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BOUNDEDNESS OF THE SUBLINEAR OPERATORS WITH
ROUGH KERNEL GENERATED BY FRACTIONAL INTEGRALS
AND THEIR COMMUTATORS ON GENERALIZED VANISHING

MORREY SPACES 1II

FERIT GURBUZ

ABSTRACT. In this paper, we consider the norm inequalities for sublinear op-
erators with rough kernel generated by fractional integrals and their commuta-
tors on generalized Morrey spaces and on generalized vanishing Morrey spaces
including their weak versions under generic size conditions which are satisfied
by most of the operators in harmonic analysis, respectively. In all the cases the
conditions for the boundedness of sublinear operators with rough kernel and
their commutators are given in terms of Zygmund-type integral inequalities on
(¢1,%2), where there is no assumption on monotonicity of 1,2 in r. As an
example to the conditions of these theorems are satisfied, we can consider the
Marcinkiewicz operator.
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1. INTRODUCTION

The classical Morrey spaces M, » have been introduced by Morrey in [32] to
study the local behavior of solutions of second order elliptic partial differential
equations(PDEs). In recent years there has been an explosion of interest in the
study of the boundedness of operators on Morrey-type spaces. It has been obtained
that many properties of solutions to PDEs are concerned with the boundedness of
some operators on Morrey-type spaces. In fact, better inclusion between Morrey
and Holder spaces allows to obtain higher regularity of the solutions to different
elliptic and parabolic boundary problems (see [14, 36, 41, 43] for details).

Let B = B(xg,rp) denote the ball with the center xy and radius rp. For a given
measurable set F, we also denote the Lebesgue measure of E by |E|. For any given
Q2 CR™ and 0 < p < oo, denote by L, () the spaces of all functions f satisfying

P

1112, ) = /If(x)lpdx < 0.

We recall the definition of classical Morrey spaces M), » as
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GENERALIZED VANISHING MORREY ESTIMATES 11

My (R™) = {f g, sy = sup 7 flly B < OO} ;
x€R™ r>0
where f € LLOC(R”), 0<A<nand1l<p<oo.
Note that M, o = L,(R™) and M,, = Lo(R™). If A < 0 or A > n, then
M, » = ©, where O is the set of all functions equivalent to 0 on R".
We also denote by WM, x = WM, »(R"™) the weak Morrey space of all functions
fe WL;;’C(R") for which

_a
||fHWM,M = ”f”WJvIp,)\(]R") = zeﬂgll’pr>07” P fllwe, @) < oo

where WL, (B(x,r)) denotes the weak L,-space of measurable functions f for which

||fHWLp(B(m,r)) = ||fXB(m,7‘)||WL;D(Rn)
= supt|{y € Blar): |/(y)] > £yt

= sup t1/p (fXB(:I:,r))* (t) < o0,
0<t<|B(z,r)|
where g* denotes the non-increasing rearrangement of a function g.

Throughout the paper we assume that € R™ and » > 0 and also let B(z, )
denotes the open ball centered at z of radius 7, B¢ (z,r) denotes its complement
and |B(z,r)| is the Lebesgue measure of the ball B(x,r) and |B(z,r)| = v,r",
where v, = |B(0,1)|. It is known that M, »(R™) is an extension (a generalization)
of L,(R™) in the sense that M, o = L,(R").

Morrey has stated that many properties of solutions to PDEs can be attributed
to the boundedness of some operators on Morrey spaces. For the boundedness of
the Hardy—-Littlewood maximal operator, the fractional integral operator and the
Calderén—Zygmund singular integral operator on these spaces, we refer the readers
to [1, 6, 38]. For the properties and applications of classical Morrey spaces, see
[7, 8, 14, 36, 41, 43] and references therein. The generalized Morrey spaces M,
are obtained by replacing r* with a function ¢ (r) in the definition of the Morrey
space. During the last decades various classical operators, such as maximal, singular
and potential operators have been widely investigated in classical and generalized
Morrey spaces.

The study of the operators of harmonic analysis in vanishing Morrey space, in
fact has been almost not touched. A version of the classical Morrey space M), »(R™)
where it is possible to approximate by "nice” functions is the so called vanishing
Morrey space VM, »(R™) has been introduced by Vitanza in [50] and has been
applied there to obtain a regularity result for elliptic PDEs. This is a subspace of
functions in M, »(R™), which satisfies the condition

. _a
711_12) msuR% t ||f||Lp(B(x7t)) =0.

o<t<r

Later in [51] Vitanza has proved an existence theorem for a Dirichlet problem, un-
der weaker assumptions than in [30] and a W32 regularity result assuming that the
partial derivatives of the coefficients of the highest and lower order terms belong
to vanishing Morrey spaces depending on the dimension. Also Ragusa has proved
a sufficient condition for commutators of fractional integral operators to belong to
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vanishing Morrey spaces V.M, »(R™) (see [39, 40]). For the properties and applica-
tions of vanishing Morrey spaces, see also [3]. It is known that, there is no research
regarding boundedness of the sublinear operators with rough kernel on vanishing
Morrey spaces.

Maximal functions and singular integrals play a key role in harmonic analysis
since maximal functions could control crucial quantitative information concerning
the given functions, despite their larger size, while singular integrals, Hilbert trans-
form as it’s prototype, recently intimately connected with PDEs, operator theory
and other fields.

Let f € L'¢(R"). The Hardy-Littlewood(H-L) maximal operator M is defined
by

M) =suwp Bl [ 17wy
i B(z,t)
Let T be a standard Calderén-Zygmund(C-Z) singular integral operator, briefly
a C-Z operator, i.e., a linear operator bounded from Ls(R™) to Lo(R™) taking
all infinitely continuously differentiable functions f with compact support to the
functions f € Li°¢(R™) represented by

Tf(z)= pw./k(-fr -y fly)dy = ¢ suppf.

Rn

Such operators have been introduced in [11]. Here k is a C-Z kernel [16]. Chiarenza
and Frasca [6] have obtained the boundedness of H-L maximal operator M and C—
Z operator T on M, » (R™). It is also well known that H-L maximal operator M
and C-Z operator T play an important role in harmonic analysis (see [15, 29, 46,
47, 48]). Also, the theory of the C—Z operator is one of the important achievements
of classical analysis in the last century, which has many important applications in
Fourier analysis, complex analysis, operator theory and so on.

Let f € L'¢(R"). The fractional maximal operator M, and the fractional
integral operator (also known as the Riesz potential) T,, are defined by

Mo f(z) = sup | B(a, )]~ +5 / FWldy  0<a<n
t>0
B(z,t)

Taf(x):/mldy 0<a<n.
R’Il

It is well known that M, and T, play an important role in harmonic analysis
(see [47, 48)).

An early impetus to the study of fractional integrals originated from the problem
of fractional derivation, see e.g. [35]. Besides its contributions to harmonic analysis,
fractional integrals also play an essential role in many other fields. The H-L Sobolev
inequality about fractional integral is still an indispensable tool to establish time-
space estimates for the heat semigroup of nonlinear evolution equations, for some
of this work, see e.g. [24]. In recent times, the applications to Chaos and Fractal
have become another motivation to study fractional integrals, see e.g. [26]. It is

well known that T, is bounded from L, to L, Where%— % =2and 1 <p<Z.
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Spanne (published by Peetre [38]) and Adams [1] have studied boundedness of
the fractional integral operator T, on M, » (R™). Their results, can be summarized
as follows.

Theorem 1.1. (Spanne, but published by Peetre [38]) Let 0 < a <n, 1 <p< 2,
0< A< n—ap. Moreover, let S — E =2 and % = %. Then for p > 1 the operator

T, is bounded from M b tO M  and for p =1 the operator T, is bounded from
My to WMy, ».

Theorem 1.2. (Adams [1]) Let 0 < o <n, 1 <p <2, 0< X< n—apand

1 — % = 2. Then for p > 1 the operator T, is bounded fmm M, » to My » and

forp =1 the operator Ty, is bounded from M to WM,

Recall that, for 0 < a < n,

Mof () <vi 'To (1)) (2)

holds (see [25], Remark 2.1). Hence Theorems 1.1 and 1.2 also imply boundedness
of the fractional maximal operator M,,, where v,, is the volume of the unit ball on
R™.

Suppose that S™~! is the unit sphere in R” (n > 2) equipped with the normalized
Lebesgue measure do. Let Q € L(S™!) with 1 < s < co be homogeneous of degree
zero. We define s’ = 25 a € (0,n) represents a
linear or a sublinear operator, which satisfies that for any f € L;(R™) with compact
support and x ¢ suppf

(11) T f(x /J Wa 1F@)]dy,

where ¢q is independent of f and z.

For a locally integrable function b on R™, suppose that the commutator operator
Top,a, @ € (0,n) represents a linear or a sublinear operator, which satisfies that
for any f € Lq(R™) with compact support and x ¢ suppf

2z —y)|

(1.2) |mhduns%/wm—mm‘ ) o
RTL

where ¢g is independent of f and .

We point out that the condition (1.1) in the case of @ = 1, @« = 0 has been
introduced by Soria and Weiss in [44]. The conditions (1.1) and (1.2) are satisfied by
many interesting operators in harmonic analysis, such as fractional Marcinkiewicz
operator, fractional maximal operator, fractional integral operator (Riesz potential)
and so on (see [27], [44] for details).

In 1971, Muckenhoupt and Wheeden [34] defined the fractional integral operator
with rough kernel TQQ by

To.uf(z /|a:—yna ydy 0<a<n

and a related fractional maximal operator with rough kernel Mg, , is given by



14 FERIT GURBUZ

Moofa) =supl B0 *F [ 0@ yllfwldy  0<a<n
>0 B0
where Q € Ly(S"1) with 1 < s < oo is homogeneous of degree zero on R™ and
T, satisfies the condition (1.1).

If « = 0, then Mgy = Mg H-L maximal operator with rough kernel. It is
obvious that when Q =1, M, , = M, and TLQ = T, are the fractional maximal
operator and the fractional integral operator, respectively.

In recent years, the mapping properties of T, on some kinds of function spaces
have been studied in many papers (see [5], [12], [13], [34] for details). In particular,
the boundedness of Tq , in Lebesgue spaces has been obtained.

Lemma 1.1. [5,12,33] Let0 < a<n,1<p< 2 andé =2-2 JfQeL,(S"1),

s> —2— then we have

1
p

[Tatl,, <CIflL, .

Corollary 1.1. Under the assumptions of Lemma 1.1, the operator Mg o is bounded
from L,(R™) to Ly(R™). Moreover, we have

|Maocfll,, < CIflL, -
Proof. Set

-~ Qx
Tiara (IFD( /|| |n S IfWldy  0<a<mn,

where Q € Ls(S"1) (s > 1) is homogeneous of degree zero on R™. It is easy to see
that, for Tjq| o, Lemma 1.1 is also hold. On the other hand, for any ¢ > 0, we have

Tona (@2 [ 2110y

B(z,t)

1
= fna / 2z =yl f ()l dy.
B(z,t)

Taking the supremum for ¢ > 0 on the inequality above, we get

Moof () < CitTiopa (1) (@) Caa=|B(0,1)] "
O

In 1976, Coifman, Rocherberg and Weiss [9] introduced the commutator ge-
nerated by T and a local integrable function b:

_ _ _ Qx—y
(13) . Talf(2) = b T (a) ~Talbf) ) = po. [ 1)~ b 2 oD
Rn
Sometimes, the commutator defined by (1.3) is also called the commutator in
Coifman-Rocherberg-Weiss’s sense, which has its root in the complex analysis and

harmonic analysis (see [9]).
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Let b be a locally integrable function on R", then for 0 < o < n and f is a
suitable function, we define the commutators generated by fractional integral and
maximal operators with rough kernel and b as follows, respectively:

. Ta0)f(2) = W@ o (0) - Taa0f)(z) = [ (o) - b(y)]mjmdy,
R’Vl
Moo (5 @) = swp B0 5 [ @) =026~ )] 1)y

B(xz,t)
satisfy condition (1.2). The proof of boundedness of [b, T o] in Lebesgue spaces
can be found in [12] (by taking w = 1 there).

Theorem 1.3. [12] Suppose that Q € Ly(S"™ 1), 1 < s < oo, is homogeneous of
degree zero and has mean value zero on S"71. Let 0 < a < n, 1 <p < =, and
% = 1% — % and b € BMO(R"). If s" < p or q < s, then the operator b, To.0l is
bounded from L,(R™) to L, (R™).

Remark 1.1. Using the method in the proof of Corollary 1.1 we have that
(14)  Mapaf(2) <Crilb,Tianal (1) (@) Cona=1B(0,1)

By (1.4) we see that under the conditions of Theorem 1.3, the consequences of
(Lp, Lq)-boundedness still hold for Mg p q-

n—a
‘ n

Remark 1.2. [41, 42] When ( satisfies the specified size conditions, the kernel of the
operator T o has no regularity, so the operator Tq , is called a rough fractional
integral operator. In recent years, a variety of operators related to the fractional
integrals, but lacking the smoothness required in the classical theory, have been
studied. These include the operator [b, Tq ]. For more results, we refer the reader
to [2, 4, 12, 13, 18, 19, 20, 28].

Finally, we present a relationship between essential supremum and essential in-
fimum.

Lemma 1.2. (see [52] page 143) Let f be a real-valued nonnegative function and
measurable on E. Then

—1
1
(1.5) (eiselgff (m)) eiSESEp @

Throughout the paper we use the letter C' for a positive constant, independent of
appropriate parameters and not necessarily the same at each occurrence. By A < B
we mean that A < C'B with some positive constant C' independent of appropriate
quantities. If A < B and B < A, we write A =~ B and say that A and B are
equivalent.

2. GENERALIZED VANISHING MORREY SPACES

After studying Morrey spaces in detail, researchers have passed to generalized
Morrey spaces. Mizuhara [31] has given generalized Morrey spaces M, , consid-
ering ¢ = ¢ (r) instead of 7* in the above definition of the Morrey space. Later,
Guliyev [17] has defined the generalized Morrey spaces M, ,, with normalized norm
as follows:
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Definition 2.1. [17] (generalized Morrey space) Let ¢(x, r) be a positive mea-
surable function on R” x (0,00) and 1 < p < co. We denote by M, , = M, ,(R")
the generalized Morrey space, the space of all functions f € Llp"C(R") with finite
quasinorm

- _1
1ty = sup ol r) " B, )77 [ fllz, (B
z€R™ r>0
Also by WM, , = WM, ,(R™) we denote the weak generalized Morrey space of all
functions f € WLY*(R™) for which

— _1
Ifllwag,, = sup (e, )™ B, )| "7 [|fllwe, B < oo
zeR™ r>0

According to this definition, we recover the Morrey space M, » and weak Morrey
A—n

space WM, » under the choice ¢(z,r) =17 :
Mp\ = My, | ron, WMy =WM,, |

—n .
olar)=r 7 plar)=r 7

For brevity, in the sequel we use the notations

1
|B(x, )| ? | fl|,(B(.r))
M, (f;x,7r):= P ’
pe (f527) o(z,7)

and

B, n)| "7 w5y
o(x,r) '

In this paper, extending the definition of vanishing Morrey spaces [50], we in-
troduce the generalized vanishing Morrey spaces VM), ,(R"), including their weak
versions and studies the boundedness of the sublinear operators with rough kernel
generated by fractional integrals and their commutators in these spaces. Indeed,
we find it convenient to define generalized vanishing Morrey spaces in the form as
follows.

my, (fiw,r) =

Definition 2.2. (generalized vanishing Morrey space) The generalized van-
ishing Morrey space VM, ,(R™) is defined as the spaces of functions f € M, ,(R")
such that

(2.1) }1_% zsgﬂg)n M, (frx,1r)=0.

Definition 2.3. (weak generalized vanishing Morrey space) The weak gen-

eralized vanishing Morrey space WV M, ,(R™) is defined as the spaces of functions
f € WM, ,(R™) such that

. w . —
(22) lim sup mtp,(p (f’ {I,‘77’) =0.

r—0 zERRP

Everywhere in the sequel we assume that

1
(2.3) lim ————— =0,
r—0 mlenﬂgn o(z, )
and
1
(2.4) sup < 00,

0<r<oco q;iean" 90(3:7 T)
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which make the spaces V.M, ,(R™) and WV M, ,(R™) non-trivial, because bounded
functions with compact support belong to this space. The spaces VM, ,(R™) and
WV M, ,(R™) are Banach spaces with respect to the norm

(2.5) I fllva,, = flla,, = sup My, (fiz,7),
x€ER™ r>0
(2.6) Ifllwva,, = fllwa,, = sup M (fia,r),
z€R™ r>0

respectively.

3. SUBLINEAR OPERATORS WITH ROUGH KERNEL T o, ON THE SPACES M), ,
AND VM, ,

In this section, we will first prove the boundedness of the operator Tq , satisfying
(1.1) on the generalized Morrey spaces M), ,(R™) by using Lemma 1.2 and the
following Lemma 3.1. Then, we will also give the boundedness of T , satisfying
(1.1) on generalized vanishing Morrey spaces V M, ,(R™).

We first prove the following lemma (our main lemma).

Lemma 3.1. (Our main lemma) Suppose that Q € Lg(S"71), 1 < s < o0, is
homogeneous of degree zero. Let 0 < a <mn, 1 <p <2, % = % X, Let Tg o be
a sublinear operator satisfying condition (1.1), bounded from L,(R™) to L,(R™) for
p > 1, and bounded from Li(R™) to WL,(R") forp=1.

If p > 1 and s’ < p, then the inequality

oo

n

n _n_q
(3.1) Tyt 575 [ €5 1y e
2r

holds for any ball B (zo,7) and for all f € L° (R™).
If p > 1 and q < s, then the inequality

Tl oty S 7575 [ 78 Wl
2r

holds for any ball B (zo,7) and for all f € L (R™).
Moreover, for p=1< q < s the inequality
(oo}

(3:2) 1To0fllw i, o) ST° /5%71 111, (B(zo.0)) 4t
2r

holds for any ball B (zq,7) and for all f € L'’ (R™).

Proof. Let 0 < a<n,1<s <p< %and%:%—%. Set B = B (xq,r) for the
ball centered at g and of radius r and 2B = B (zg, 2r). We represent f as

(3.3)

f=f+f, Ji(y) =1 (W) xeB (), F2) =F W xepely), r>0

and have
HTQ,afHLq(B) < HTQ,afIHLq(B) + ||T9,af2||Lq(B) :
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Since fi1 € L, (R"), Ta,af1 € Ly (R™) and from the boundedness of T o from
L,(R™) to Ly(R™) (see Lemma 1.1) it follows that:

1Toafilly,5) < 1Taafilly, @y < Cllfill, @y =ClfllL,ep)

where constant C' > 0 is independent of f.
It is clear that = € B, y € (2B)¢ implies Tleo—yl <o —y| < 3 |zo —y|l. We
get

[f Q@ —y)l,

Toofs (1)) < 22, /

To — n—o
(2B)° lzo — yl
By the Fubini’s theorem, we have
fWl2x—y T dt
(2B)¢ 0 (2B)° |zo—yl

i dt
~[ [ rwlee-vldgi
3r 2r<|wo—y| <t

oo

dt
2r B(ZL’o,t)
Applying the Holder’s inequality, we get
O(r —
/ |f (|y) | (Fwy)ldy
To —
(25)° 0o~ Y
< T _1_1 dt
(3.4) S L, Bty 12 (@ = )L, (Bao.t)) B (o, )] 7= e
2r
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For x € B (xg,t), notice that € is homogenous of degree zero and Q € L (S™™1),
s > 1. Then, we obtain

w =

2 (2)]" dz

JRLEER

B(zo,t) B(z—z0,t)

|-

IN

2 (2)[" dz

B(0,t+|z—w0])

w |-

< 12(2)]° dz
B(0,2t)
2t s
| [ [ioerdoe et
n—1 (
1
(3.5) =C HQ”LS(Sn—l) |B (20, 2t)|" .
Thus, by (3.5), it follows that:
T d
t
Tl @) S [ 151,000 725
27
Moreover, for all p € [1,00) the inequality
<. dt
(3.6) ||TQ,af2||Lq(B) ~ T Hf”Lp(B(xO,t)) 124
2r
is valid. Thus, we obtain
. T dt
oot oy S W 0eyam) 4 7% [ 181y ot 5557
27
On the other hand, we have
[ d
n t
1900 % 7% Ul amy | 738
2r
o [ dt
(3.7) <r% [ 10,00 5
2r

By combining the above inequalities, we obtain

W T dt
Tty 7% [ 1Ly cotean 577
2r
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Let 1 < g < s. Similarly to (3.5), when y € B (xg,t), it is true that

3
B (.TO, 2t)

By the Fubini’s theorem, the Minkowski inequality and (3.8) , we get

s

(3.8) / Q@ —yldy | <CIR, g,

B(zo,r)

s

q

dt
Toadslly, ) < / / [ 1rwiee -y

Q=

2""B:Eot)
dt
< / [ 1 @HRC =l dvziis
QTB(I(],t)
11 Vi dt
<@l [ [ @I 0l
27‘B(£L’0,t)

AL

dt

n_n 3N\°
o / s cotenen | (00 50)| tis

n_n n_n_
S /Hf“L (B(zot) t° dt.

Let p=1< ¢ < s < oo. From the weak (1,¢) boundedness of T ., and (3.7) it
follows that:

”TQ,afl”WLq(B) < ||TQ,af1||WL 2(R™) 5 ”fl”Ll(]R"
(3.9) £l o) S 7 / 1900 o) T3

Then from (3.6) and (3.9) we get the inequality (3.2), which completes the proof.
O

In the following theorem (our main result), we get the boundedness of the oper-
ator To  on the generalized Morrey spaces M),

Theorem 3.1. (Our main result) Suppose that Q € Ls(S"71), 1 < s < oo, is
homogeneous of degree zero. Let 0 < a <n, 1 <p< % = l — 2. Let Tg o be
a sublinear operator satisfying condition (1.1), bounded from L (R") to Ly(R™) for
p > 1, and bounded from Li(R™) to WLy (R™) for p=1. Let also, for s’ <p <gq,

p # 1, the pair (p1,92) satisfies the condition

t<T<00

(3.10) s

% essinf @y (x,7)77
/ dt < Cpa(z, 1),

r
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and for q < s the pair (p1,p2) satisfies the condition
') . n
= ke

PR dt < Cpy(z,r)r>,
q s

(3.11)

T

where C' does not depend on x and r.
Then the operator Tq o is bounded from My ,, to Mgy ,, for p > 1 and from
M o, to WMy ,,for p=1. Moreover, we have for p > 1

1Toadlar, , < 1Fl, . -

pP,¥P1
and forp=1
||Tﬂ,af||WMq1¢2 5 HJCHMLW1 .

Proof. Since f € M, ,,, by (2.6) and the non-decreasing, with respect to t, of the
norm [ £l (a0, We get

1N, (B(zo.t))

essinf oy (xqg,7)T?
0<t<T<oo(p (o, 7)

f °
< esssup ML)

o<t<r<oo 1 (xo, 7')7'%

(Al -
< esssup 2 Lp(Blwo,))

0<T<0 301(,%0,7')7'%
< fllag, . -

p,¥P1

For s’ < p < o0, since (1, ¢2) satisfies (3.10), we have

o0 o dt
/ 10z, eyt F T

oo . n
/ 1£z, By SSHE 1o TIT gy
= sinf n tﬂ 1
, sl er(o Ty q
<ol e T gy
- My, oq t% t
4
< Clflly, ,, e2(z0.)-
Then by (3.1), we get
— -1 -1
||Tﬂ,af||Mq=¢2 = woeSng)r>0 P2 (zo,7) " [B(wo,7)| "7 ||TQ,af||Lq(B(x0,r))
o0
_ u dt
<C sup @2 (wo,T 1/ f ta—
zo€R™,7>0 ( ) | ”LF(B(‘TO’t)) t
T
< C s, .-
For the case of p =1 < g < s, we can also use the same method, so we omit the
details. This completes the proof of Theorem 3.1. O

In the case of ¢ = oo by Theorem 3.1, we get
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Corollary 3.1. Let 1 < p < o0, 0 < a < Z, é = Zl) — % and the pair (p1,p2)
satisfies condition (3.10). Then the operators M, and T, are bounded from M, ,,

to Mg, ,, for p> 1 and from My ,, to WMy ,, forp=1.

Corollary 3.2. Suppose that Q € Ly(S"1), 1 < s < 00, is homogeneous of degree
zero. Let 0 <a<n,1<p<Z and%:%—%. Let also for s’ < p the pair
(¢1,p2) satisfies condition (3.10) and for q < s the pair (¢1,p2) satisfies condition
(8.11). Then the operators Mg, o and Tq o are bounded from M, ,, to My ,, for
p > 1 and from My ,,to WM, ., forp=1.

Now using above results, we get the boundedness of the operator T o on the
generalized vanishing Morrey spaces VM, .

Theorem 3.2. (Our main result) Let Q € Ly(S™" 1), 1 < s < 0o, be homogeneous
of degree zero. Let 0 <a<mn,1<p<Z and % = ]% — =. Let Tq o be a sublinear
operator satisfying condition (1.1), bounded on L,(R™) forp > 1, and bounded from
Li(R™) to WL (R™). Let for s' < p, p# 1, the pair (p1,p2) satisfies conditions
(2.3)-(2.4) and

o0 n

.2
(3.12) cs = /Iseuﬂgb v1 (x,1) I dt < oo
for every § > 0, and

o n
(3.13) / o1 (2,1) tnﬂdt < Cogala, ),

T

and for q < s the pair (1, p2) satisfies conditions (2.3)-(2.4) and also

oo n

o5
(3.14) cs ::/ sup o1 (z, t)TL_Hdt < 00
9 TcR"™ ta

for every &' >0, and

(315) /(pl(ﬂf,t)t,i,

where Cy does not depend on x € R™ and r > 0.
Then the operator Tq o is bounded from VM, ,, to VM, ,, for p>1 and from
M o, to WV My o, for p=1. Moreover, we have for p > 1

(316) ||TQ,o<f||V]\4q’w2 5 ”fHVMp,L,,1 ’
and forp=1
(3.17) To.0flwvu,,, S 1 v, -

Proof. The norm inequalities follow from Theorem 3.1. Thus we only have to prove
that

(3.18) hm su]é) M, o, (f;2,7) = 0 implies hH(l) suﬂg My0o Toaf;z,r)=0
0 peRrr 2€R"
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and

. . o . . . w . _
(3.19) }1_1)% zseuﬂgl My o, (f;2,7) =0 implies }1_r>1(1) msgﬂgl My o (Ta.of;x,r) =0.

—-n
q

m N TeefllL (B

To show that sup (@)

TER™
side of (3.1):

< € for small r, we split the right-hand

5 Toafly,
W2<x7r)
where §p > 0 (we may take §y < 1), and

(3.20) B@n) < oI5, (x,r) + Js, (2,7)]

o
1 n
I = t—a ! dt
0 @.1) 1= —es [, 0
and

Jsy (w,7) := L /5%71 11 dt
o 802(:5,7“)6 Lp(Bl=0) ™

0

and r < §g. Now we use the fact that f € VM, ,, and we choose any fixed dp > 0
such that

sup PNl (B € _

zER™ wl(x,t) 2(76b
where C and Cj are constants from (3.13) and (3.20). This allows to estimate the
first term uniformly in r € (0, dp) :

tg‘%?

sup Cls, (x,7) < E, 0<r<idp.
zeR™ 2

The estimation of the second term may be obtained by choosing r sufficiently
small. Indeed, we have
1l .
@2(x7r)7
where c¢s, is the constant from (3.12) with § = dg. Then, by (2.3) it suffices to
choose r small enough such that

Js, (x,1) < cs,

1 €
sup < )
z€ER™ @2($7T) 26&)Hf”A4

P,¥P1
which completes the proof of (3.18).
The proof of (3.19) is similar to the proof of (3.18). For the case of ¢ < s, we
can also use the same method, so we omit the details. O

Remark 3.1. Conditions (3.12) and (3.14) are not needed in the case when ¢(z, )
does not depend on z, since (3.12) follows from (3.13) and similarly, (3.14) follows
from (3.15) in this case.

Corollary 3.3. Let Q € Ly(S" 1), 1 < s < oo, be homogeneous of degree zero.
Let 0 <a<n, 1 <p< X and%: %—%. Let also for s < p, p # 1, the
pair (¢1,p2) satisfies conditions (2.8)-(2.4) and (3.12)-(3.13) and for q < s the
pair (¢1,p2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15). Then the operators
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Mg o and Tq o are bounded from VM, o, to VMg ,, for p>1 and from VM ,,
to WV Myg.p, forp=1.

In the case of ¢ = oo by Theorem 3.2, we get

Corollary 3.4. Let 1 < p < oo and the pair (¢1,p2) satisfies conditions (2.3)-
(2.4) and (3.12)-(3.13). Then the operators My and T, are bounded from VM, .,
to VMg .o, forp > 1 and from VM, ,, to WV My, forp=1.

4. COMMUTATORS OF THE SUBLINEAR OPERATORS WITH ROUGH KERNEL Tg
ON THE SPACES M, , AND VM, ,

In this section, we will first prove the boundedness of the operator Tq ; o satis-
fying (1.2) with b € BMO (R™) on the generalized Morrey spaces M, , by using
Lemma 1.2 and the following Lemma 4.1. Then, we will also obtain the bounded-
ness of Tq p.o satisfying (1.2) with b € BMO (R™) on generalized vanishing Morrey
spaces VM,

Let T be a linear operator. For a locally integrable function b on R™, we define
the commutator [b, T] by

[b,T]f(x) = b(z) T f(z) — T(bf)(x)
for any suitable function f. Let T be a C-Z operator. A well known result of

Coifman et al. [9] states that when K (z) = ng(;lﬁn) and  is smooth, the com-
mutator [b,T]f = bTf — T(bf) is bounded on L,(R"), 1 < p < oo, if and only
if b € BMO(R"™). The commutator of C—Z operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second
order (see, for example, [7, 8, ?]). The boundedness of the commutator has been
generalized to other contexts and important applications to some non-linear PDEs
have been given by Coifman et al. [10]. On the other hand, For b € L{¢(R"),
the commutator [b,T,] of fractional integral operator (also known as the Riesz
potential) is defined by

0. Tl @) =W T (@) ~ Talb)e) = [ F2 2 )y 0<a<n
Rn

for any suitable function f.

The function b is also called the symbol function of [b, T,]. The characterization
of (L, Ly)-boundedness of the commutator [b, T,] of fractional integral operator
has been given by Chanillo [4]. A well known result of Chanillo [4] states that the
commutator [b, T,,] is bounded from L,(R™) to L,(R"), 1 < p < ¢ < oo, %—% = 2if
and only if b € BMO(R™). There are two major reasons for considering the problem
of commutators. The first one is that the boundedness of commutators can produce
some characterizations of function spaces (see [2, 4, 18, 19, 20, 21, 37, 42]). The
other one is that the theory of commutators plays an important role in the study of
the regularity of solutions to elliptic and parabolic PDEs of the second order (see
[7, 8, 14, 41, 43]).

Let us recall the defination of the space of BMO(R™).

Definition 4.1. Suppose that b € L!¢(R"), let

1
bl = su _ / b(y) — bp(s.m|dy < o0,
Il a:eRnE>O |B(x,r)\B( : W) = baenldy
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where
1

b = — b(y)dy.
e = Tagery | Vo
B(z,r)

Define
BMO(R") = {b e LY*(R"™) : |b]|. < o0}

If one regards two functions whose difference is a constant as one, then the space
BMO(R™) is a Banach space with respect to norm || - ||..

Remark 4.1. [23] (1) The John-Nirenberg inequality [22]: there are constants C1,
Cy > 0, such that for all b € BMO(R™) and 8 > 0

{z € B : |b(z) — bp| > B}| < C1|Ble~A/I¥l-vB c R™.

(2) The John-Nirenberg inequality implies that

1
4.1 bll« = su _— / b(y) — bpe.m|Pd
( ) H || :vER",I::>0 |B($7T)|B( )| (y) B(z, )| Yy

for 1 <p< .
(3) Let b € BMO(R™). Then there is a constant C' > 0 such that

t
(42) |bB(a:,r) - bB(x,t)‘ < O”b”* In ; for 0 < 2r < ¢,

where C is independent of b, x, r and t.

As in the proof of Theorem 3.1, it suffices to prove the following Lemma (our
main lemma).

Lemma 4.1. (Our main lemma) Let Q € Ly(S"1), 1 < s < oo, be homogeneous
of degree zero. Let 1 < p < 00, 0 < a < %, % = %— %, b e BMO(R"), and
Tap,e s a sublinear operator satisfying condition (1.2) and bounded from L,(R™)

to Ly(R™). Then, for s’ < p the inequality

n t\ _n_
43 [Tonaflrymeney S ot [ (14108) 680 o

2r

holds for any ball B(xo,r) and for all f € Li*¢(R™).
Also, for q < s the inequality

(oo}

ot ey S W87 [ (1000 ) 2780,

2r

holds for any ball B(xo,r) and for all f € Li*¢(R™).

Proof. Let1<p<oo,0<a<%andé:
we represent f in form (3.3) and have

L _ 2 Agin the proof of Lemma 3.1,
p n

||T9,b,af”Lq(B) < ||TQ,b,af1||Lq(3) + ||TQ,b7af2||Lq(B) .
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From the boundedness of T p o from L,(R™) to Ly(R™) (see Theorem 1.3) it follows
that:

HTQ,b,afl ||Lq(B) S ||TQ,b,af1 ||Lq(Rn)

||LP(R") = |0l ||f||Lp(2B) :

It is known that x € B, y € (QB)C, which implies 1 |z — y| < |z — y| < 2 |z — y].
Then for x € B, we have

Tonafs @ |</'Q M'\() b(@)] 1 (4)] dy

/Wlb@)—b(xw(y)dy.

|zo —
(2B)¢
Hence we get
q 3
Q(x
Tosatileys < | [ | S o)~ @il wldy | e
B \2ie 0—Y
q 7
Q(x
<|/ /|'( DL () — bl 1f @) dy | d
B \@2B)° o’
q 1
Q(x
S e -l | a
B \2m)e To —Y
=Ji+Jo

We have the following estimation of J;. When s’ < p and i + 1% + % =1, by the
Fubini’s theorem

et o[BI ) b1 ) ay

To —
(2B)° | 0 y|
. Tt
R 12 (x —y)|b(y) — bs||f ()] mdy
(2B)¢ |zo—yl

<t [ [ -l - bellf ) dyr

2r 2r<|zo—y|<t

\ .
sﬁ/ / 19— )| (o) b |17 ()] dy = holds.



GENERALIZED VANISHING MORREY ESTIMATES 27

Applying the Holder’s inequality and by (3.8), (4.1), (4.2), we get

d
/ / (@ =) b)) = bpeae.n| If W) |ytn+%

2r B wo ,t)

dt
+“/’b3(wo,r) DB (z0.t) | / IQ(x—y)||f(y)|dyW

2r B(wo,t)
o 7 dt
~Te /”Q ( ||( moxt))HL“(B(a:o,t)) Hf”Lp(B(a:o,t)) nti-a
2r

+rd / b5 a0y — beo| 112 — 9)

2r

. T dt
S0Lr® [ (14102 ) Ul ot 557

2r

In order to estimate Jy note that

Q(x—y
T2 = [ (00) = 500) |2, (5o / ||aco(_y"_)L Sy
(2B)°
By (4.1), we get
n Q(x
e = UL
@B

Thus, by (3.4) and (3.5)

n dt
T2 S 107 [ 181 o0 TovT

Summing up J; and Jo, for all p € (1,00) we get

i i dt
@0 onafelly S 1005 [ (140 5) 15l 0
2r
Finally, we have the following
- . ¢ dt
1Top.afllr, 5 S W02, @p) + 110l 77 Ldn— N IfllL, (5o pEEsE
2r

which completes the proof of first statement by (3.7).

11
||fHLp(B(x0 t)) |B (o, )| poe o
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On the other hand when ¢ < s, by the Fubini’s theorem and the Minkowski
inequality, we get

¢« N\
dt
// [ 16w = bol If ] 19— o)l dyi— | da
2r B(zo,t)
¢\
dt
IbB(% 0= bsonl [ IF @R —pldy | de
B B(zo,t)
dt
</ / e 1 GI2C =)t W rens
2r B(zo,t)
7 dt
+ }bB(zo,r) - bB(xo,t)‘ fF e - y)HLq(B(:cg,t)) dym
2r B(:Eo,t)
pli-t dt
o> / / — bB(a0, t)| F =yl Ly (B(xo,t)) dym
2r B :E() t)
11 dt
+[BJs |bB(xo,r) — bB(ag.) | F IR C =YL, (B dym~
2r B(Io,t)

Applying the Holder’s inequality and by (3.8), (4.1), (4.2), we get

oo 1
JiSree /H(b(')bB(xo,t))th(B(mo,t))‘B <x°’2t) pres
2r
T 3\ dt
+”5/|bB(xo,r)—bB(zo,t)’||fLP(B(zo,t))’B <$0,2t> pr=s)
2r
o)
S [0 = baeon)] 171 v
~ T T UB(@o.t)) L, (B(xo,t)) f Lp(B(zo,t)) * " yn+1
2r
ﬂ_, T n dt
+ra /|bB(r0,r) bB(xo,t) |||fHLp(B(zot))t pEs)
2r

Yl B CRE T e sl T PR

2r
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Let 1% =141 then for Jo, by the Fubini’s theorem, the Minkowski inequality,
the Holder’s inequality and from (3.8), we get

q 1
dt
/ / / y)| b (= —bBHQ(x—y)\dyW dx
27 B :Eo t
7 dt
~ |f ()] H(b(')_bB)Q<'_y)HLq(B) dym
2r B(Zro,t)
7 dt
~ |f ()] Hb<')_bB||LV(B) ||Q('_y)|LS(B) dym
2r B(mo,t)
< LT dt
S ol (Bl = FACIRIIACE) )dym
2r B(IU’)
3\|F ot
< o= / 1 iscoieonn B (03| soiis

< =2 / (1408 51l

2r

By combining the above estimates, we complete the proof of Lemma 4.1. (I
Now we can give the following theorem (our main result).

Theorem 4.1. (Our main result) Suppose that Q € Ly(S"1), 1 < s < oo, is
homogeneous of degree zero and Tqp o is a sublinear operator satisfymg condition
(1.2) and bounded from Ly(R™) to Lg(R™). Let 1 <p <oo 0 <a < 7, q = % -
and b € BMO (R™).

Let also, for s’ < p the pair (¢1,p2) satisfies the condition

n

® ‘ te<551<nf o1 (z,7)T?
(4.5) / <1 +1n 7‘) P dt < Coy (z,1),

T

and for q < s the pair (p1,¢2) satisfies the condition

® ; te<851<nf o1 (z, 1) T .
(4.6) / (1 +1In r) P dt < Cipa (z,7r) 7>,

T

where C' does not depend on x and r.
Then, the operator Tq b o is bounded from M, ,, to My ,,. Moreover

1Tas0flyr, .. < 0l 1D, -

Proof. The statement of Theorem 4.1 follows by Lemma 1.2 and Lemma 4.1 in the
same manner as in the proof of Theorem 3.1. (]

By Theorem 4.1, we get the following new result.
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Corollary 4.1. Suppose that Q € L,(S"1), 1 < s < 00, is homogeneous of degree
zero. Letl<p<ooO<oz<f E:l,% andbEBMO(R”) If for ' < p the
pair (@1, p2) satisfies the condztwn (4.5) and for q < s the pair (p1, 2) satisfies the
condition (4 6). Then, the operators Mq . and [b,Tq o] are bounded from M,
to My, o,

p,P1

For the sublinear commutator of the fractional maximal operator is defined as
follows

Wi () @) = sup B0 5 [ 1)~ b))y
B(z,t)

by Theorem 4.1 we get the following new result.

Corollary 4.2. Let0 <a<n, 1 <p< %, é = %—%, b€ BMO (R™) and the
pair (1, p2) satisfies the condition (4.5). Then, the operators My o and [b,T,] are
bounded from My ,, to M,

9,2

Now using above results, we also obtain the boundedness of the operator Tq 4.«
on the generalized vanishing Morrey spaces VM, .

Theorem 4.2. (Our main result) Let Q € Ls(S" 1), 1 < s < 0o, be homogeneous
of degree zero. Let1 < p < 00, 0 < a < %, % = %— & b e BMO(R"), and
Tap,a s a sublinear operator satisfying condition (1.2) and bounded from L,(R™)
to Ly(R™). Let for s' < p the pair (¢1,p2) satisfies conditions (2.3)-(2.4) and

; 42
(4.7) / (1 +1n r) v1 (x,1) = dt < Copa (z,71),
where Cy does not depend on x € R™ and r > 0,
. Inl
(4.8) lim ————— =0
r—=0 inf @o(z,7)
rER™
and
(oo} n
o2
(4.9) cs = /(1 +1n|t|) sup ¢1 (z,t) tﬁ%dt < 00
xR a
s

for every § > 0, and for g < s the pair (@1, p2) satisfies conditions (2.3)-(2.4) and
also

t to .
(4.10) / (1 +1In > v1 (x,t) PR dt < Copa(z, 7)1,
T q s
where Cy does not depend on x € R™ and r > 0,
I my _,
r50 inf a(z,7) N
r€R
and
te
(4.11) cyr = / (14+1n|t]) sup ¢; (z,1) @dt < oo
zERN q s

6/
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for every §' > 0.
Then the operator Tqp o is bounded from VM, o, to VM, ,. Moreover,

(1.12) 1Tonaflvar, .. S 100 1f v, .

Proof. The norm inequality having already been provided by Theorem 4.1, we only
have to prove the implication
(4.13)

=0.

r r7 | Tapafl
tim sup MWL @BEr) o5 i sup > Lq(B(zr))
=0 yeRn e1(z,7) =0 zeRrn P2 (33, r)
To show that
sup 17600 111, B
zERn <P2(3377“)

we use the estimate (4.3):

rT 4 | Topafll bl [
P Febel L, B o |0l /( t) _ng
su = 1+In— )t 4 - dt.
meﬂg)" pa(z, 1) wa(x,r) r ”fHLp(B( 0:t))

< € for small r,

We take r < dg, where &g will be chosen small enough and split the integration:

r a HTQ7b,o¢f||Lq(B(337T‘)) <C

(414) [I(S(] (.’E, 'f’) + J50 ({177 T)] )

@2(x’7‘)
where dp > 0 (we may take dp < 1), and
do
P p— /(1—Hnt> A dt
’ oz, 7) r Lp(B(z,t)) 7
and

17 b\, —n_g
J = — 14+In- )t dt
o) i= — [ (1w D)l oy

0

Now we choose any fixed dg > 0 such that
| f .
sup Il (Bt c
rER™ @1(1}, t) 2000

where C and Cj are constants from (4.7) and (4.14). This allows to estimate the
first term uniformly in r € (0, dp):

tS(SO?

sup Cls, (z,7) < <

i 2, O<T’<50.
TER™

For the second term, writing 1 +1Int <1+ |Int|+ In 2, we obtain

sy + CogIn L

T
@2(337’1") ||f||Mp,(‘7 9
where c5, is the constant from (4.9) with 6 = §p and c¢s, is a similar constant with

omitted logarithmic factor in the integrand. Then, by (4.8) we can choose small
enough r such that

Jso (z,7) <

€
sup Js, (x,7r) < 2
zER™
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which completes the proof of (4.13).
For the case of ¢ < s, we can also use the same method, so we omit the details. [

Remark 4.2. Conditions (4.9) and (4.11) are not needed in the case when (z, )
does not depend on z, since (4.9) follows from (4.7) and similarly, (4.11) follows
from (4.10) in this case.

Corollary 4.3. Suppose that Q € Ly(S"1), 1 < s < 0o, is homogeneous of degree
zero. Let 1 < p < oo, 0 < a< %, %:%—% and b € BMO (R™). If for s <p
the pair (o1, p2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for p < q
the pair (1, p2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10). Then, the
operators Mqp o and [b,Tq,o] are bounded from V M, ,, (R"™) to V M, ,, (R™).

In the case of ¢ = oo by Theorem 4.2, we get

Corollary 4.4. Let 1 <p <oo,0<a <2 2 =1—2andbe BMO(R")

and the pair (p1,p2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7). Then
(

the operators My o and [b,T,] are bounded from VM, ,, (R™) to VM, ,, (R™).

»P1 q,¥2

5. SOME APPLICATIONS

In this section, we give the applications of Theorem 3.1, Theorem 3.2, Theorem
4.1, Theorem 4.2 for the Marcinkiewicz operator.

5.1. Marcinkiewicz Operator. Let S"~! = {z € R" : |z| = 1} be the unit
sphere in R™ equipped with the Lebesgue measure do. Suppose that €2 satisfies the
following conditions.

(a) Q is the homogeneous function of degree zero on R™ \ {0}, that is,

Q(uzx) = Q(zx), for any p > 0,2z € R™\ {0}.
(b) © has mean zero on S™~!, that is,
/ Q(a')do(2') = 0,

Sn—1

T

o] for any x # 0.
(c) Q € Lip,(S"™1), 0 < v <1, that is there exists a constant M > 0 such that,

1Q(z') — Q)| < M|2’ —¢/|” for any 2,y € S" L.

where 2’ =

In 1958, Stein [45] defined the Marcinkiewicz integral of higher dimension pugq as

o 1/2
pa(D)@) = | [ N@P% |
0
where N
P = [ 2 o )y

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been
extensively studied as a research topic and also provides useful tools in harmonic
analysis [29, 46, 47, 48].
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The Marcinkiewicz operator is defined by (see [49])

0o 1/2

Hoo(f) (@) = / Faes(f)(@)
0
where

Qx—y
FaodDie) = [ 2 sy
lo—y|<t
Note that pof = paof.
The sublinear commutator of the operator pq o is defined by
o 1/2

bl D@ = | [IFanel PG |

0
where

Foas$@) = | 2T Y) i) b)) fy)dy.

=y
|z—y|<t

We consider the space H = {h: [|h|| = ([ |h(t)|?%)'/? < co}. Then, it is clear
0

that jig.(f)(@) = || Foe (@)
By the Minkowski inequality, we get
1/2
[z —y)| / dt [z —y)|
0a(f)@) < | —— 1y 5 dy <C | ———=—"|f(y)ldy.
O = = O Y )

n—«x
R™ z—y|

Thus, po,. satisfies the condition (1.1). It is known that for b € BMO (R™) the
operators pq o and [b, ug o] are bounded from L,(R™) to Ly(R™) for p > 1, and
bounded from L;(R™) to WL, (R") for p =1 (see [49]), then by Theorems 3.1, 3.2,
4.1 and 4.2 we get

Corollary 5.1. Suppose that Q € Ly(S"1), 1 < s < oo, is homogeneous of degree
zero. Let0 <a<n,1<p<= and% = %—%. Let also, for s’ <p, p # 1, the pair
(p1,92) satisfies condition (3.10) and for g < s the pair (¢1,p2) satisfies condition
(3.11) and Q) satisfies conditions (a)-(c). Then the operator pq.q is bounded from
My, o to My o, for p>1 and from My , to WM, ., forp=1.

Corollary 5.2. Suppose that Q € L,(S™1), 1 < s < 00, is homogeneous of degree
zero. Let0 <a<n, 1 <p<?Z and%:%—%. Let also, for s < p, p # 1,
the pair (p1,p2) satisfies conditions (2.3)-(2.4) and (3.12)-(3.13) and for ¢ < s
the pair (¢1,¢2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15) and Q0 satisfies
conditions (a)—(c). Then the operator pq, o is bounded from V.M, ,, to VM, ,, for

p > 1 and from VM ,, to WV Mg, forp=1.

Corollary 5.3. Suppose that Q € L,(S"1), 1 < s < 00, is homogeneous of degree
zero. Let 1 <p < oo, 0<a<?, % = %f % and b € BMO (R"™). Let also, for
s’ < p the pair (p1,p2) satisfies condition (4.5) and for q < s the pair (p1,¥2)
satisfies condition (4.6) and Q0 satisfies conditions (a)-(c). Then, the operator
b, o o] is bounded from M, ,, to M,

9,2
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Corollary 5.4. Suppose that Q € L,(S"1), 1 < s < 00, is homogeneous of degree
zero. Let 1 < p<oo,0<a<?f 1= %f % and b € BMO (R™). Let also, for
s' < p the pair (p1,@2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for
q < s the pair (¢1,p2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10) and
Q1 satisfies conditions (a)-(c). Then, the operator [b, pa o] s bounded from V M, ,,
to VMg o, -
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