IFSCOM2016¹ Proceeding Book No. 1 pp. 73-77 (2016) ISBN: 978-975-6900-54-3

NEW INTUITIONISTIC FUZZY LEVEL SETS

GÖKHAN ÇUVALCIOĞLU AND YELDA YORULMAZ

ABSTRACT. The concept of Intuitionistic Fuzzy Sheet t-Cut Set and Intuitionistic Fuzzy $\alpha - t$ Block Cut Set are introduced. The differences between $C_{\alpha,\beta}$ level set and new intuitionistic fuzzy sets is shown.

Received: 27–June–2016

Accepted: 29-August-2016

1. INTRODUCTION

The function $\mu : X \to [0,1]$ is called a fuzzy set over X(FS(X))[?]. For $x \in X$, $\mu(x)$ is the membership degree of x and the non-membership degree is $1 - \mu(x)$. Intuitionistic fuzzy sets have been introduced by Atanassov [2], as an extension of fuzzy sets. If X is a universal then a intuitionistic fuzzy set A, the membership and non-membership degree for each $x \in X$ respectively, $\mu_A(x)(\mu_A: X \to [0,1])$ and $\nu_A(x)(\nu_A: X \to [0,1])$ such that $0 \le \mu_A(x) + \nu_A(x) \le 1$. The class of intuitionistic fuzzy sets on X is denoted by IFS(X).

Definition 1.1. [2] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

$$A = \{ < x, \mu_A(x), \nu_A(x) > : x \in X \}$$

where $\mu_A(x), (\mu_A : X \to [0, 1])$ is called the "degree of membership of x in A", $\nu_A(x), (\nu_A : X \to [0, 1])$ is called the "degree of non-membership of x in A", and where μ_A and ν_A satisfy the following condition:

$$\mu_A(x) + \nu_A(x) \le 1$$
, for all $x \in X$.

Definition 1.2. [1] An intuitionistic fuzzy set A is said to be contained in an intuitionistic fuzzy set B if and only if, for all $x \in X : \mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$. If fuzzy set B contains fuzz set A then it is shown by $A \sqsubseteq B$.

It is clear that A = B if and only if $A \sqsubseteq B$ and $B \sqsubseteq A$.

Definition 1.3. [2]Let $A \in IFS(X)$ and let $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ then the set

$$A^{c} = \{ < x, \nu_{A}(x), \mu_{A}(x) > : x \in X \}$$

is called the complement of A.

 $^{^{1}3^{}rd}$ International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference

²⁰¹⁰ Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18. Key words and phrases. Intuitionistic Fuzzy Sets, Intuitionistic Fuzzy Sheet t-Cut Sets, In-

tuitionistic Fuzzy $\alpha - t$ Block Cut Sets.

The intersection and the union of two IFSs A and B on X are defined by

$$A \sqcap B = \{ < x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) > : x \in X \}$$

 $A \sqcup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \}$

Some special Intuitionistic Fuzzy Sets on X are defined as following;

$$O^* = \{ \langle x, 0, 1 \rangle : x \in X \}$$
$$U^* = \{ \langle x, 0, 0 \rangle : x \in X \}$$

Definition 1.4. [4] Let $A \in IFS(X)$. Then (α, β) -cut of A is a crisp subset $C_{\alpha,\beta}(A)$ of the IFS A is given by

 $C_{\alpha,\beta}(A) = \{x : x \in X \text{ such that } \mu_A(x) \ge \alpha, \nu_A(x) \le \beta\}$

where $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$.

2. Sheet and Block Cut Intuitionistic Fuzzy Level Sets

Definition 2.1. Let X be a set and $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \} \in IFS(X)$. If $t \in [0, 1]$ then sheet t-cut of A defined as following

$$A(t) = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : \mu_A(x) + \nu_A(x) = t, x \in X \}$$

Proposition 2.1. Let X be a set and $A, B \in IFS(X)$. For every $t \in [0, 1]$,

- (1) $(A \sqcup B)(t) = A(t) \sqcup B(t)$
- (2) $A(t) \sqcap B(t) = (A \sqcap B)(t)$
- (3) $(A^{c}(t))^{c} = A(t)$

Proof. (1)

$$A(t) \sqcup B(t) = \begin{cases} \langle x, \max(\mu_A(x), \mu_B(x)), \min(\nu_A(x), \nu_B(x)) \rangle : \\ \mu_A(x) + \nu_A(x) = t \land \mu_B(x) + \nu_B(x) = t, x \in X \end{cases}$$

If $\mu_A(x) \ge \mu_B(x)$ then from $\mu_A(x) + \nu_A(x) = t = \mu_B(x) + \nu_B(x)$ we obtain $\nu_A(x) \le \nu_B(x)$.

 $\max(\mu_{A}(x), \mu_{B}(x)) + \min(\nu_{A}(x), \nu_{B}(x)) = \mu_{A}(x) + \nu_{A}(x) = t$

If $\mu_A(x) \leq \mu_B(x)$ then from $\mu_A(x) + \nu_A(x) = t = \mu_B(x) + \nu_B(x)$ we obtain $\nu_A(x) \leq \nu_B(x)$.

 $\max(\mu_A(x), \mu_B(x)) + \min(\nu_A(x), \nu_B(x)) = \mu_B(x) + \nu_B(x) = t$ Thence, $(A \sqcup B)(t) = A(t) \sqcup B(t)$. (2)

$$A(t) \sqcap B(t) = \left\{ \begin{array}{c} \langle x, \min(\mu_A(x), \mu_B(x)), \max(\nu_A(x), \nu_B(x)) \rangle :\\ \mu_A(x) + \nu_A(x) = t \land \mu_B(x) + \nu_B(x) = t, x \in X \end{array} \right\}$$

If $\mu_A(x) \ge \mu_B(x)$ then from $\mu_A(x) + \nu_A(x) = t = \mu_B(x) + \nu_B(x)$ we obtain $\nu_A(x) \le \nu_B(x)$.

 $\min(\mu_A(x), \mu_B(x)) + \max(\nu_A(x), \nu_B(x)) = \mu_B(x) + \nu_B(x) = t$ If $\mu_A(x) \le \mu_B(x)$ then from $\mu_A(x) + \nu_A(x) = t = \mu_B(x) + \nu_B(x)$ we obtain $\nu_A(x) \le \nu_B(x)$. $\min(\mu_A(x), \mu_B(x)) + \max(\nu_A(x), \nu_B(x)) = \mu_A(x) + \nu_A(x) = t$

 $\min(\mu_A(x), \mu_B(x)) + \max(\nu_A(x), \nu_B(x)) = \mu_A(x) + \nu_A(x) = t$ Therefore, we obtain that $A(t) \sqcap B(t) = (A \sqcap B)(t)$. (3) It is clear.

Remark 2.1. Let X be a set and $A \in IFS(X).A(t)$ is a fuzzy set on [0, t].

Proposition 2.2. Let X be a set and $A \in IFS(X)$. If $t, s \in [0, 1]$ then

Either $A(t) \sqcap A(s) = O^*$ or t = s

Proof. If $A(t) \sqcap A(s) \neq O^*$ and $t \neq s$ then there exists $x \in X$,

$$\mu_A(x) + \nu_A(x) = t \text{ and } \mu_A(x) + \nu_A(x) = s$$

$$\Rightarrow t = s$$

Corollary 2.1. There exist an equivalence relation on X such that the sheet t-cuts are equivalence class of that relation.

Definition 2.2. Let X be a set and $A \in IFS(X)$. If $t \in [0, 1]$ and $\alpha \in [0, t]$ then

$$A(t)_{\alpha} = \{x : x \in X, \ A(t)(x) \ge (\alpha, t - \alpha)\}$$

is called $\alpha - t$ block cut of A.

From definitions, it is easily seen that for every $t \in [0, 1], A(t) \in FS(X)$. Because $A(t) : X \to [0, t]$ and $[0, t] \sim [0, 1]$. For short notation, if $A(t) : X \to [0, t]$ then A(t) will be called t-fuzzy set on $X(A(t) \in FS_t(X))$. It is clear that $A(t)_{\alpha}$ is a crisp set.

Proposition 2.3. Let X be a set and $A \in IFS(X)$. If $t \in [0, 1]$ then

- (1) $A(t)_t = \{x : x \in X, \ \mu_A(x) = t \land \nu_A(x) = 0\}$
- (2) $A(t)_0 = \{x : x \in X, \ \mu_A(x) \ge 0 \land \nu_A(x) \le t\}$

Figure 2

(3) $A(0) = U^*$

Example 2.1. Let $X = \{a, b, c, d, e\}$ and $A = \{(a, 0.5, 0.4), (b, 0.2, 0.3), (c, 0.5, 0.3), (d, 0.4, 0.4), (e, 0.4, 0.1)\}.$

- (1) $A(0.5)_{0.3} = \{e\}$ but $C_{0.3,0.5}(A) = \{a, c, d, e\}$ and $C_{0.5,0.3}(A) = \{c\}$.
- (2) $A(0.8)_{0.5} = \{c\}$ but 0.8 + 0.5 > 1 so, we can not obtain $C_{0.5,0.8}(A)$ or $C_{0.8,0.5}(A)$.

Example 2.2. Let $X = \{a, b, c, d, e\}$ and $A = \{(a, 0.1, 0.2), (b, 0.4, 0.3), (c, 0.6, 0.2), (d, 0.7, 0.1), (e, 0.2, 0.5)\}.$

 $A(0.3)_{0.2} = \emptyset$ but $C_{0.2,0.3}(A) = \{b, c, d\}$ and $C_{0.3,0.2}(A) = \{c, d\}.$

That is seen from the examples, (α, β) -cut of an intuitionistic fuzzy set A and $\alpha - t$ block cut of A are different sets. For all $t \in [0, 1]$ and $\alpha \in [0, t]$, we can determine $\alpha - t$ block cut of A, if $\alpha + t > 1$ then we can not determine (α, β) -cut of A. Consequently, $\alpha - t$ block cut of an intuitionistic fuzzy set allows a more extensive studying area.

Proposition 2.4. Let X be a set and $A \in IFS(X)$. If $t \in [0,1]$ and $\alpha, \beta \in [0,t]$ such that $\alpha \leq \beta$ then $A(t)_{\beta} \subseteq A(t)_{\alpha}$.

Proof. Let $\alpha \leq \beta$. If $x \in A(t)_{\beta}$ then

$$A(t)(x) \ge (\beta, t - \beta) \ge (\alpha, t - \alpha)$$

Therefore $x \in A(t)_{\alpha}$.

Proposition 2.5. Let X be a set and $A, B \in IFS(X)$. If $t \in [0,1]$ and $\alpha \in [0,t]$ then

- (1) $A(t)_{\alpha} \cup B(t)_{\alpha} = (A(t) \sqcup B(t))_{\alpha}$
- (2) $A(t)_{\alpha} \cap B(t)_{\alpha} = (A(t) \sqcap B(t))_{\alpha}$

$$\begin{array}{ll} (3) \ (A(t)^{c})_{\alpha} = t - A(t)_{\alpha}, (t(x) = t) \\ (4) \ (A^{c}(t)^{c})_{\alpha} = t - A(t)_{\alpha} = t - A^{c}(t)_{\alpha} \\ \end{array}$$

$$Proof. \ (1) \\ x \ \in \ A(t)_{\alpha} \cup B(t)_{\alpha} \Leftrightarrow A(t)(x) \ge (\alpha, t - \alpha) \lor B(t)(x) \ge (\alpha, t - \alpha) \\ \Leftrightarrow \ (\mu_{A(t)}(x) \ge \alpha \land \nu_{A(t)}(x) \ge t - \alpha) \lor (\mu_{B(t)}(x) \ge \alpha \land \nu_{B(t)}(x) \le t - \alpha) \\ \Leftrightarrow \ (\mu_{A(t)}(x) \ge \alpha \lor \mu_{B(t)}(x) \ge \alpha) \land (\nu_{A(t)}(x) \le t - \alpha \lor \nu_{B(t)}(x) \le t - \alpha) \\ \Leftrightarrow \ (\mu_{A(t)}(x) \lor \mu_{B(t)}(x)) \ge \alpha \land (\nu_{A(t)}(x) \land \nu_{B(t)}(x)) \le t - \alpha) \\ \Leftrightarrow \ (\mu_{A(t)}(x) \lor \mu_{B(t)}(x)) \ge \alpha \land (\nu_{A(t)}(x) \land \nu_{B(t)}(x)) \le t - \alpha \\ \Leftrightarrow \ x \in (A(t) \sqcup B(t))_{\alpha} \\ (2) \\ A(t)_{\alpha} \cap B(t)_{\alpha} = \{x \in X : A(t)(x) \ge (\alpha, t - \alpha) \land B(t)(x) \ge (\alpha, t - \alpha)\} \\ = \{x \in X : (\mu_{A(t)}(x) \ge \alpha \land \nu_{A(t)}(x) \le t - \alpha) \land (\mu_{B(t)}(x) \ge \alpha \land \nu_{B(t)}(x) \le t - \alpha)\} \\ = \{x \in X : (\mu_{A(t)}(x) \ge \alpha \land \mu_{B(t)}(x) \ge \alpha) \land (\nu_{A(t)}(x) \lor t - \alpha \land \nu_{B(t)}(x) \le t - \alpha)\} \\ = \{x \in X : (\mu_{A(t)}(x) \land \mu_{B(t)}(x)) \ge \alpha \land (\nu_{A(t)}(x) \lor \nu_{B(t)}(x)) \le t - \alpha)\} \\ = \{x \in X : (\mu_{A(t)}(x) \land \mu_{B(t)}(x)) \ge \alpha \land (\nu_{A(t)}(x) \lor \nu_{B(t)}(x)) \le t - \alpha)\} \\ = \{x \in X : (\mu_{A(t)}(x) \land \mu_{B(t)}(x)) \ge \alpha \land (\nu_{A(t)}(x) \lor \nu_{B(t)}(x)) \le t - \alpha)\} \\ = \{x \in X : (\mu_{A(t)} \cap B(t))_{\alpha} \\ (3) \\ (A(t)^{c})_{\alpha} = \{x \in X : A(t)^{c}(x) \ge (\alpha, t - \alpha)\} \\ = \{x \in X : t - \nu_{A(t)}(x) \le x \land \mu_{A(t)}(x) \ge t - \alpha \land \mu_{A(t)}(x) \ge \alpha\} \\ = \{x \in X : t - \nu_{A(t)}(x) \ge (\alpha, t - \alpha)\} \\ = \{x \in X : t - \lambda_{A(t)}(x) \ge \alpha \land \mu_{A(t)}(x) \ge \alpha \land \mu_{A(t)}(x) \ge \alpha\} \\ = \{x \in X : t - \lambda_{A(t)}(x) \ge (\alpha, t - \alpha)\} \\ = \{x \in X : t - \lambda_{A(t)}(x) \ge (\alpha, t - \alpha)\} \\ = \{x \in X : t - \lambda_{A(t)}(x) \ge (\alpha, t - \alpha)\} \\ = \{x \in X : (t - A(t))(x) \ge (\alpha, t - \alpha)\}$$

 $= t - A(t)_{\alpha}$

References

- [1] Atanassov K.T., Intuitionistic Fuzzy Sets, VII ITKR'sSession, Sofia, June (1983).
- [2] Atanassov K.T., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, (1986), 20, 87-96
- [3] Çuvalcioglu G., Yılmaz S., On Block and Sheet Level of Intuitionistic Fuzzy Sets, 2nd Int. IFS Conference, Mersin, October(2015).
- [4] Sharma P.K., (α, β)-Cut of Intuitionistic Fuzzy Groups, International Mathematical forum, (2011),53(6), 2605-2614.
- [5] Zadeh L.A., Fuzzy Sets, Information and Control, (1965), 8, 338-353.

UNIVERSITY OF MERSIN DEPARTMENT OF MATHEMATICS MERSIN, TURKEY. *E-mail address:* gcuvalcioglu@mersin.edu.tr *E-mail address:* yeldayorulmaz@gmail.com