
IFSCOM20161 Proceeding Book
No. 1 pp. 10-36 (2016)

ISBN: 978-975-6900-54-3

BOUNDEDNESS OF THE SUBLINEAR OPERATORS WITH

ROUGH KERNEL GENERATED BY FRACTIONAL INTEGRALS

AND THEIR COMMUTATORS ON GENERALIZED VANISHING

MORREY SPACES II

FERIT GURBUZ

Abstract. In this paper, we consider the norm inequalities for sublinear op-
erators with rough kernel generated by fractional integrals and their commuta-

tors on generalized Morrey spaces and on generalized vanishing Morrey spaces

including their weak versions under generic size conditions which are satisfied
by most of the operators in harmonic analysis, respectively. In all the cases the

conditions for the boundedness of sublinear operators with rough kernel and

their commutators are given in terms of Zygmund-type integral inequalities on
(ϕ1, ϕ2), where there is no assumption on monotonicity of ϕ1, ϕ2 in r. As an

example to the conditions of these theorems are satisfied, we can consider the
Marcinkiewicz operator.
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1. Introduction

The classical Morrey spaces Mp,λ have been introduced by Morrey in [32] to
study the local behavior of solutions of second order elliptic partial differential
equations(PDEs). In recent years there has been an explosion of interest in the
study of the boundedness of operators on Morrey-type spaces. It has been obtained
that many properties of solutions to PDEs are concerned with the boundedness of
some operators on Morrey-type spaces. In fact, better inclusion between Morrey
and Hölder spaces allows to obtain higher regularity of the solutions to different
elliptic and parabolic boundary problems (see [14, 36, 41, 43] for details).

Let B = B(x0, rB) denote the ball with the center x0 and radius rB . For a given
measurable set E, we also denote the Lebesgue measure of E by |E|. For any given
Ω0 ⊆ Rn and 0 < p <∞, denote by Lp (Ω0) the spaces of all functions f satisfying

‖f‖Lp(Ω0) =

∫
Ω0

|f (x)|p dx

 1
p

<∞.

We recall the definition of classical Morrey spaces Mp,λ as
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Mp,λ (Rn) =

{
f : ‖f‖Mp,λ(Rn) = sup

x∈Rn,r>0
r−

λ
p ‖f‖Lp(B(x,r)) <∞

}
,

where f ∈ Llocp (Rn), 0 ≤ λ ≤ n and 1 ≤ p <∞.
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn). If λ < 0 or λ > n, then

Mp,λ = Θ, where Θ is the set of all functions equivalent to 0 on Rn.
We also denote by WMp,λ ≡WMp,λ(Rn) the weak Morrey space of all functions

f ∈WLlocp (Rn) for which

‖f‖WMp,λ
≡ ‖f‖WMp,λ(Rn) = sup

x∈Rn, r>0
r−

λ
p ‖f‖WLp(B(x,r)) <∞,

where WLp(B(x, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(B(x,r)) ≡ ‖fχB(x,r)
‖WLp(Rn)

= sup
t>0

t |{y ∈ B(x, r) : |f(y)| > t}|1/p

= sup
0<t≤|B(x,r)|

t1/p
(
fχ

B(x,r)

)∗
(t) <∞,

where g∗ denotes the non-increasing rearrangement of a function g.
Throughout the paper we assume that x ∈ Rn and r > 0 and also let B(x, r)

denotes the open ball centered at x of radius r, BC(x, r) denotes its complement
and |B(x, r)| is the Lebesgue measure of the ball B(x, r) and |B(x, r)| = vnr

n,
where vn = |B(0, 1)|. It is known that Mp,λ(Rn) is an extension (a generalization)
of Lp(Rn) in the sense that Mp,0 = Lp(Rn).

Morrey has stated that many properties of solutions to PDEs can be attributed
to the boundedness of some operators on Morrey spaces. For the boundedness of
the Hardy–Littlewood maximal operator, the fractional integral operator and the
Calderón–Zygmund singular integral operator on these spaces, we refer the readers
to [1, 6, 38]. For the properties and applications of classical Morrey spaces, see
[7, 8, 14, 36, 41, 43] and references therein. The generalized Morrey spaces Mp,ϕ

are obtained by replacing rλ with a function ϕ (r) in the definition of the Morrey
space. During the last decades various classical operators, such as maximal, singular
and potential operators have been widely investigated in classical and generalized
Morrey spaces.

The study of the operators of harmonic analysis in vanishing Morrey space, in
fact has been almost not touched. A version of the classical Morrey space Mp,λ(Rn)
where it is possible to approximate by ”nice” functions is the so called vanishing
Morrey space VMp,λ(Rn) has been introduced by Vitanza in [50] and has been
applied there to obtain a regularity result for elliptic PDEs. This is a subspace of
functions in Mp,λ(Rn), which satisfies the condition

lim
r→0

sup
x∈Rn
0<t<r

t−
λ
p ‖f‖Lp(B(x,t)) = 0.

Later in [51] Vitanza has proved an existence theorem for a Dirichlet problem, un-
der weaker assumptions than in [30] and a W 3,2 regularity result assuming that the
partial derivatives of the coefficients of the highest and lower order terms belong
to vanishing Morrey spaces depending on the dimension. Also Ragusa has proved
a sufficient condition for commutators of fractional integral operators to belong to
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vanishing Morrey spaces VMp,λ(Rn) (see [39, 40]). For the properties and applica-
tions of vanishing Morrey spaces, see also [3]. It is known that, there is no research
regarding boundedness of the sublinear operators with rough kernel on vanishing
Morrey spaces.

Maximal functions and singular integrals play a key role in harmonic analysis
since maximal functions could control crucial quantitative information concerning
the given functions, despite their larger size, while singular integrals, Hilbert trans-
form as it’s prototype, recently intimately connected with PDEs, operator theory
and other fields.

Let f ∈ Lloc (Rn). The Hardy-Littlewood(H–L) maximal operator M is defined
by

Mf(x) = sup
t>0
|B(x, t)|−1

∫
B(x,t)

|f(y)|dy.

Let T be a standard Calderón-Zygmund(C–Z) singular integral operator, briefly
a C–Z operator, i.e., a linear operator bounded from L2(Rn) to L2(Rn) taking
all infinitely continuously differentiable functions f with compact support to the
functions f ∈ Lloc1 (Rn) represented by

Tf(x) = p.v.

∫
Rn

k(x− y)f(y) dy x /∈ suppf.

Such operators have been introduced in [11]. Here k is a C–Z kernel [16]. Chiarenza
and Frasca [6] have obtained the boundedness of H–L maximal operator M and C–
Z operator T on Mp,λ (Rn). It is also well known that H–L maximal operator M

and C–Z operator T play an important role in harmonic analysis (see [15, 29, 46,
47, 48]). Also, the theory of the C–Z operator is one of the important achievements
of classical analysis in the last century, which has many important applications in
Fourier analysis, complex analysis, operator theory and so on.

Let f ∈ Lloc (Rn). The fractional maximal operator Mα and the fractional
integral operator (also known as the Riesz potential) Tα are defined by

Mαf(x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|f(y)|dy 0 ≤ α < n

Tαf (x) =

∫
Rn

f (y)

|x− y|n−α
dy 0 < α < n.

It is well known that Mα and Tα play an important role in harmonic analysis
(see [47, 48]).

An early impetus to the study of fractional integrals originated from the problem
of fractional derivation, see e.g. [35]. Besides its contributions to harmonic analysis,
fractional integrals also play an essential role in many other fields. The H-L Sobolev
inequality about fractional integral is still an indispensable tool to establish time-
space estimates for the heat semigroup of nonlinear evolution equations, for some
of this work, see e.g. [24]. In recent times, the applications to Chaos and Fractal
have become another motivation to study fractional integrals, see e.g. [26]. It is
well known that Tα is bounded from Lp to Lq, where 1

p−
1
q = α

n and 1 < p < n
α .



GENERALIZED VANISHING MORREY ESTIMATES 13

Spanne (published by Peetre [38]) and Adams [1] have studied boundedness of
the fractional integral operator Tα on Mp,λ (Rn). Their results, can be summarized
as follows.

Theorem 1.1. (Spanne, but published by Peetre [38]) Let 0 < α < n, 1 < p < n
α ,

0 < λ < n− αp. Moreover, let 1
p −

1
q = α

n and λ
p = µ

q . Then for p > 1 the operator

Tα is bounded from Mp,λ to Mq,λ and for p = 1 the operator Tα is bounded from
M1,λ to WMq,λ.

Theorem 1.2. (Adams [1]) Let 0 < α < n, 1 < p < n
α , 0 < λ < n − αp and

1
p −

1
q = α

n−λ . Then for p > 1 the operator Tα is bounded from Mp,λ to Mq,λ and

for p = 1 the operator Tα is bounded from M1,λ to WMq,λ.

Recall that, for 0 < α < n,

Mαf (x) ≤ ν
α
n−1
n Tα (|f |) (x)

holds (see [25], Remark 2.1). Hence Theorems 1.1 and 1.2 also imply boundedness
of the fractional maximal operator Mα, where υn is the volume of the unit ball on
Rn.

Suppose that Sn−1 is the unit sphere in Rn (n ≥ 2) equipped with the normalized
Lebesgue measure dσ. Let Ω ∈ Ls(Sn−1) with 1 < s ≤ ∞ be homogeneous of degree
zero. We define s′ = s

s−1 for any s > 1. Suppose that TΩ,α, α ∈ (0, n) represents a

linear or a sublinear operator, which satisfies that for any f ∈ L1(Rn) with compact
support and x /∈ suppf

(1.1) |TΩ,αf(x)| ≤ c0
∫
Rn

|Ω(x− y)|
|x− y|n−α

|f(y)| dy,

where c0 is independent of f and x.
For a locally integrable function b on Rn, suppose that the commutator operator

TΩ,b,α, α ∈ (0, n) represents a linear or a sublinear operator, which satisfies that
for any f ∈ L1(Rn) with compact support and x /∈ suppf

(1.2) |TΩ,b,αf(x)| ≤ c0
∫
Rn

|b(x)− b(y)| |Ω(x− y)|
|x− y|n−α

|f(y)| dy,

where c0 is independent of f and x.
We point out that the condition (1.1) in the case of Ω ≡ 1, α = 0 has been

introduced by Soria and Weiss in [44]. The conditions (1.1) and (1.2) are satisfied by
many interesting operators in harmonic analysis, such as fractional Marcinkiewicz
operator, fractional maximal operator, fractional integral operator (Riesz potential)
and so on (see [27], [44] for details).

In 1971, Muckenhoupt and Wheeden [34] defined the fractional integral operator
with rough kernel TΩ,α by

TΩ,αf(x) =

∫
Rn

Ω(x− y)

|x− y|n−α
f(y)dy 0 < α < n

and a related fractional maximal operator with rough kernel MΩ,α is given by
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MΩ,αf(x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|Ω (x− y)| |f(y)|dy 0 ≤ α < n,

where Ω ∈ Ls(Sn−1) with 1 < s ≤ ∞ is homogeneous of degree zero on Rn and
TΩ,α satisfies the condition (1.1).

If α = 0, then MΩ,0 ≡ MΩ H-L maximal operator with rough kernel. It is

obvious that when Ω ≡ 1, M1,α ≡ Mα and T 1,α ≡ Tα are the fractional maximal
operator and the fractional integral operator, respectively.

In recent years, the mapping properties of TΩ,α on some kinds of function spaces
have been studied in many papers (see [5], [12], [13], [34] for details). In particular,
the boundedness of TΩ,α in Lebesgue spaces has been obtained.

Lemma 1.1. [5, 12, 33] Let 0 < α < n, 1 < p < n
α and 1

q = 1
p−

α
n . If Ω ∈ Ls(Sn−1),

s > n
n−α , then we have

∥∥TΩ,αf
∥∥
Lq
≤ C ‖f‖Lp .

Corollary 1.1. Under the assumptions of Lemma 1.1, the operator MΩ,α is bounded
from Lp(Rn) to Lq(Rn). Moreover, we have

‖MΩ,αf‖Lq ≤ C ‖f‖Lp .

Proof. Set

T̃|Ω|,α (|f |) (x) =

∫
Rn

|Ω(x− y)|
|x− y|n−α

|f(y)| dy 0 < α < n,

where Ω ∈ Ls(Sn−1) (s > 1) is homogeneous of degree zero on Rn. It is easy to see

that, for T̃|Ω|,α, Lemma 1.1 is also hold. On the other hand, for any t > 0, we have

T̃|Ω|,α (|f |) (x) ≥
∫

B(x,t)

|Ω(x− y)|
|x− y|n−α

|f(y)| dy

≥ 1

tn−α

∫
B(x,t)

|Ω(x− y)| |f(y)| dy.

Taking the supremum for t > 0 on the inequality above, we get

MΩ,αf (x) ≤ C−1
n,αT̃|Ω|,α (|f |) (x) Cn,α = |B (0, 1)|

n−α
n .

�

In 1976, Coifman, Rocherberg and Weiss [9] introduced the commutator ge-
nerated by TΩ and a local integrable function b:

(1.3) [b, TΩ]f(x) ≡ b(x)TΩf(x)−TΩ(bf)(x) = p.v.

∫
Rn

[b(x)−b(y)]
Ω(x− y)

|x− y|n
f(y)dy.

Sometimes, the commutator defined by (1.3) is also called the commutator in
Coifman-Rocherberg-Weiss’s sense, which has its root in the complex analysis and
harmonic analysis (see [9]).
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Let b be a locally integrable function on Rn, then for 0 < α < n and f is a
suitable function, we define the commutators generated by fractional integral and
maximal operators with rough kernel and b as follows, respectively:

[b, TΩ,α]f(x) ≡ b(x)TΩ,αf(x)− TΩ,α(bf)(x) =

∫
Rn

[b(x)− b(y)]
Ω(x− y)

|x− y|n−α
f(y)dy,

MΩ,b,α (f) (x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|b (x)− b (y)| |Ω (x− y)| |f(y)|dy

satisfy condition (1.2). The proof of boundedness of [b, TΩ,α] in Lebesgue spaces
can be found in [12] (by taking w = 1 there).

Theorem 1.3. [12] Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of
degree zero and has mean value zero on Sn−1. Let 0 < α < n, 1 ≤ p < n

α , and
1
q = 1

p −
α
n and b ∈ BMO(Rn). If s′ < p or q < s, then the operator [b, TΩ,α] is

bounded from Lp(Rn) to Lq (Rn).

Remark 1.1. Using the method in the proof of Corollary 1.1 we have that

(1.4) MΩ,b,αf (x) ≤ C−1
n,α[b, T |Ω|,α] (|f |) (x) Cn,α = |B (0, 1)|

n−α
n .

By (1.4) we see that under the conditions of Theorem 1.3, the consequences of
(Lp, Lq)-boundedness still hold for MΩ,b,α.

Remark 1.2. [41, 42] When Ω satisfies the specified size conditions, the kernel of the
operator TΩ,α has no regularity, so the operator TΩ,α is called a rough fractional
integral operator. In recent years, a variety of operators related to the fractional
integrals, but lacking the smoothness required in the classical theory, have been
studied. These include the operator [b, TΩ,α]. For more results, we refer the reader
to [2, 4, 12, 13, 18, 19, 20, 28].

Finally, we present a relationship between essential supremum and essential in-
fimum.

Lemma 1.2. (see [52] page 143) Let f be a real-valued nonnegative function and
measurable on E. Then

(1.5)

(
essinf
x∈E

f (x)

)−1

= esssup
x∈E

1

f (x)
.

Throughout the paper we use the letter C for a positive constant, independent of
appropriate parameters and not necessarily the same at each occurrence. By A . B
we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2. generalized vanishing Morrey spaces

After studying Morrey spaces in detail, researchers have passed to generalized
Morrey spaces. Mizuhara [31] has given generalized Morrey spaces Mp,ϕ consid-
ering ϕ = ϕ (r) instead of rλ in the above definition of the Morrey space. Later,
Guliyev [17] has defined the generalized Morrey spaces Mp,ϕ with normalized norm
as follows:
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Definition 2.1. [17] (generalized Morrey space) Let ϕ(x, r) be a positive mea-
surable function on Rn × (0,∞) and 1 ≤ p <∞. We denote by Mp,ϕ ≡ Mp,ϕ(Rn)
the generalized Morrey space, the space of all functions f ∈ Llocp (Rn) with finite
quasinorm

‖f‖Mp,ϕ
= sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈WLlocp (Rn) for which

‖f‖WMp,ϕ
= sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖WLp(B(x,r)) <∞.

According to this definition, we recover the Morrey space Mp,λ and weak Morrey

space WMp,λ under the choice ϕ(x, r) = r
λ−n
p :

Mp,λ = Mp,ϕ |
ϕ(x,r)=r

λ−n
p
, WMp,λ = WMp,ϕ |

ϕ(x,r)=r
λ−n
p

.

For brevity, in the sequel we use the notations

Mp,ϕ (f ;x, r) :=
|B(x, r)|−

1
p ‖f‖Lp(B(x,r))

ϕ(x, r)

and

MW
p,ϕ (f ;x, r) :=

|B(x, r)|−
1
p ‖f‖WLp(B(x,r))

ϕ(x, r)
.

In this paper, extending the definition of vanishing Morrey spaces [50], we in-
troduce the generalized vanishing Morrey spaces VMp,ϕ(Rn), including their weak
versions and studies the boundedness of the sublinear operators with rough kernel
generated by fractional integrals and their commutators in these spaces. Indeed,
we find it convenient to define generalized vanishing Morrey spaces in the form as
follows.

Definition 2.2. (generalized vanishing Morrey space) The generalized van-
ishing Morrey space VMp,ϕ(Rn) is defined as the spaces of functions f ∈Mp,ϕ(Rn)
such that

(2.1) lim
r→0

sup
x∈Rn

Mp,ϕ (f ;x, r) = 0.

Definition 2.3. (weak generalized vanishing Morrey space) The weak gen-
eralized vanishing Morrey space WVMp,ϕ(Rn) is defined as the spaces of functions
f ∈WMp,ϕ(Rn) such that

(2.2) lim
r→0

sup
x∈Rn

MW
p,ϕ (f ;x, r) = 0.

Everywhere in the sequel we assume that

(2.3) lim
r→0

1

inf
x∈Rn

ϕ(x, r)
= 0,

and

(2.4) sup
0<r<∞

1

inf
x∈Rn

ϕ(x, r)
<∞,
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which make the spaces VMp,ϕ(Rn) and WVMp,ϕ(Rn) non-trivial, because bounded
functions with compact support belong to this space. The spaces VMp,ϕ(Rn) and
WVMp,ϕ(Rn) are Banach spaces with respect to the norm

(2.5) ‖f‖VMp,ϕ
≡ ‖f‖Mp,ϕ

= sup
x∈Rn,r>0

Mp,ϕ (f ;x, r) ,

(2.6) ‖f‖WVMp,ϕ = ‖f‖WMp,ϕ = sup
x∈Rn,r>0

MW
p,ϕ (f ;x, r) ,

respectively.

3. Sublinear operators with rough kernel TΩ,α on the spaces Mp,ϕ

and VMp,ϕ

In this section, we will first prove the boundedness of the operator TΩ,α satisfying
(1.1) on the generalized Morrey spaces Mp,ϕ(Rn) by using Lemma 1.2 and the
following Lemma 3.1. Then, we will also give the boundedness of TΩ,α satisfying
(1.1) on generalized vanishing Morrey spaces VMp,ϕ(Rn).

We first prove the following lemma (our main lemma).

Lemma 3.1. (Our main lemma) Suppose that Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, is

homogeneous of degree zero. Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n . Let TΩ,α be

a sublinear operator satisfying condition (1.1), bounded from Lp(Rn) to Lq(Rn) for
p > 1, and bounded from L1(Rn) to WLq(Rn) for p = 1.

If p > 1 and s′ ≤ p, then the inequality

(3.1) ‖TΩ,αf‖Lq(B(x0,r))
. r

n
q

∞∫
2r

t−
n
q−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
If p > 1 and q < s, then the inequality

‖TΩ,αf‖Lq(B(x0,r))
. r

n
q−

n
s

∞∫
2r

t
n
s−

n
q−1 ‖f‖Lp(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Llocp (Rn).
Moreover, for p = 1 < q < s the inequality

(3.2) ‖TΩ,αf‖WLq(B(x0,r))
. r

n
q

∞∫
2r

t−
n
q−1 ‖f‖L1(B(x0,t))

dt

holds for any ball B (x0, r) and for all f ∈ Lloc1 (Rn).

Proof. Let 0 < α < n, 1 ≤ s′ < p < n
α and 1

q = 1
p −

α
n . Set B = B (x0, r) for the

ball centered at x0 and of radius r and 2B = B (x0, 2r). We represent f as
(3.3)
f = f1 + f2, f1 (y) = f (y)χ2B (y) , f2 (y) = f (y)χ(2B)C (y) , r > 0

and have

‖TΩ,αf‖Lq(B) ≤ ‖TΩ,αf1‖Lq(B) + ‖TΩ,αf2‖Lq(B) .
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Since f1 ∈ Lp (Rn), TΩ,αf1 ∈ Lq (Rn) and from the boundedness of TΩ,α from
Lp(Rn) to Lq(Rn) (see Lemma 1.1) it follows that:

‖TΩ,αf1‖Lq(B) ≤ ‖TΩ,αf1‖Lq(Rn) ≤ C ‖f1‖Lp(Rn) = C ‖f‖Lp(2B) ,

where constant C > 0 is independent of f .

It is clear that x ∈ B, y ∈ (2B)
C

implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|. We
get

|TΩ,αf2 (x)| ≤ 2n−αc1

∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n−α

dy.

By the Fubini’s theorem, we have

∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n−α

dy ≈
∫

(2B)C

|f (y)| |Ω (x− y)|
∞∫

|x0−y|

dt

tn+1−α dy

≈
∞∫

2r

∫
2r≤|x0−y|≤t

|f (y)| |Ω (x− y)| dy dt

tn+1−α

.

∞∫
2r

∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1−α .

Applying the Hölder’s inequality, we get

∫
(2B)C

|f (y)| |Ω (x− y)|
|x0 − y|n−α

dy

.

∞∫
2r

‖f‖Lp(B(x0,t))
‖Ω (x− ·)‖Ls(B(x0,t))

|B (x0, t)|1−
1
p−

1
s

dt

tn+1−α .(3.4)
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For x ∈ B (x0, t), notice that Ω is homogenous of degree zero and Ω ∈ Ls(Sn−1),
s > 1. Then, we obtain ∫

B(x0,t)

|Ω (x− y)|s dy


1
s

=

 ∫
B(x−x0,t)

|Ω (z)|s dz


1
s

≤

 ∫
B(0,t+|x−x0|)

|Ω (z)|s dz


1
s

≤

 ∫
B(0,2t)

|Ω (z)|s dz


1
s

=

 ∫
Sn−1

2t∫
0

|Ω (z′)|s dσ (z′) rn−1dr


1
s

= C ‖Ω‖Ls(Sn−1) |B (x0, 2t)|
1
s .(3.5)

Thus, by (3.5), it follows that:

|TΩ,αf2 (x)| .
∞∫

2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

Moreover, for all p ∈ [1,∞) the inequality

(3.6) ‖TΩ,αf2‖Lq(B) . r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

is valid. Thus, we obtain

‖TΩ,αf‖Lq(B) . ‖f‖Lp(2B) + r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

On the other hand, we have

‖f‖Lp(2B) ≈ r
n
q ‖f‖Lp(2B)

∞∫
2r

dt

t
n
q +1

≤ r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.(3.7)

By combining the above inequalities, we obtain

‖TΩ,αf‖Lq(B) . r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.
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Let 1 < q < s. Similarly to (3.5), when y ∈ B (x0, t), it is true that

(3.8)

 ∫
B(x0,r)

|Ω (x− y)|s dy


1
s

≤ C ‖Ω‖Ls(Sn−1)

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s

.

By the Fubini’s theorem, the Minkowski inequality and (3.8) , we get

‖TΩ,αf2‖Lq(B) ≤

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

≤
∞∫

2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B) dy
dt

tn+1−α

≤ |B (x0, r)|
1
q−

1
s

∞∫
2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Ls(B) dy
dt

tn+1−α

. r
n
q−

n
s

∞∫
2r

‖f‖L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

tn+1−α

. r
n
q−

n
s

∞∫
2r

‖f‖Lp(B(x0,t))
t
n
s−

n
q−1dt.

Let p = 1 < q < s ≤ ∞. From the weak (1, q) boundedness of TΩ,α and (3.7) it
follows that:

‖TΩ,αf1‖WLq(B) ≤ ‖TΩ,αf1‖WLq(Rn) . ‖f1‖L1(Rn)

= ‖f‖L1(2B) . r
n
q

∞∫
2r

‖f‖L1(B(x0,t))

dt

t
n
q +1

.(3.9)

Then from (3.6) and (3.9) we get the inequality (3.2), which completes the proof.
�

In the following theorem (our main result), we get the boundedness of the oper-
ator TΩ,α on the generalized Morrey spaces Mp,ϕ.

Theorem 3.1. (Our main result) Suppose that Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, is

homogeneous of degree zero. Let 0 < α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n . Let TΩ,α be

a sublinear operator satisfying condition (1.1), bounded from Lp(Rn) to Lq(Rn) for
p > 1, and bounded from L1(Rn) to WLq(Rn) for p = 1. Let also, for s′ ≤ p < q,
p 6= 1, the pair (ϕ1, ϕ2) satisfies the condition

(3.10)

∞∫
r

essinf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
q +1

dt ≤ Cϕ2(x, r),
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and for q < s the pair (ϕ1, ϕ2) satisfies the condition

(3.11)

∞∫
r

essinf
t<τ<∞

ϕ1(x, τ)τ
n
p

t
n
q−

n
s+1

dt ≤ C ϕ2(x, r)r
n
s ,

where C does not depend on x and r.
Then the operator TΩ,α is bounded from Mp,ϕ1

to Mq,ϕ2
for p > 1 and from

M1,ϕ1
to WMq,ϕ2

for p = 1. Moreover, we have for p > 1

‖TΩ,αf‖Mq,ϕ2
. ‖f‖Mp,ϕ1

,

and for p = 1
‖TΩ,αf‖WMq,ϕ2

. ‖f‖M1,ϕ1
.

Proof. Since f ∈ Mp,ϕ1 , by (2.6) and the non-decreasing, with respect to t, of the
norm ‖f‖Lp(B(x0,t))

, we get

‖f‖Lp(B(x0,t))

essinf
0<t<τ<∞

ϕ1(x0, τ)τ
n
p

≤ esssup
0<t<τ<∞

‖f‖Lp(B(x0,t))

ϕ1(x0, τ)τ
n
p

≤ esssup
0<τ<∞

‖f‖Lp(B(x0,τ))

ϕ1(x0, τ)τ
n
p

≤ ‖f‖Mp,ϕ1
.

For s′ ≤ p <∞, since (ϕ1, ϕ2) satisfies (3.10), we have
∞∫
r

‖f‖Lp(B(x0,t))
t−

n
q
dt

t

≤
∞∫
r

‖f‖Lp(B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
q

dt

t

≤ C ‖f‖Mp,ϕ1

∞∫
r

essinf
t<τ<∞

ϕ1(x0, τ)τ
n
p

t
n
q

dt

t

≤ C ‖f‖Mp,ϕ1
ϕ2(x0, r).

Then by (3.1), we get

‖TΩ,αf‖Mq,ϕ2
= sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1 |B(x0, r)|−

1
q ‖TΩ,αf‖Lq(B(x0,r))

≤ C sup
x0∈Rn,r>0

ϕ2 (x0, r)
−1

∞∫
r

‖f‖Lp(B(x0,t))
t−

n
q
dt

t

≤ C ‖f‖Mp,ϕ1
.

For the case of p = 1 < q < s, we can also use the same method, so we omit the
details. This completes the proof of Theorem 3.1. �

In the case of q =∞ by Theorem 3.1, we get
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Corollary 3.1. Let 1 ≤ p < ∞, 0 < α < n
p , 1

q = 1
p −

α
n and the pair (ϕ1, ϕ2)

satisfies condition (3.10). Then the operators Mα and Tα are bounded from Mp,ϕ1

to Mq,ϕ2 for p > 1 and from M1,ϕ1 to WMq,ϕ2 for p = 1.

Corollary 3.2. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let also for s′ ≤ p the pair

(ϕ1, ϕ2) satisfies condition (3.10) and for q < s the pair (ϕ1, ϕ2) satisfies condition
(3.11). Then the operators MΩ,α and TΩ,α are bounded from Mp,ϕ1

to Mq,ϕ2
for

p > 1 and from M1,ϕ1
to WMq,ϕ2

for p = 1.

Now using above results, we get the boundedness of the operator TΩ,α on the
generalized vanishing Morrey spaces VMp,ϕ.

Theorem 3.2. (Our main result) Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, be homogeneous
of degree zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let TΩ,α be a sublinear

operator satisfying condition (1.1), bounded on Lp(Rn) for p > 1, and bounded from
L1(Rn) to WL1(Rn). Let for s′ ≤ p, p 6= 1, the pair (ϕ1, ϕ2) satisfies conditions
(2.3)-(2.4) and

(3.12) cδ :=

∞∫
δ

sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
q +1

dt <∞

for every δ > 0, and

(3.13)

∞∫
r

ϕ1 (x, t)
t
n
p

t
n
q +1

dt ≤ C0ϕ2(x, r),

and for q < s the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and also

(3.14) cδ′ :=

∞∫
δ′

sup
x∈Rn

ϕ1(x, t)
t
n
p

t
n
q−

n
s+1

dt <∞

for every δ′ > 0, and

(3.15)

∞∫
r

ϕ1(x, t)
t
n
p

t
n
q−

n
s+1

dt ≤ C0ϕ2(x, r)r
n
s ,

where C0 does not depend on x ∈ Rn and r > 0.
Then the operator TΩ,α is bounded from VMp,ϕ1

to VMq,ϕ2
for p > 1 and from

M1,ϕ1 to WVMq,ϕ2 for p = 1. Moreover, we have for p > 1

(3.16) ‖TΩ,αf‖VMq,ϕ2
. ‖f‖VMp,ϕ1

,

and for p = 1

(3.17) ‖TΩ,αf‖WVMq,ϕ2
. ‖f‖VM1,ϕ1

.

Proof. The norm inequalities follow from Theorem 3.1. Thus we only have to prove
that

(3.18) lim
r→0

sup
x∈Rn

Mp,ϕ1
(f ;x, r) = 0 implies lim

r→0
sup
x∈Rn

Mq,ϕ2
(TΩ,αf ;x, r) = 0
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and

(3.19) lim
r→0

sup
x∈Rn

Mp,ϕ1
(f ;x, r) = 0 implies lim

r→0
sup
x∈Rn

MW
q,ϕ2

(TΩ,αf ;x, r) = 0.

To show that sup
x∈Rn

r
−n
q ‖TΩ,αf‖Lq(B(x,r))

ϕ2(x,r) < ε for small r, we split the right-hand

side of (3.1):

(3.20)
r−

n
q ‖TΩ,αf‖Lq(B(x,r))

ϕ2(x, r)
≤ C [Iδ0 (x, r) + Jδ0 (x, r)] ,

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x, r) :=
1

ϕ2(x, r)

δ0∫
r

t−
n
q−1 ‖f‖Lp(B(x,t)) dt,

and

Jδ0 (x, r) :=
1

ϕ2(x, r)

∞∫
δ0

t−
n
q−1 ‖f‖Lp(B(x,t)) dt,

and r < δ0. Now we use the fact that f ∈ VMp,ϕ1
and we choose any fixed δ0 > 0

such that

sup
x∈Rn

t−
n
p ‖f‖Lp(B(x,t))

ϕ1(x, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (3.13) and (3.20). This allows to estimate the
first term uniformly in r ∈ (0, δ0) :

sup
x∈Rn

CIδ0 (x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term may be obtained by choosing r sufficiently
small. Indeed, we have

Jδ0 (x, r) ≤ cδ0
‖f‖Mp,ϕ1

ϕ2 (x, r)
,

where cδ0 is the constant from (3.12) with δ = δ0. Then, by (2.3) it suffices to
choose r small enough such that

sup
x∈Rn

1

ϕ2(x, r)
≤ ε

2cδ0 ‖f‖Mp,ϕ1

,

which completes the proof of (3.18).
The proof of (3.19) is similar to the proof of (3.18). For the case of q < s, we

can also use the same method, so we omit the details. �

Remark 3.1. Conditions (3.12) and (3.14) are not needed in the case when ϕ(x, r)
does not depend on x, since (3.12) follows from (3.13) and similarly, (3.14) follows
from (3.15) in this case.

Corollary 3.3. Let Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, be homogeneous of degree zero.

Let 0 < α < n, 1 ≤ p < n
α and 1

q = 1
p −

α
n . Let also for s′ ≤ p, p 6= 1, the

pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.12)-(3.13) and for q < s the
pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15). Then the operators
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MΩ,α and TΩ,α are bounded from VMp,ϕ1
to VMq,ϕ2

for p > 1 and from VM1,ϕ1

to WVMq,ϕ2 for p = 1.

In the case of q =∞ by Theorem 3.2, we get

Corollary 3.4. Let 1 ≤ p < ∞ and the pair (ϕ1, ϕ2) satisfies conditions (2.3)-
(2.4) and (3.12)-(3.13). Then the operators Mα and Tα are bounded from VMp,ϕ1

to VMq,ϕ2 for p > 1 and from VM1,ϕ1 to WVMq,ϕ2 for p = 1.

4. Commutators of the sublinear operators with rough kernel TΩ,α

on the spaces Mp,ϕ and VMp,ϕ

In this section, we will first prove the boundedness of the operator TΩ,b,α satis-
fying (1.2) with b ∈ BMO (Rn) on the generalized Morrey spaces Mp,ϕ by using
Lemma 1.2 and the following Lemma 4.1. Then, we will also obtain the bounded-
ness of TΩ,b,α satisfying (1.2) with b ∈ BMO (Rn) on generalized vanishing Morrey
spaces VMp,ϕ.

Let T be a linear operator. For a locally integrable function b on Rn, we define
the commutator [b, T ] by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x)

for any suitable function f . Let T be a C–Z operator. A well known result of

Coifman et al. [9] states that when K (x) =
Ω(x′)
|x|n and Ω is smooth, the com-

mutator [b, T ]f = b Tf − T (bf) is bounded on Lp(Rn), 1 < p < ∞, if and only
if b ∈ BMO(Rn). The commutator of C–Z operators plays an important role in
studying the regularity of solutions of elliptic partial differential equations of second
order (see, for example, [7, 8, ?]). The boundedness of the commutator has been
generalized to other contexts and important applications to some non-linear PDEs
have been given by Coifman et al. [10]. On the other hand, For b ∈ Lloc1 (Rn),
the commutator [b, Tα] of fractional integral operator (also known as the Riesz
potential) is defined by

[b, Tα]f(x) = b(x)Tαf(x)− Tα(bf)(x) =

∫
Rn

b(x)− b(y)

|x− y|n−α
f(y)dy 0 < α < n

for any suitable function f .
The function b is also called the symbol function of [b, Tα]. The characterization

of (Lp, Lq)-boundedness of the commutator [b, Tα] of fractional integral operator
has been given by Chanillo [4]. A well known result of Chanillo [4] states that the
commutator [b, Tα] is bounded from Lp(Rn) to Lq(Rn), 1 < p < q <∞, 1

p−
1
q = α

n if

and only if b ∈ BMO(Rn). There are two major reasons for considering the problem
of commutators. The first one is that the boundedness of commutators can produce
some characterizations of function spaces (see [2, 4, 18, 19, 20, 21, 37, 42]). The
other one is that the theory of commutators plays an important role in the study of
the regularity of solutions to elliptic and parabolic PDEs of the second order (see
[7, 8, 14, 41, 43]).

Let us recall the defination of the space of BMO(Rn).

Definition 4.1. Suppose that b ∈ Lloc1 (Rn), let

‖b‖∗ = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy <∞,



GENERALIZED VANISHING MORREY ESTIMATES 25

where

bB(x,r) =
1

|B(x, r)|

∫
B(x,r)

b(y)dy.

Define

BMO(Rn) = {b ∈ Lloc1 (Rn) : ‖b‖∗ <∞}.

If one regards two functions whose difference is a constant as one, then the space
BMO(Rn) is a Banach space with respect to norm ‖ · ‖∗.

Remark 4.1. [23] (1) The John-Nirenberg inequality [22]: there are constants C1,
C2 > 0, such that for all b ∈ BMO(Rn) and β > 0

|{x ∈ B : |b(x)− bB | > β}| ≤ C1|B|e−C2β/‖b‖∗ , ∀B ⊂ Rn.

(2) The John-Nirenberg inequality implies that

(4.1) ‖b‖∗ ≈ sup
x∈Rn,r>0

 1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|pdy


1
p

for 1 < p <∞.
(3) Let b ∈ BMO(Rn). Then there is a constant C > 0 such that

(4.2)
∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r and t.

As in the proof of Theorem 3.1, it suffices to prove the following Lemma (our
main lemma).

Lemma 4.1. (Our main lemma) Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, be homogeneous
of degree zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n , b ∈ BMO (Rn), and

TΩ,b,α is a sublinear operator satisfying condition (1.2) and bounded from Lp(Rn)
to Lq(Rn). Then, for s′ ≤ p the inequality

(4.3) ‖TΩ,b,αf‖Lq(B(x0,r)) . ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
t−

n
q−1‖f‖Lp(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp (Rn).
Also, for q < s the inequality

‖TΩ,b,αf‖Lq(B(x0,r)) . ‖b‖∗ r
n
q−

n
s

∞∫
2r

(
1 + ln

t

r

)
t
n
s−

n
q−1‖f‖Lp(B(x0,t))dt

holds for any ball B(x0, r) and for all f ∈ Llocp (Rn).

Proof. Let 1 < p <∞, 0 < α < n
p and 1

q = 1
p −

α
n . As in the proof of Lemma 3.1,

we represent f in form (3.3) and have

‖TΩ,b,αf‖Lq(B) ≤ ‖TΩ,b,αf1‖Lq(B) + ‖TΩ,b,αf2‖Lq(B) .
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From the boundedness of TΩ,b,α from Lp(Rn) to Lq(Rn) (see Theorem 1.3) it follows
that:

‖TΩ,b,αf1‖Lq(B) ≤ ‖TΩ,b,αf1‖Lq(Rn)

. ‖b‖∗ ‖f1‖Lp(Rn) = ‖b‖∗ ‖f‖Lp(2B) .

It is known that x ∈ B, y ∈ (2B)
C

, which implies 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|.
Then for x ∈ B, we have

|TΩ,b,αf2 (x)| .
∫
Rn

|Ω (x− y)|
|x− y|n−α

|b (y)− b (x)| |f (y)| dy

≈
∫

(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− b (x)| |f (y)| dy.

Hence we get

‖TΩ,b,αf2‖Lq(B) .

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− b (x)| |f (y)| dy


q

dx


1
q

.

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− bB | |f (y)| dy


q

dx


1
q

+

∫
B

 ∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (x)− bB | |f (y)| dy


q

dx


1
q

= J1 + J2.

We have the following estimation of J1. When s′ ≤ p and 1
µ + 1

p + 1
s = 1, by the

Fubini’s theorem

J1 ≈ r
n
q

∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|b (y)− bB | |f (y)| dy

≈ r
n
q

∫
(2B)C

|Ω (x− y)| |b (y)− bB | |f (y)|
∞∫

|x0−y|

dt

tn+1−α dy

≈ r
n
q

∞∫
2r

∫
2r≤|x0−y|≤t

|Ω (x− y)| |b (y)− bB | |f (y)| dy dt

tn+1−α

. r
n
q

∞∫
2r

∫
B(x0,t)

|Ω (x− y)| |b (y)− bB | |f (y)| dy dt

tn+1−α holds.
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Applying the Hölder’s inequality and by (3.8), (4.1), (4.2), we get

J1 . r
n
q

∞∫
2r

∫
B(x0,t)

|Ω (x− y)|
∣∣b (y)− bB(x0,t)

∣∣ |f (y)| dy dt

tn+1−α

+ r
n
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|Ω (x− y)| |f (y)| dy dt

tn+1−α

. r
n
q

∞∫
2r

‖Ω (· − y)‖Ls(B(x0,t))

∥∥(b (·)− bB(x0,t)

)∥∥
Lµ(B(x0,t))

‖f‖Lp(B(x0,t))

dt

tn+1−α

+ r
n
q

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖Ω (· − y)‖Ls(B(x0,t))
‖f‖Lp(B(x0,t))

|B (x0, t)|1−
1
p−

1
s

dt

tn+1−α

. ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

In order to estimate J2 note that

J2 =
∥∥(b (·)− bB(x0,t)

)∥∥
Lq(B(x0,t))

∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|f (y)| dy.

By (4.1), we get

J2 . ‖b‖∗ r
n
q

∫
(2B)C

|Ω (x− y)|
|x0 − y|n−α

|f (y)| dy.

Thus, by (3.4) and (3.5)

J2 . ‖b‖∗ r
n
q

∞∫
2r

‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

Summing up J1 and J2, for all p ∈ (1,∞) we get

(4.4) ‖TΩ,b,αf2‖Lq(B) . ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
q +1

.

Finally, we have the following

‖TΩ,b,αf‖Lq(B) . ‖b‖∗ ‖f‖Lp(2B) + ‖b‖∗ r
n
q

∞∫
2r

(
1 + ln

t

r

)
‖f‖Lp(B(x0,t))

dt

t
n
q +1

,

which completes the proof of first statement by (3.7).
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On the other hand when q < s, by the Fubini’s theorem and the Minkowski
inequality, we get

J1 .

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

+

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

.

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy

dt

tn+1−α

+

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Lq(B(x0,t))
dy

dt

tn+1−α

. |B|
1
q−

1
s

∞∫
2r

∫
B(x0,t)

∣∣b (y)− bB(x0,t)

∣∣ |f (y)| ‖Ω (· − y)‖Ls(B(x0,t))
dy

dt

tn+1−α

+ |B|
1
q−

1
s

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Ls(B(x0,t))
dy

dt

tn+1−α .

Applying the Hölder’s inequality and by (3.8), (4.1), (4.2), we get

J1 . r
n
q−

n
s

∞∫
2r

∥∥(b (·)− bB(x0,t)

)
f
∥∥
L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

tn+1−α

+ r
n
q−

n
s

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

t
n
q +1

. r
n
q−

n
s

∞∫
2r

∥∥(b (·)− bB(x0,t)

)∥∥
Lp′ (B(x0,t))

‖f‖Lp(B(x0,t))
t
n
s
dt

tn+1

+ r
n
q−

n
s

∞∫
2r

∣∣bB(x0,r) − bB(x0,t)

∣∣ ‖f‖Lp(B(x0,t))
t
n
s
dt

t
n
q +1

. ‖b‖∗ r
n
q−

n
s

∞∫
2r

(
1 + ln

t

r

)
t
n
s−

n
q−1 ‖f‖Lp(B(x0,t))

dt.
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Let 1
p = 1

ν + 1
s , then for J2, by the Fubini’s theorem, the Minkowski inequality,

the Hölder’s inequality and from (3.8), we get

J2 .

∫
B

∣∣∣∣∣∣∣
∞∫

2r

∫
B(x0,t)

|f (y)| |b (x)− bB | |Ω (x− y)| dy dt

tn+1−α

∣∣∣∣∣∣∣
q

dx


1
q

.

∞∫
2r

∫
B(x0,t)

|f (y)| ‖(b (·)− bB) Ω (· − y)‖Lq(B) dy
dt

tn+1−α

.

∞∫
2r

∫
B(x0,t)

|f (y)| ‖b (·)− bB‖Lν(B) ‖Ω (· − y)‖Ls(B) dy
dt

tn+1−α

. ‖b‖∗ |B|
1
q−

1
s

∞∫
2r

∫
B(x0,t)

|f (y)| ‖Ω (· − y)‖Ls(B) dy
dt

tn+1−α

. ‖b‖∗r
n
q−

n
s

∞∫
2r

‖f‖L1(B(x0,t))

∣∣∣∣B(x0,
3

2
t

)∣∣∣∣ 1
s dt

tn+1−α

. ‖b‖∗ r
n
q−

n
s

∞∫
2r

(
1 + ln

t

r

)
t
n
s−

n
q−1‖f‖Lp(B(x0,t))dt.

By combining the above estimates, we complete the proof of Lemma 4.1. �

Now we can give the following theorem (our main result).

Theorem 4.1. (Our main result) Suppose that Ω ∈ Ls(S
n−1), 1 < s ≤ ∞, is

homogeneous of degree zero and TΩ,b,α is a sublinear operator satisfying condition
(1.2) and bounded from Lp(Rn) to Lq(Rn). Let 1 < p <∞ 0 < α < n

p , 1
q = 1

p −
α
n

and b ∈ BMO (Rn).
Let also, for s′ ≤ p the pair (ϕ1, ϕ2) satisfies the condition

(4.5)

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x, τ) τ
n
p

t
n
q +1

dt ≤ Cϕ2 (x, r) ,

and for q < s the pair (ϕ1, ϕ2) satisfies the condition

(4.6)

∞∫
r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1 (x, τ) τ
n
p

t
n
q−

n
s+1

dt ≤ Cϕ2 (x, r) r
n
s ,

where C does not depend on x and r.
Then, the operator TΩ,b,α is bounded from Mp,ϕ1

to Mq,ϕ2
. Moreover

‖TΩ,b,αf‖Mq,ϕ2
. ‖b‖∗ ‖f‖Mp,ϕ1

.

Proof. The statement of Theorem 4.1 follows by Lemma 1.2 and Lemma 4.1 in the
same manner as in the proof of Theorem 3.1. �

By Theorem 4.1, we get the following new result.
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Corollary 4.1. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p <∞ 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). If for s′ ≤ p the

pair (ϕ1, ϕ2) satisfies the condition (4.5) and for q < s the pair (ϕ1, ϕ2) satisfies the
condition (4.6). Then, the operators MΩ,b,α and [b, TΩ,α] are bounded from Mp,ϕ1

to Mq,ϕ2 .

For the sublinear commutator of the fractional maximal operator is defined as
follows

Mb,α (f) (x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|b (x)− b (y)| |f(y)|dy

by Theorem 4.1 we get the following new result.

Corollary 4.2. Let 0 < α < n, 1 < p < n
α , 1

q = 1
p −

α
n , b ∈ BMO (Rn) and the

pair (ϕ1, ϕ2) satisfies the condition (4.5). Then, the operators Mb,α and [b, Tα] are
bounded from Mp,ϕ1

to Mq,ϕ2
.

Now using above results, we also obtain the boundedness of the operator TΩ,b,α

on the generalized vanishing Morrey spaces VMp,ϕ.

Theorem 4.2. (Our main result) Let Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, be homogeneous
of degree zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n , b ∈ BMO (Rn), and

TΩ,b,α is a sublinear operator satisfying condition (1.2) and bounded from Lp(Rn)
to Lq(Rn). Let for s′ ≤ p the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and

(4.7)

∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

t
n
p

t
n
q +1

dt ≤ C0ϕ2 (x, r) ,

where C0 does not depend on x ∈ Rn and r > 0,

(4.8) lim
r→0

ln 1
r

inf
x∈Rn

ϕ2(x, r)
= 0

and

(4.9) cδ :=

∞∫
δ

(1 + ln |t|) sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
q +1

dt <∞

for every δ > 0, and for q < s the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and
also

(4.10)

∞∫
r

(
1 + ln

t

r

)
ϕ1 (x, t)

t
n
p

t
n
q−

n
s+1

dt ≤ C0ϕ2(x, r)r
n
s ,

where C0 does not depend on x ∈ Rn and r > 0,

lim
r→0

ln 1
r

inf
x∈Rn

ϕ2(x, r)
= 0

and

(4.11) cδ′ :=

∞∫
δ′

(1 + ln |t|) sup
x∈Rn

ϕ1 (x, t)
t
n
p

t
n
q−

n
s+1

dt <∞
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for every δ′ > 0.
Then the operator TΩ,b,α is bounded from VMp,ϕ1 to VMq,ϕ2 . Moreover,

(4.12) ‖TΩ,b,αf‖VMq,ϕ2
. ‖b‖∗ ‖f‖VMp,ϕ1

.

Proof. The norm inequality having already been provided by Theorem 4.1, we only
have to prove the implication
(4.13)

lim
r→0

sup
x∈Rn

r−
n
p ‖f‖Lp(B(x,r))

ϕ1(x, r)
= 0 implies lim

r→0
sup
x∈Rn

r−
n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
= 0.

To show that

sup
x∈Rn

r−
n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
< ε for small r,

we use the estimate (4.3):

sup
x∈Rn

r−
n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
.
‖b‖∗

ϕ2(x, r)

∞∫
r

(
1 + ln

t

r

)
t−

n
q−1‖f‖Lp(B(x0,t))dt.

We take r < δ0, where δ0 will be chosen small enough and split the integration:

(4.14)
r−

n
q ‖TΩ,b,αf‖Lq(B(x,r))

ϕ2(x, r)
≤ C [Iδ0 (x, r) + Jδ0 (x, r)] ,

where δ0 > 0 (we may take δ0 < 1), and

Iδ0 (x, r) :=
1

ϕ2(x, r)

δ0∫
r

(
1 + ln

t

r

)
t−

n
q−1 ‖f‖Lp(B(x,t)) dt,

and

Jδ0 (x, r) :=
1

ϕ2(x, r)

∞∫
δ0

(
1 + ln

t

r

)
t−

n
q−1 ‖f‖Lp(B(x,t)) dt

Now we choose any fixed δ0 > 0 such that

sup
x∈Rn

t−
n
p ‖f‖Lp(B(x,t))

ϕ1(x, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (4.7) and (4.14). This allows to estimate the
first term uniformly in r ∈ (0, δ0):

sup
x∈Rn

CIδ0 (x, r) <
ε

2
, 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0 (x, r) ≤
cδ0 + c̃δ0 ln 1

r

ϕ2(x, r)
‖f‖Mp,ϕ

,

where cδ0 is the constant from (4.9) with δ = δ0 and c̃δ0 is a similar constant with
omitted logarithmic factor in the integrand. Then, by (4.8) we can choose small
enough r such that

sup
x∈Rn

Jδ0 (x, r) <
ε

2
,
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which completes the proof of (4.13).
For the case of q < s, we can also use the same method, so we omit the details. �

Remark 4.2. Conditions (4.9) and (4.11) are not needed in the case when ϕ(x, r)
does not depend on x, since (4.9) follows from (4.7) and similarly, (4.11) follows
from (4.10) in this case.

Corollary 4.3. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). If for s′ ≤ p

the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for p < q
the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10). Then, the
operators MΩ,b,α and [b, TΩ,α] are bounded from VMp,ϕ1

(Rn) to VMq,ϕ2
(Rn).

In the case of q =∞ by Theorem 4.2, we get

Corollary 4.4. Let 1 < p < ∞, 0 < α < n
p , 1

q = 1
p −

α
n and b ∈ BMO (Rn)

and the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7). Then
the operators Mb,α and [b, Tα] are bounded from VMp,ϕ1

(Rn) to VMq,ϕ2
(Rn).

5. some applications

In this section, we give the applications of Theorem 3.1, Theorem 3.2, Theorem
4.1, Theorem 4.2 for the Marcinkiewicz operator.

5.1. Marcinkiewicz Operator. Let Sn−1 = {x ∈ Rn : |x| = 1} be the unit
sphere in Rn equipped with the Lebesgue measure dσ. Suppose that Ω satisfies the
following conditions.

(a) Ω is the homogeneous function of degree zero on Rn \ {0}, that is,

Ω(µx) = Ω(x), for any µ > 0, x ∈ Rn \ {0}.

(b) Ω has mean zero on Sn−1, that is,∫
Sn−1

Ω(x′)dσ(x′) = 0,

where x′ = x
|x| for any x 6= 0.

(c) Ω ∈ Lipγ(Sn−1), 0 < γ ≤ 1, that is there exists a constant M > 0 such that,

|Ω(x′)− Ω(y′)| ≤M |x′ − y′|γ for any x′, y′ ∈ Sn−1.

In 1958, Stein [45] defined the Marcinkiewicz integral of higher dimension µΩ as

µΩ(f)(x) =

 ∞∫
0

|FΩ,t(f)(x)|2 dt
t3

1/2

,

where

FΩ,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy.

Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been
extensively studied as a research topic and also provides useful tools in harmonic
analysis [29, 46, 47, 48].
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The Marcinkiewicz operator is defined by (see [49])

µΩ,α(f)(x) =

 ∞∫
0

|FΩ,α,t(f)(x)|2 dt
t3

1/2

,

where

FΩ,α,t(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1−α f(y)dy.

Note that µΩf = µΩ,0f .
The sublinear commutator of the operator µΩ,α is defined by

[b, µΩ,α](f)(x) =

 ∞∫
0

|FΩ,α,t,b(f)(x)|2 dt
t3

1/2

,

where

FΩ,α,t,b(f)(x) =

∫
|x−y|≤t

Ω(x− y)

|x− y|n−1−α [b(x)− b(y)]f(y)dy.

We consider the space H = {h : ‖h‖ = (
∞∫
0

|h(t)|2 dtt3 )1/2 < ∞}. Then, it is clear

that µΩ,α(f)(x) = ‖FΩ,α,t(x)‖.
By the Minkowski inequality, we get

µΩ,α(f)(x) ≤
∫
Rn

|Ω(x− y)|
|x− y|n−1−α |f(y)|

 ∞∫
|x−y|

dt

t3


1/2

dy ≤ C
∫
Rn

|Ω(x− y)|
|x− y|n−α

|f(y)|dy.

Thus, µΩ,α satisfies the condition (1.1). It is known that for b ∈ BMO (Rn) the
operators µΩ,α and [b, µΩ,α] are bounded from Lp(Rn) to Lq(Rn) for p > 1, and
bounded from L1(Rn) to WLq(Rn) for p = 1 (see [49]), then by Theorems 3.1, 3.2,
4.1 and 4.2 we get

Corollary 5.1. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let also, for s′ ≤ p, p 6= 1, the pair

(ϕ1, ϕ2) satisfies condition (3.10) and for q < s the pair (ϕ1, ϕ2) satisfies condition
(3.11) and Ω satisfies conditions (a)–(c). Then the operator µΩ,α is bounded from
Mp,ϕ1

to Mq,ϕ2
for p > 1 and from M1,ϕ1

to WMq,ϕ2
for p = 1.

Corollary 5.2. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 0 < α < n, 1 ≤ p < n

α and 1
q = 1

p −
α
n . Let also, for s′ ≤ p, p 6= 1,

the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.12)-(3.13) and for q < s
the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4) and (3.14)-(3.15) and Ω satisfies
conditions (a)–(c). Then the operator µΩ,α is bounded from VMp,ϕ1

to VMq,ϕ2
for

p > 1 and from VM1,ϕ1
to WVMq,ϕ2

for p = 1.

Corollary 5.3. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). Let also, for

s′ ≤ p the pair (ϕ1, ϕ2) satisfies condition (4.5) and for q < s the pair (ϕ1, ϕ2)
satisfies condition (4.6) and Ω satisfies conditions (a)–(c). Then, the operator
[b, µΩ,α] is bounded from Mp,ϕ1

to Mq,ϕ2
.
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Corollary 5.4. Suppose that Ω ∈ Ls(Sn−1), 1 < s ≤ ∞, is homogeneous of degree
zero. Let 1 < p < ∞, 0 < α < n

p , 1
q = 1

p −
α
n and b ∈ BMO (Rn). Let also, for

s′ ≤ p the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.9)-(4.7) and for
q < s the pair (ϕ1, ϕ2) satisfies conditions (2.3)-(2.4)-(4.8) and (4.11)-(4.10) and
Ω satisfies conditions (a)–(c). Then, the operator [b, µΩ,α] is bounded from VMp,ϕ1

to VMq,ϕ2 .
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