IFSCOM2016¹ Proceeding Book No. 1 pp. 192-195 (2016) ISBN: 978-975-6900-54-3

A NOTE ON POROSITY CLUSTER POINTS

MAYA ALTINOK AND MEHMET KÜÇÜKASLAN

ABSTRACT. Porosity cluster points of real valued sequences was defined and studied in [3]. In this paper we give the relation between porosity cluster points and distance function.

Received: 17–July–2016

Accepted: 29–August–2016

1. INTRODUCTION

Porosity is appeared in the papers of Denjoy [5], [6], Khintchine [11] and, Dolzenko [7]. It has many applications in theory of free boundaries [10], generalized subharmonic functions [8], complex dynamics [12], quasisymmetric maps [14], infinitesimal geometry [4] and other areas of mathematics.

Let $A \subset \mathbb{R}^+ = [0, \infty)$, then the right upper porosity of A at the point 0 is defined as

$$p^+(A) := \limsup_{h \to 0^+} \frac{\lambda(A,h)}{h}$$

where $\lambda(A, h)$ denotes the length of the largest open subinterval of (0, h) that contains no point of A (for more information look [13]). The notion of right lower porosity of A at the point 0 is defined similarly.

In [1], the notation of porosity which was defined at zero for the subsets of real numbers, has been redefined at infinity for the subsets of natural numbers.

Let $\mu : \mathbb{N} \to \mathbb{R}^+$ be a strictly decreasing function such that $\lim_{n \to \infty} \mu(n) = 0$, (it is called scaling function) and let E be a subset of \mathbb{N} .

Upper porosity and lower porosity of the set E at infinity were defined respectively in [1] as follows:

(1.1)
$$\overline{p}_{\mu}(E) := \limsup_{n \to \infty} \frac{\lambda_{\mu}(E, n)}{\mu(n)}, \quad \underline{p}_{\mu}(E) := \liminf_{n \to \infty} \frac{\lambda_{\mu}(E, n)}{\mu(n)},$$

where

$$\lambda_{\mu}(E,n) := \sup\{|\mu(n^{(1)}) - \mu(n^{(2)})| : n \le n^{(1)} < n^{(2)}, \ (n^{(1)}, n^{(2)}) \cap E = \emptyset\}.$$

Using the definition of upper porosity, all subsets of natural numbers can be classify as follows: $E\subseteq\mathbb{N}$ is

(i) porous at infinity if $\overline{p}_{\mu}(E) > 0$;

(*ii*) strongly porous at infinity if $\overline{p}_{\mu}(E) = 1$;

¹3rd International Intuitionistic Fuzzy Sets and Contemporary Mathemathics Conference 2010 Mathematics Subject Classification. 40A05, 14F45.

Key words and phrases. local upper porosity, porosity of subsets of natural numbers, porosity convergence, porosity limit points, porosity cluster points .

(iii) nonporous at infinity if $\overline{p}_{\mu}(E) = 0$. Throughout this paper, we will consider only the upper porosity of subsets of \mathbb{N} .

Let us recall the definition of \overline{p}_{μ} -convergence of real valued sequences for any scaling function:

Definition 1.1. [2] A sequence $x = (x_n)_{n \in \mathbb{N}}$ is said to \overline{p}_{μ} -convergent to l if for each $\varepsilon > 0$,

 $\overline{p}_{\mu}(A_{\varepsilon}) > 0,$

where $A_{\varepsilon} := \{n : |x_n - l| \ge \varepsilon\}$. It is denoted by $x \to l(\overline{p}_{\mu})$ or $(\overline{p}_{\mu} - \lim_{n \to \infty} x_n = l)$.

Let $x' = (x_{n_k})$ be a subsequence of $x = (x_n)$ for monotone increasing sequence $(n_k)_{k \in \mathbb{N}}$ and $K := \{n_k : k \in \mathbb{N}\}$, then we abbreviate $x' = (x_{n_k})$ by $(x)_K$.

Definition 1.2. [3]. Let $x = (x_n)$ be a sequence and $(x)_K$ be a subsequence of $x = (x_n)$. If

(i) $\overline{p}_{\mu}(K) > 0$, then $(x)_{K}$ is called \overline{p}_{μ} -thin subsequence of $x = (x_{n})$,

(ii) $\overline{p}_{\mu}(K) = 1$, then $(x)_{K}$ is called a strongly \overline{p}_{μ} -thin subsequence of $x = (x_{n})$,

(*iii*) $\overline{p}_{\mu}(K) = 0$, then $(x)_{K}$ is a \overline{p}_{μ} -nonthin (or \overline{p}_{μ} -dense) subsequence of $x = (x_{n})$.

Definition 1.3. [3]. A number α is said to be \overline{p}_{μ} -limit point of the sequence $x = (x_n)$ if it has a \overline{p}_{μ} -nonthin subsequence that converges to α .

The set of all \overline{p}_{μ} -limit points of $x = (x_n)$ is denoted by $L_{\overline{p}_{\mu}}(x)$.

Definition 1.4. [3]. A number β is said to be a \overline{p}_{μ} -cluster point of $x = (x_n)$ if for every $\varepsilon > 0$, the set

$$\{n: |x_n - \beta| < \varepsilon\}$$

is nonporous. i.e.,

$$\overline{p}_{\mu}(\{n: |x_n - \beta| < \varepsilon\}) = 0.$$

For a given sequence $x = (x_n)$; the symbol $\Gamma_{\overline{p}_{\mu}}(x)$ denotes the set of all \overline{p}_{μ} -cluster points.

2. Main Results

Some results about the set of $L_{\overline{p}_{\mu}}(x)$ -cluster, and $L_{\overline{p}_{\mu}}(x)$ -limit points of given real valued sequences has been investigated in [3]. In this paper, as a continuation of [3] the same subject will be studied.

Theorem 2.1. Assume that $x = (x_n)$ is monotone increasing (or decreasing) sequence of real numbers. If $\sup x_n < \infty$ (or $\inf x_n < \infty$), then $\sup x_n \in \Gamma_{\overline{p}_{\mu}}(x)$ (or $\inf x_n \in \Gamma_{\overline{p}_{\mu}}(x)$).

Proof. The proof will be given only for monotone increasing sequences. The other case can be proved by following similar steps. From the definition of supremum for any $\varepsilon > 0$, there exists an $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that the inequality

$$\sup x_n - \varepsilon < x_{n_0} \le \sup x_n$$

holds. Since the sequence is monotone increasing, then we have

(2.1)
$$\sup x_n - \varepsilon < x_{n_0} < x_n \le \sup x_n < \sup x_n + \varepsilon$$

for all $n > n_0$.

From (2.1), for any $\varepsilon > 0$ there exists an $n_0 = n_0(\varepsilon) \in \mathbb{N}$ such that following inequality

$$(2.2) |x_n - \sup x_n| < \varepsilon$$

holds for all $n > n_0(\varepsilon)$.

From (2.2), following inclusion

$$\mathbb{N}\setminus\{1,2,3,\dots,n_0\}\subset\{n:|x_n-\sup x_n|<\varepsilon\}$$

and the inequality

$$\overline{p}_{\mu}(\{n: |x_n - \sup x_n| < \varepsilon\}) \le \overline{p}_{\mu}(\mathbb{N} \setminus \{1, 2, ..., n_0\})$$

hold.

Since $\overline{p}_{\mu}(\mathbb{N}\setminus\{1,2,3,...,n_0\})=0$, then from Lemma 1.1 in [3] we have

$$\overline{p}_{\mu}(\{n: |x_n - \sup x_n| < \varepsilon\}) = 0.$$

This gives the desired proof.

Corollary 2.1. If $x = (x_n)$ is a bounded sequence, then $\sup x_n$ and $\inf x_n$ are belong to $\Gamma_{\overline{p}_n}(x)$.

Let $A, B \subset \mathbb{R}$ and recall the distance between A and B is defined as

$$d(A, B) := \inf\{|a - b| : a \in A, b \in B\}.$$

Theorem 2.2. Let $x = (x_n)$ be a real valued sequence. If $\Gamma_{\overline{p}_{\mu}}(x) \neq \emptyset$, then $d(\Gamma_{\overline{p}_{\mu}}(x), x) = 0$.

Proof. Assume $\Gamma_{\overline{p}_{\mu}}(x) \neq \emptyset$. Let us consider an arbitrary element $y^* \in \Gamma_{\overline{p}_{\mu}}(x)$. Then, for an arbitrary $\varepsilon > 0$ we have

$$\overline{p}_{\mu}(\{n: |x_n - y*| < \varepsilon\}) = 0.$$

So, the set $\{x_n : |x_n - y *| < \varepsilon\}$ has at least countable number elements of $x = (x_n)$. Let us denote this set by D where $D := \{n_k : |x_{n_k} - y *| < \varepsilon\} \subset \mathbb{N}$. Therefore, we have

$$0 \le dist(\Gamma_{\overline{p}_{\mu}}(x), x) = \inf\{|y - x_n| : y \in \Gamma_{\overline{p}_{\mu}}(x), n \in \mathbb{N}\}$$

$$\le \inf\{|y * -x_{n_k}| : n_k \in D\} < \varepsilon.$$

So, for every $\varepsilon > 0$, we have $0 \le d(\Gamma_{\overline{p}_u}(x), x) < \varepsilon$.

Theorem 2.3. Let $x = (x_n)$ be a real valued sequence and $\gamma \in \mathbb{R}$ be an arbitrary fixed point. If $d(\gamma, x) \neq 0$, then $\gamma \notin \Gamma_{\overline{p}_u}(x)$.

Proof. From the hypothesis we have

$$d(\gamma, x) := \inf\{|x_k - \gamma| : k \in \mathbb{N}\} = m > 0.$$

From the assumption the inequality

$$|x_k - \gamma| \ge m$$

holds for all $k \in \mathbb{N}$. It means that the open interval $(\gamma - m, \gamma + m)$ has no elements of the sequence $x = (x_n)$. So, we have

$$\overline{p}_{\mu}(\{k : |x_k - \gamma| < m\}) = 1.$$

For $0 < \varepsilon < m$ we have

$$\overline{p}_{\mu}(\{k: |x_k - \gamma| < \varepsilon\}) = 1.$$

194

So, $\gamma \notin \Gamma_{\overline{p}_{\mu}}(x)$.

Remark 2.1. If $d(\gamma, x) = 0$, it is not necessary for $\gamma \in \Gamma_{\overline{p}_{\mu}}(x)$.

Let us consider $(x_n) = (\frac{1}{n})_{n \in \mathbb{N}}$. For $\gamma = \frac{1}{2}$, it is clear that $d(\frac{1}{2}, \frac{1}{n}) = 0$ holds, but $\frac{1}{2} \notin \Gamma_{\overline{p}_n}(x) = \{0\}.$

References

- M. Altınok, O. Dovgoshey, M. Küçükaslan, Local one-sided porosity and pretangent spaces, Analysis, 36(3) (2016), 147-171.
- [2] M. Altınok, M. Küçükaslan, On porosity-convergence of real valued sequences, (Accepted in Alexandru Ioan Cuza Dn Ia Matematica in 2016).
- [3] M. Altınok, Porosity limit and cluster points of real valued sequences, (Submitted 2016).
- [4] V. Bilet, O. Dovgoshey, Boundedness of pretangent spaces to general metric spaces, Ann. Acad. Sci. Fenn. Math., 39 (2009), 73-82.
- [5] A. Denjoy, Sur une propriété des séries trigonométriques, Verlag v.d. G. V. der Wie-en Natuur. Afd., 29 (1920), 220-232.
- [6] A. Denjoy, Leçons sur le calcul des cofficients d'une série trigonométrique, Part II, Métrique et topologie d'ensembles parfaits et de fonctions, Gauthier-Villars, Paris, 1941.
- [7] E. P. Dolženko, Boundary properties of arbitrary functions, (Russian), Izv. Akad. Nauk SSSR Ser. Math. 31 (1967), 3-14.
- [8] O. Dovgoshey and J. Riihentaus, Mean value type inequalities for quasinearly subharmonic functions, Glasgow Math. J., 55(2) (2013), 349-368.
- [9] J. A. Fridy Statistical limit points, Proceeding of the American Mathematical Society, 118(4) (1993), 1187-1192.
- [10] L. Karp, T. Kilpenläinen, A. Petrosyan and H. Shahgholian, On the porosity of free boundaries in degenerate variational inequalities, J. Differential Equations, 164 (2000), 110-117.
- [11] A. Khintchine, An investigation of the structure of measurable functions, (Russian), Mat. Sbornik, **31** (1924), 265-285.
- [12] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math., 155 (1998), 189-199.
- [13] B. S. Thomson, *Real Functions*, Lecture Notes in Mathematics, **1170**, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985.
- [14] J. Väisälä, Porous seta and quasisymmetric maps, Trans. Amer. Math. Soc., 299 (1987), 525-533.

Mersin University, Faculty of Sciences and Arts Department of Mathematics, 33343 Mersin, Turkey

E-mail address: mayaaltinok@mersin.edu.tr *E-mail address*: mkkaslan@gmail.com.tr