent parallel and orthogonal electromagnetic

fields is investigated by solving Schrödinger and Klein-Gordon equations. Ex-
act solutions of the motion are used to obtain the quantized energy spectrum

and momentum of the particles. Some numerical results for the first few quan-

tum levels are determined with the help of MATHEMATICA software.
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1. Introduction

Finding the exact solutions of the wave equations for the external fields is one of
the old problems. Among these equations Schrödinger and Klein-Gordon are the
most studied ones. Besides by the increase in the applications of the electric and
magnetic fields in fundamental areas of technology, especially in electromechanics,
health physics and so forth ,a significant interest has been given to these solutions.
Such efforts have been performed for different configurations of the external fields
[1-3].

These studies provide remarkable information regarding the quantum mechanical
systems. Some of these attempts are the interpretation of the physical processes.
The most important ones are Compton scattering by a laser source, Brownian
motion, coherent states, and energy levels of electrons.

There are very few studies in the literature on the solution of the wave equation of
the spinless particles in the presence of both electric and magnetic fields. The aim of
this study is to move this attempt one step further by obtaining the exact solutions
of the spinless particles for two orientations of decaying electric and magnetic fields
given by Case(i) A0 = E0

z , A1 = B0

y and Case(ii) A0 = E0

y , A1 = B0

y , where

E0 and B0 are constants. The first and second cases belong to the parallel and
orthogonal fields, respectively. We note that y and z variables are defined in the
region (0,∞) to keep the finite external fields. Such kind of varying electromagnetic
field is encountered in semiconductor heterostructures.

In the following sections, the exact solutions for nonrelativistic and relativistic
cases will be obtained, respectively. By comparing the solutions of the nonrelativis-
tic and relativistic wave equations of the spinless particles, contributions coming
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from the relativistic effects will be considered and by using the mathematical prop-
erties of the wave functions we will obtain the energy spectrum and exact solutions
for both cases.

2. Solution of the Schrodinger Equation

Motion of the nonrelativistic spinless particles is described by the Schrödinger
equation and in the existence of the external electromagnetic fields, it is given by
(we take ~ = 1)

(2.1)


(
~P − e ~A

)2
2m

Φ = (i
∂

∂t
− eA0)Φ

where e is charge, m is mass ot the particle, ~A is the vector electromagnetic poten-
tial. In the following steps we solve the Schrödinger equation for the cases where
electric and magnetic fields are parallel and perpendicular to each other.

2.1. Case (i) Parallel EM Fields. For the choice of A0 = E0

z , A1 = B0

y , ~E ‖ ~B.
We define the solution of (2.1) by

(2.2) Φ‖ = ei(Px−εt)H(y)K(z)

Plugging this solution into (2.1) we obtain,
(
Px −

eB0

y

)2

+ P 2
y︸ ︷︷ ︸

Q̂(y)

+P 2
z − 2m

(
ε− eE0

z

)
︸ ︷︷ ︸

D̂(z)

H(y)K(z) = 0

In short we can write [
Q̂(y) + D̂(z)

]
H(y)K(z) = 0

Separating this equation with respect to y and z, we obtain[
Q̂(y) + b

]
H(y) = 0(2.3) [

D̂(z)− b
]
K(z) = 0(2.4)

where b is the constant of separation.
Let γ2 = (P 2

x + b), and making ρ = 2γy change of variable (2.3) becomes Whit-
taker equation [4]

(2.5)

[
d2

dρ2
− e2B2

0

ρ2
+

2eB0Px
γρ

− 1

4

]
H(ρ) = 0

So exact solution of (2.3) is

(2.6) H(y) = Wλ,µ(2γy)

where µ2 = 1
4 + e2B2

0 , and λ = eB0Px

γ .

In order Whittaker function to be bounded [4]

µ− λ = −(n+
1

2
) = −N, n = 0, 1, 2, · · ·
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So from this equality we find

b = P 2
x

 1

1 + (1/4+N2)
e2B2

o
+ 2NeBo

√
1 + 1

4e2B2
0

− 1


Now for the solution of (2.4), this equation is written as[

P 2
z − 2m

(
ε− eE0

z

)
− b
]
K(z) = 0[

d2

dz2
− 2meE0

z
+ (2mε+ b)

]
K(z) = 0(2.7)

(2.7) is similar to the below equation

Definition 2.1.

xy′′ + (ax+ b)y′ + (cx+ d)y = 0

For a2 > 4c solution is given by [5]

y = x−
b
2 e−

ax
2 1F1

(
2d− ab

2
√
a2 − 4c

,
b− 1

2
, x
√
a2 − 4c

)
Returning to the equation (2.7),

zK ′′(z) + [(2mε+ b)z − 2meE0]K(z) = 0

for 0 > 2mε+ b

K(z) = 1F1

(
−meE0√
−(2mε+ b)

,−1

2
, z
√
−4(2mε+ b)

)
From the requirement of Hypergeometric functions to be finite

−2meE0√
−4(2mε+ b)

= −n

where n = 0, 1, 2, ... we obtain the energy spectrum of Schrödinger equation for the
parallel case as

ε‖ =
P 2
x

2m

1− 1

1 + (1/4+N2)
e2B2

o
+ 2NeBo

√
1 + 1

4e2B2
0

− me2E2
0

2n2

So the exact solution of (2.1) for parallel case is written as

Φ‖ = ei(xPx−εt)Wλ,µ(2γy)1F1(z)

2.2. Case (ii) Orthogonal EM Fields. For the choice of A0 = E0

y , A1 = B0

y ,

~E ⊥ ~B. In this case, we will look for the solution of (2.1) as

Φ⊥ = ei(xPx+zPz−εt)M(y)

Writing this in (2.1), we obtain[
d2

dy2
− e2B2

0

y2
+

2e(PxB0 −mE0)

y
+ (2mε− P 2

x − P 2
z )

]
M(y) = 0

Again solution of this equation is given by Whittaker function as

M(y) = Wκ,σ(2uy)
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where κ = e(Px−mE0)
iu , σ2 = 1

4 − e2B2
0 , u2 = (2mε − P 2

x − P 2
z ). For Whittaker

functions,

σ − κ = −(n+ 1/2)

should be satisfied. From this condition, we obtain the energy spectrum for the
Schrödinger equation for the orthogonal case

ε⊥ =
1

2m

P 2
x + P 2

z −
e2P 2

xB
2
0 + e2m2E2

0 − 2e2mPxB0E0

1
4 + e2B2

0 +N2 + 2N
√

1
4 + e2B2

0


So the exact solution of (2.1) in orthogonal case is written as

Φ⊥ = ei(xPx+zPz−εt)Wκ,σ(2uy)

3. Solution of the Klein-Gordon Equation

The Klein-Gordon equation for the relativistic spinless particles is given by (we
take ~ = 1)

(3.1)
[
(~P − e ~A)2 +m2

]
φ = (P0 − eA0)2φ

3.1. Case (i) Parallel EM Fields. Again we will look for the solution as

φ‖ = ei(xPx−εt)F (y)G(z)

writing this in (3.1) we obtain− d2

dy2
+ (Px −

eB0

y
)2︸ ︷︷ ︸

Q̂(y)

− d2

dz2
− (ε− eE0

z
)2︸ ︷︷ ︸

R̂(z)

+m2

F (y)G(z) = 0

In short we can write [
Q̂(y) + R̂(z) +m2

]
F (y)G(z) = 0

Separating this equation with respect to y and z, we obtain[
Q̂(y) + s

]
F (y) = 0(3.2) [

R̂(z) +m2 − s
]
G(z) = 0(3.3)

where s is the separation constant.
Equation (3.2) is written as

(3.4)

[
− d2

dy2
+ (Px −

eB0

y
)2 + s

]
F (y) = 0

This equation is the same equation obtained in the Schrödinger case. So the solution
is

F (y) = Wλ,µ(2γy)

where µ = ±
√

1
4 + e2B2

0 , λ = eB0√
1+ s

P2
x

and γ =
√
P 2
x + s
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As before

s = P 2
x

 1

1 + (1/4+N2)
e2B2

o
+ 2NeBo

√
1 + 1

4e2B2
0

− 1


Equation (3.3) is written as

(3.5)

[
− d2

dz2
−
(
ε− eE0

z

)2

+m2 − s

]
G(z) = 0

Again solution of this equation is given by Whittaker functions

G(z) = Wλ̃,µ̃(2αz)

where λ̃ = ieE0ε
α , µ̃ = ±

√
1
4 − e2E

2
0 , and α2 = ε2−m2 +s and the energy spectrum

for the parallel case is given by

ε‖ = ±

 (m2 − s)
(

1
4 − e

2E2
0 +N2 + 2Ñ

√
1
4 − e2E

2
0

)
1
4 + Ñ2 + 2Ñ

√
1
4 − e2E

2
0


1
2

and the exact solution of Klein-Gordon equation for the parallel case is given by

φ‖ = ei(xPx−εt)Wλ,µ(2γy)Wλ̃,µ̃(2αz)

3.2. Case (ii) Orthogonal EM Fields. For the choice of A0 = E0

y , A1 = B0

y ,

~E ⊥ ~B.
Again we will look for the solution of (3.1) as

φ⊥ = ei(xPx+zPz−εt)N(y)

Writing this in (3.1), we obtain[
d2

dy2
+
e2(E2

0 −B2
0)

y2
+

2e(PxB0 − εE0)

y
+ (ε2 −m2 − P 2

x − P 2
z )

]
N(y) = 0

Again solution of this equation is given by Whittaker function as

N(y) = Wκ̃,σ̃(2vy)

where κ̃ = e(Px−εE0)
iv , σ̃2 = 1

4 − e2(E2
0 − B2

0), v2 = (ε2 − m2 − P 2
x − P 2

z ). For
Whittaker functions,

σ̃ − κ̃ = −(ñ+ 1/2)

should be satisfied. From this condition, we obtain the energy spectrum for the
Klein-Gordon equation for the orthogonal case from below quadratic equation

ε2 (w2 + e2E2
0)︸ ︷︷ ︸

a

+ε (−2e2PxB0E0)︸ ︷︷ ︸
b

+ e2P 2
xB

2
0 − w2(m2 + P 2

x + P 2
z )︸ ︷︷ ︸

c

= 0

where w =
√

1
4 − e2(E2

0 −B2
0) + Ñ .

ε⊥ =
−b±

√
b2 − 4ac

2a

Exact solution of the (3.1) for the orthogonal case is

φ⊥ = ei(xPx+zPz−εt)Wκ̃,σ̃(2vy)
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Figure 1. Parallel Case Figure 2. Orthogonal Case

4. Conclusion

We investigated the motion of the spin-0 particles in electromagnetic fields for
parallel and orthogonal orientations. Analysis is performed for Schrödinger and
Klein-Gordon cases and that present us the contribution of the relativistic effects.

In the case of
−→
E ‖

−→
B , the relativistic effects arise only for the motion in the z-

direction. In that case the Whittaker functions that occurred in the relativistic
solutions are replaced by the confluent hypergeometric function for nonrelativistic

solutions. In case of the orthogonal fields
−→
E ⊥

−→
B , exact solutions of the Schrödinger

and Klein-Gordon equations are found in terms of the Whittaker functions.
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