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A NOTE ON POROSITY CLUSTER POINTS
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Abstract. Porosity cluster points of real valued sequences was defined and
studied in [3]. In this paper we give the relation between porosity cluster

points and distance function.

Received: 17–July–2016 Accepted: 29–August–2016

1. Introduction

Porosity is appeared in the papers of Denjoy [5], [6], Khintchine [11] and, Dolzenko
[7]. It has many applications in theory of free boundaries [10], generalized subhar-
monic functions [8], complex dynamics [12], quasisymmetric maps [14], infinitesimal
geometry [4] and other areas of mathematics.

Let A ⊂ R+ = [0,∞), then the right upper porosity of A at the point 0 is defined
as

p+(A) := lim sup
h→0+

λ(A, h)

h

where λ(A, h) denotes the length of the largest open subinterval of (0, h) that con-
tains no point of A (for more information look [13]). The notion of right lower
porosity of A at the point 0 is defined similarly.

In [1], the notation of porosity which was defined at zero for the subsets of real
numbers, has been redefined at infinity for the subsets of natural numbers.

Let µ : N→ R+ be a strictly decreasing function such that lim
n→∞

µ(n) = 0, (it is

called scaling function) and let E be a subset of N.
Upper porosity and lower porosity of the set E at infinity were defined respec-

tively in [1] as follows:

(1.1) pµ(E) := lim sup
n→∞

λµ(E,n)

µ(n)
, p

µ
(E) := lim inf

n→∞

λµ(E,n)

µ(n)
,

where

λµ(E,n) := sup{|µ(n(1))− µ(n(2))| : n ≤ n(1) < n(2), (n(1), n(2)) ∩ E = ∅}.
Using the definition of upper porosity, all subsets of natural numbers can be

classify as follows: E ⊆ N is
(i) porous at infinity if pµ(E) > 0;
(ii) strongly porous at infinity if pµ(E) = 1;
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(iii) nonporous at infinity if pµ(E) = 0. Throughout this paper, we will consider
only the upper porosity of subsets of N.

Let us recall the definition of pµ-convergence of real valued sequences for any
scaling function:

Definition 1.1. [2] A sequence x = (xn)n∈N is said to pµ-convergent to l if for
each ε > 0,

pµ(Aε) > 0,

where Aε := {n : |xn − l| ≥ ε}. It is denoted by x→ l(pµ) or (pµ − lim
n→∞

xn = l).

Let x′ = (xnk) be a subsequence of x = (xn) for monotone increasing sequence
(nk)k∈N and K := {nk : k ∈ N}, then we abbreviate x′ = (xnk) by (x)K .

Definition 1.2. [3]. Let x = (xn) be a sequence and (x)K be a subsequence of
x = (xn). If
(i) pµ(K) > 0, then (x)K is called pµ-thin subsequence of x = (xn),
(ii) pµ(K) = 1, then (x)K is called a strongly pµ-thin subsequence of x = (xn),
(iii) pµ(K) = 0, then (x)K is a pµ-nonthin (or pµ-dense) subsequence of x = (xn).

Definition 1.3. [3]. A number α is said to be pµ-limit point of the sequence
x = (xn) if it has a pµ-nonthin subsequence that converges to α.

The set of all pµ-limit points of x = (xn) is denoted by Lpµ(x).

Definition 1.4. [3]. A number β is said to be a pµ-cluster point of x = (xn) if for
every ε > 0, the set

{n : |xn − β| < ε}
is nonporous. i.e.,

pµ({n : |xn − β| < ε}) = 0.

For a given sequence x = (xn); the symbol Γpµ(x) denotes the set of all pµ-cluster
points.

2. Main Results

Some results about the set of Lpµ(x)-cluster, and Lpµ(x)-limit points of given

real valued sequences has been investigated in [3]. In this paper, as a continuation
of [3] the same subject will be studied.

Theorem 2.1. Assume that x = (xn) is monotone increasing (or decreasing) se-
quence of real numbers. If supxn < ∞ (or inf xn < ∞), then supxn ∈ Γpµ(x) (or

inf xn ∈ Γpµ(x)).

Proof. The proof will be given only for monotone increasing sequences. The other
case can be proved by following similar steps. From the definition of supremum for
any ε > 0, there exists an n0 = n0(ε) ∈ N such that the inequality

supxn − ε < xn0
≤ supxn

holds. Since the sequence is monotone increasing, then we have

(2.1) supxn − ε < xn0
< xn ≤ supxn < supxn + ε

for all n > n0.
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From (2.1), for any ε > 0 there exists an n0 = n0(ε) ∈ N such that following
inequality

(2.2) |xn − supxn| < ε

holds for all n > n0(ε).
From (2.2), following inclusion

N\{1, 2, 3, ..., n0} ⊂ {n : |xn − supxn| < ε}
and the inequality

pµ({n : |xn − supxn| < ε}) ≤ pµ(N\{1, 2, ..., n0})
hold.

Since pµ(N\{1, 2, 3, ..., n0}) = 0, then from Lemma 1.1 in [3] we have

pµ({n : |xn − supxn| < ε}) = 0.

This gives the desired proof. �

Corollary 2.1. If x = (xn) is a bounded sequence, then supxn and inf xn are
belong to Γpµ(x).

Let A,B ⊂ R and recall the distance between A and B is defined as

d(A,B) := inf{|a− b| : a ∈ A, b ∈ B}.

Theorem 2.2. Let x = (xn) be a real valued sequence. If Γpµ(x) 6= ∅, then

d(Γpµ(x), x) = 0.

Proof. Assume Γpµ(x) 6= ∅. Let us consider an arbitrary element y∗ ∈ Γpµ(x).
Then, for an arbitrary ε > 0 we have

pµ({n : |xn − y ∗ | < ε}) = 0.

So, the set {xn : |xn−y∗| < ε} has at least countable number elements of x = (xn).
Let us denote this set by D where D := {nk : |xnk − y ∗ | < ε} ⊂ N. Therefore, we
have

0 ≤ dist(Γpµ(x), x) = inf{|y − xn| : y ∈ Γpµ(x), n ∈ N}
≤ inf{|y ∗ −xnk | : nk ∈ D} < ε.

So, for every ε > 0, we have 0 ≤ d(Γpµ(x), x) < ε. �

Theorem 2.3. Let x = (xn) be a real valued sequence and γ ∈ R be an arbitrary
fixed point. If d(γ, x) 6= 0, then γ /∈ Γpµ(x).

Proof. From the hypothesis we have

d(γ, x) := inf{|xk − γ| : k ∈ N} = m > 0.

From the assumption the inequality

|xk − γ| ≥ m
holds for all k ∈ N. It means that the open interval (γ−m, γ+m) has no elements
of the sequence x = (xn). So, we have

pµ({k : |xk − γ| < m}) = 1.

For 0 < ε < m we have
pµ({k : |xk − γ| < ε}) = 1.
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So, γ /∈ Γpµ(x). �

Remark 2.1. If d(γ, x) = 0, it is not necessary for γ ∈ Γpµ(x).

Let us consider (xn) = ( 1
n )n∈N. For γ = 1

2 , it is clear that d( 1
2 ,

1
n ) = 0 holds, but

1
2 /∈ Γpµ(x) = {0}.
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